数理统计试题及答案[5篇范文]
数理统计考试试题及答案

一、(满分12分)设X X X n ,,,12为来自均匀分布θU (0,)的随机样本,θθ,ˆˆ12分别为未知参数θ的矩估计量和最大似然估计量。
(1)证明nT n =+θθ和ˆˆ112都是未知参数θ的无偏估计; (2)比较两个估计量的优劣性.二、(满分14分)设X 服从伽玛分布Γαβ(,),其特征函数为=−−βϕαt itX ()(1).(1) 利用特征函数法求X 的数学期望和方差; (2)设X X X n ,,,12是独立同分布的随机变量,其概率密度为,⎩≤⎨=>⎧λλx f x e x x 0,0.(),0-试用特征函数法证明:∑=Γ=λY X n i i n~(,)1 三、(满分14分)从两个独立的正态总体中抽取如下样本值: 甲(X ) 4.4 4.0 2.0 4.8 乙(Y )5.01.03.20.4经计算得x s y s ====3.8, 1.547, 2.4, 4.45312*2*2,在显著性水平=α0.05下,能否认为两个总体同分布? 四、(满分10分)设X X X ,,,129是总体μσX N ~(,)2的一个样本.记Y X Y X k k k k ∑∑===63,=,11171269SS X Y Z Y Y k k ∑=−=−=2(),12()7212229求统计量 Z 的分布。
五、(满分14分)设X X X n ,,,12是总体X 的一个样本,X 的密度函数为f x x x ⎩⎨=<<⎧−θθθ他其0,.(;),01,1>θ0求未知参数g =θθ()1的最大似然估计量gθ()ˆ,并求g θ()的有效估计量.六、 (满分20分)观测某种物质吸附量y 和温度x 时,得到数据如下:x i 1.5 1.8 2.4 3.0 3.5 3.9 4.4 4.8 5.0 y i4.85.77.08.310.912.413.113.615.3应用线性模型N y a bx ⎩⎨⎧=++εσε~(0,)2(1) 求a 和b 的最小二乘估计及回归方程;(2) 在显著性水平=α0.05下,检验原假设=H b :00;(3)在温度x =60时,求吸附量y 0的置信水平为α−=10.95的预测区间; (4) 若要使吸附量在5-10之间,温度应该如何控制(=α0.05).七、 (满分16分) 为了观察燃烧温度是否对砖块的密度有显著性影响,今在4种温度下做试验,得砖块密度的观察值如下: 温度(摄氏度) 砖块密度100 21.8 21.9 21.7 21.6 21.7 125 21.7 21.4 21.5 21.4 150 22.9 22. 8 22.8 22.6 22.5 17521.9 21.7 21.8 21.4试问燃烧温度对砖块密度是否有显著影响?(=α0.01) 附注:计算中可能用到的数据如下:t r F F t F F ===Φ=====5(7) 2.3646,(7)0.6664,(1,7) 5.59,(1.96)0.976(3,3)15.5,(6) 2.4469,(2,15) 3.68,(3,14) 5.50.9750.050.950.9750.9750.950.99一、(满分12分)解:(1)总体X 的密度函数为总体X 的分布函数为0,0(),01,x x F x x x θθθθ≤⎧⎪⎪=<<⎨⎪≥⎪⎩;由于2θ=EX ,得X 2ˆ1=θθ的矩估计量为 1ˆ[2]2θθ===E E X EX ,故的无偏估计量。
数理统计全套标准答案

习题一、基本概念1.解:设12345,,,,X X X X X 为总体的样本1)51151~(1,) (,,)(1)i ix x i X B p f x x p p -==-∏ 555(1)11(1),5x x i i p p x x -==-=∑2)λλλλλ55155151!!),,( )(~-==-∏∏==e x ex x x f P X i ixi i xi3)5155111~(,) (,,),,1,...,5()i X U a b f x x a xi b i b a b a ===≤≤=--∏所以5151,,1,...,5()(,,)0,a xi b i b a f x x ⎧≤≤=⎪-=⎨⎪⎩其他4)()⎪⎭⎫ ⎝⎛-==∑∏=-=-5122/55125121exp 221),,( )1,(~2i i i x x e x x f N X i ππμ2.解:因为0110,(),1,n k k k x x k F x x x x nx x ++<⎧⎪⎪≤<⎨⎪≥⎪⎩,所以40,00.3,010.65,12()0.8,230.9,341,4x x x F x x x x <⎧⎪≤<⎪⎪≤<⎨≤<⎪⎪≤<⎪≥⎩3.解:它近似服从均值为172,方差为5.64的正态分布,即(172,5.64)N4.解:()55-5 510/2- -⎪⎪⎭⎫ ⎝⎛<<-=⎪⎪⎭⎫ ⎝⎛<=<k X k P k X P k X P μμμ 因k 较大()()()()()()()-555(15)2510.950.95P X k k k k k k k μ<≈Φ-Φ-=Φ--Φ=Φ-=Φ=,5 1.65,0.33k k ==查表5.解:()-5250.853.8 1.1429 1.7143(1.7143)( 1.14296.3/6X P X P ⎛⎫<<=-<<=Φ-Φ- ⎪⎝⎭)0.9564(10.8729)0.8293 =--=6.解:()()()~(20,0.3),~(20,0.2),~(0,0.5),0.3 0.30.3Y N Z N Y Z Y Z N P Y Z P Y Z P Y Z -->=->+-<-设与相互独立,0.42430.42431(0.4243)(1(0.4243))22(0.4243)P P ⎫⎫=>=+<-⎪⎪⎭⎭=-Φ+-Φ=-Φ220.66280.6744=-⨯=7.解:101010222111~(0,4),~(0,1),2111 10.05,0.95444444ii i i i i i i X X N N c c c P X P X P X ===⎛⎫⎛⎫⎛⎫>=-≤=≤= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑则查卡方分位数表 c/4=18.31,c=73.248.解:由已知条件得:(1,),1()i X Y B p p F μ=-由i X 互相独立,知i Y 也互相独立,所以1(,),1().ni X i Y B n p p F μ==-∑9.解:1) )1(,)1(,2p Np DX ES np Np n DX X D Np EX X E -==-==== 2) λλλ======DX ES nn DX X D EX X E 2,, 3) ()()12,12,2222a b DX ES n a b n DX X D b a EX X E -==-==+==4) 1,1,2======DX ES nn DX X D EX X E μ 10.解:1) ()22212)1()1()1()1(σ-=-=-=-=-∑=n DX n ES n S n E X X E ni i2)()222242221(1)(1)(1), ~(1)ni i n S n S D X X D n S D n σχσσ=⎛⎫---=-=- ⎪⎝⎭∑ ()2412(1)ni i D X X n σ=∴-=-∑11.解:ππππππn X E dt e dy ey dy ey X nE Y E nn DY X E EY N X n Y n N X t y y 2)(,2)1(222222||21)(),11,0(),1,0(~),/1,0(~)102222==Γ==========-∞+-∞+-∞+∞-⎰⎰⎰ 令ππππππ211,2)1(222222||21),1,0(~)21102222===Γ====∑∑⎰⎰⎰==-∞+-∞+-∞+∞-n i i n i i t x x X E n X n E dt e dx ex dx ex X E N X12.解:1) ()2224X E X E X E n μμ-=-=()244100.1X X D E n n⎡⎤=+=+≤⎢⎥⎣⎦ 40n ∴≥2)222211,2u u X u E u e du u du +∞+∞---∞-===⎰⎰222220022002(1)0.1,80010,254.6,255u uutue du ue duue d e dtE X En nμπ+∞+∞--+∞+∞--===Γ=-==≤≥≥=∴≥⎰⎰⎰⎰3) ()()111P X P X Pμμ⎛-≤=-≤-≤=≤≤⎝⎭0.975210.95,2221.96,15.36,162u n n⎛⎫⎛⎫⎛=Φ-Φ-=Φ-≥⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭≥=≥≥13.解:()()()112221111111,n ni ii iY XY X a X na X an b b n bEY EX a S Sb b==⎛⎫=-=-=-⎪⎝⎭=-=∑∑14.解:1)12345~(0,2),~(0,3)X X N X X X N+++~~(0,1)N N1111,, 2.23c d n∴===2)()2345222212~(2),~(1)3X X XX Xχχ+++()()22122234523~(2,1),,2,123XX F c m n X X X +===++15.解:设1(1,)p F n α-=,即()1(1P F p P p α≤=-⇔≤≤=-()()12()2()12P T P T p P T p pP T ⇔≤-≤=-⇔≤=-⇔≤=-122112()()(1,)p p p t n tn F n α---=∴==16.解:()()()()()()()()()121222222221212222212121212212221212~(0,2),~(0,~~(0,1)~~(2)2210.1,2X X N X X N N N X X X X t P t P X X X X X X X X X X t P X X X X c χχ+-+⎛⎫⎛⎫++>=> ⎪ ⎪ ⎪ ⎪++-++-⎝⎭⎝⎭⎧⎫+⎪⎪=-≤=⎨⎬++-⎪⎪⎩⎭=0.9(1,2)8.532tF ==17.证明: 1)2211122211()0,(),(0,)1(1)(1)n n n n n E X X D X X XX N nnn S n t n σσχσ+++++-=-=∴---=- 又2)2211111()0,(),(0,)n n n n n E X X D X X X X N nnσσ+++++-=-=∴- 3)2211111()0,(),(0,)n n E X X D X X X X N n nσσ---=-=∴- 18. 解:()()()62,47.61,96.125.0,975.025.0,95.0125.0225.0/25.025.0975.0≥≥=≥≥Φ≥-Φ=⎪⎪⎭⎫ ⎝⎛≤-≤-=≤-n n u n n n n n X n P X P σμσμ 19.解[,]0,1,[,](),(),0,[,]1,X U a b x a x a b x af x F x a x b b a b a x a b x b ≤⎧⎧⎪∈-⎪⎪∴==<≤-⎨⎨-⎪⎪∉⎩>⎪⎩1(1)()(1())()n f x n F x f x -∴=-111()1(),[,]0,[,]1(),[,]()(())()0,[,]n n n n b a n x a b b a b a x a b x a n x a b f x n F x f x b a b ax a b ----⎧∈⎪=--⎨⎪∉⎩-⎧∈⎪==--⎨⎪∉⎩20.解:()()()()()()()55(1)(1)11515555555(5)111011011011101211121(1(1))1(11(1))1(1)0.5785121515 1.5(1.5)0.93320.70772i i i i i i i i i i P X P X P X P X X P X P X P X P =====<=-≥=-≥=--≤⎛-⎫⎛⎫=--≤- ⎪⎪⎝⎭⎝⎭=--Φ-=--+Φ=-Φ=-⎛⎫<==<=<=Φ== ⎪⎝⎭∏∏∏∏∏21. 解:1)因为21~(0,)mi i X N m σ=∑,从而~(0,1)miXN ∑2221~()m ni i m Xn χσ+=+∑,所以~()miX t n ξ=2)因为22211~()mii Xm χσ=∑,22211~()m nii m Xn χσ+=+∑所以2121~(,)mi i m ni i m n X F m n m X =+=+∑∑3)因为21~(0,)mii XN m σ=∑,21~(0,)m nii m XN n σ+=+∑所以2212()~(1)mi i X m χσ=∑,2212()~(1)m ni i m X n χσ+=+∑故 222221111~(2)m m n i i i i m X X m n χσσ+==+⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭∑∑22.解:由Th1.4.1 (2)()(),95.047.321),1(~122222=⎪⎪⎭⎫⎝⎛≤---σχσS n P n S n查表:n 121,n 22-==23.解:由推论1.4.3(2)05.095.0139.2139.2),14,19(~222122212221=-=⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>S S P S S P F S S 24.解: 1)()()94.005.099.057.3785.10)20(~),1,0(~),,0(~2201222220122=-=≤≤=⎪⎭⎫ ⎝⎛-=---∑∑==χχχσμσμσμσμP X XN X N X i i i ii i2)()895.01.0995.058.381965.11),19(~192222222012=-=⎪⎪⎭⎫ ⎝⎛≤≤=-∑=σχσσS P S X Xi i25. 解:1)()4532.07734.0221)75.0(21431435/2080380=⨯-=+Φ-=⎪⎭⎫ ⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=>-U P X P X P2)()()05.01975.021064.21064.25/2674.780380=+⨯-=≤-=⎪⎪⎭⎫ ⎝⎛>-=>-T P X P X P 26.解: 1)8413.0120472.4472.4=⎪⎪⎭⎫ ⎝⎛<-=⎪⎪⎭⎫ ⎝⎛<-=⎪⎭⎫ ⎝⎛+<σσσa X P a X P a X P 2)2222222222223132222222S P S P S P S P σσσσσσσσ⎛⎫⎛⎫⎛⎫⎛⎫-<=-<-<=<<=<< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭22199.528.50.950.050.9S P σ⎛⎫=<<=-= ⎪⎝⎭3)3676.3,328.120,1.020,9.02012020/1===⎪⎪⎭⎫ ⎝⎛≤=⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎭⎫ ⎝⎛>-=⎪⎪⎭⎫⎝⎛>-=⎪⎪⎭⎫ ⎝⎛>-c c c T P cT P cS X P c S X P c X S P μμμ27.解:22cov(,)(,)1()()1cov(,)()1(,)1i j i j i j i j i j i j X X X X r X X X X n D X X D X X nX X X X E X X X X X X X X nr X X X X n σσ----=--=-=--=---=-∴--=--28.解:()2221212)1(2)1(,)1(,21),2,2(~σσμ-=-=-=-===+=∑∑==+n ES n ET S n Y Y T X Y n Y N X X Y Y Y ni i ni i in i i 令习题二、参数估计1. 解: 矩估计()1 3.40.10.20.90.80.70.766X =+++++= ()()11111ln ln(1)ln nnni ii i nii L x x L n x αααααα===⎡⎤=+=+⎣⎦=++∏∏∑121ln ln 01ˆ10.2112ln ni i n ii d n L x d n x αααα====+=+=--=∑∑3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X X X x dx x EX αααααααα所以12112ˆˆ,11ln nii X n X X αα=⎛⎫ ⎪- ⎪==-+-⎪ ⎪⎝⎭∑,12ˆˆ0.3079,0.2112αα≈≈ 2.解:1)3077.02ˆ,21====X X EX θθ111ln 0nni L nL θθθ====-=∏无解,依定义:21ˆmax ii nX θ≤≤=2)矩法:211ˆˆ1.2,0.472212EX DX θθ====极大似然估计:22ˆˆ1.1,0.1833212EX DX θθ====3.1)解:矩法估计:111ˆ,EX X Xλλ===最大似然估计:111,ln ln niii nnx x ni i i L eeL n L x λλλλλ=--==∑===-∑∏2111ˆln 0,ni ni ii d n nL x d Xxλλλ===-===∑∑ 2)解:~()X P λ矩估计:X X EX ===1ˆ,λλ最大似然估计:1,ln ln ixnxnn i i iiL eeL n nx x x x λλλλλλ--====-+-∑∏∏2ˆln 0,d nx L n X d λλλ=-+== 3)解:矩估计:()2,212b a a bEX DX -+== 联立方程:()2*221ˆ2ˆa X b X a bX b a M ⎧=-⎪→+⎧=⎪⎪⎨-⎪=⎪⎩⎨=+⎪⎩极大似然估计:依照定义,11ˆˆmin ,max i ii ni naX b X ≤≤≤≤== 4) 解:矩估计:ln EX dx xxθθ+∞+∞==⎰,不存在22111,ln ln 2ln nnni i i i iL L n x x x θθθ=====-∑∏∏ ln 0n L αθ∂==∂,无解;故,依照定义,(1)ˆX θ= 5)解:矩法:()/0()(1)(2)x txEX e dx t edt αβααβαββ+∞+∞---==+=Γ+Γ⎰⎰X αβ=+=22220()(1)2(2)(3)t EX t e dt αβααββ+∞-=+=Γ+Γ+Γ⎰ 222222122()i M X nααββαββ=++=++==∑22222*2111ˆˆi M X X X M nX βαβ=-=-==-=∑即11ˆˆX X αβ==-==极大似然估计:()()/1111exp ,ln ln i nx n i n L e nx n L n nx αβαβαβββββ---=⎡⎤==--=--+⎢⎥⎣⎦∏2ln 0,ln ()0n n n L L x ααββββ∂∂===-+-=∂∂ α无解,依定义有:(1)(1)ˆˆ,L L X X X X αβα==-=- 7)解: 矩法:22223222(2)x x t x EX dx dte dt X θθθ+∞+∞+∞---=====⎰⎰⎰ˆMθ=极大似然估计:22222211iixnxn ni ii iL x eθθ--==∑⎛⎫== ⎪⎝⎭∏∏222ln ln43ln ln iixL n n n xθθ=---∑∑233ˆln20,iLxnLθθθθ∂=-+==∂∑8)解:矩法:2222222222022222223(1)(1)[(1)](1)(1)(1)1221x x x x x xxxd dEX x xd dd dq Xdq dq qθθθθθθθθθθθθθ∞∞∞-===∞==--=-=---=====-∑∑∑∑2ˆM Xθ=极大似然估计:22221(1)(1)(1)(1)ln2ln(2)ln(1)ln(1)inx n nx ni iiiL x xL n nx n xθθθθθθ--==--=--=+--+-∏∏∑222ˆln0,1Ln nx nLXθθθθ∂-=-==∂-4解:11112112(,,)(1)(1)ln(,,)ln(1)ln(1)n ni ii i i iy yny y nninL p y y y p p p pL p y y y ny p n y p==--=∑∑=-=-=+--∏12(,,)0(1)ny pd L p y y y ndp p p-==-ˆp Y=记001,;0,i i i iy x a y x a=≥=<则(1,)iY B p;1,ln ln i nx n nx i L e e L n nx λλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05Xλ== 6解:因为其寿命服从正态分布,所以极大似然估计为:2211ˆˆ,()ni i x x n μσμ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.811μσ==。
数理统计习题答案-2

数理统计习题答案习题5.1解答1. 设总体服从()λP 分布,试写出样本的联合分布律. n X X X ,,,12 解:()的分布律为:即X P X ~,λ ()!k e P X k k λλ-==, 0,1,2,,,n k =n X X X ,,,12 的联合分布律为:()n n P X x X x X x ===,,,1122 = ()()()n n P X x P X x P X x === 1122=nx x x x e x e x e nλλλλλλ---⋅2121=λλn n x x xe x x x n-+++!!!1212, n i n x i 0,1,2,,,1,2,, ==2. 设总体X 服从()0,1N 分布,试写出样本的联合分布密度. n X X X ,,,12 解:,即()~0,1X N X 分布密度为:()2221x p x e -=π,+∞<<-∞xn X X X ,,,12 的联合分布密度为:()∏==ni i n x x x p x p112*(),,...=22222221212121n x x x eee --⋅-πππ=()}212exp{122∑=--n i i x n π x i n i ,1,2,, =+∞<<∞-. 3. 设总体X 服从()2,μσN 分布,试写出样本的联合分布密度. n X X X ,,,12 解:()2~,μσX N ,即X 分布密度为:()p x =()}2exp{2122σμπσ--x ,∞<<∞-xn X X X ,,,12 的联合分布密度为:()∏==ni i n x xx p x p 112*,,...)(=)()}21exp{121222∑-⋅⋅-=-ni i n n x μσπσ, x i n i ,1,2,, =+∞<<∞-.4. 根据样本观测值的频率分布直方图可以对总体作什么估计与推断? 解:频率分布直方图反映了样本观测值落在各个区间长度相同的区间的频率大小,可以估计X 取值的位置与集中程度,由于每个小区间的面积就是频率,所以可以估计或推断X 的分布密度. 5. 略. 6. 略.习题5.2解答1. 观测5头基础母羊的体重(单位:kg)分别为53.2,51.3,54.5,47.8,50.9,试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设53.2,51.3,54.5,47.8,50.954321=====x x x x x()257.7151=∑=i ix,()51.54251==∑=i ix x(3) ss =()2512512xx xnx i ii i-=-∑∑===13307.84-5×51.542=25.982(4)=2s ()∑=-51251i i x x =51ss =5.1964, (5)s =2.28; (6) =s s *ss n 11-=6.4955(7)=2.5486; (8)*s cv =100⨯*xs =4.945;(9)每个数都是一个,故没有众数.(10)中位数为=51.3; (11)极差为54.5-47.8=6.7;(12)0.75分位数为53.2. 3x2. 观测100支金冠苹果枝条的生长量(单位:cm)得到频数表如下:组下限 19.5 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 组上限 24.5 29.5 34.5 39.5 44.5 49.5 54.5 59.5 64.5 组中值 22 27 32 37 42 47 52 57 62频数 8 11 13 18 18 15 10 4 3试计算这个样本观测值的数字特征:(1)样本总和,(2)样本均值,(3)离均差平方和,(4)样本方差,(5)样本标准差,(6)样本修正方差,(7)样本修正标准差,(8)样本变异系数,(9)众数,(10)中位数,(11)极差,(12)75%分位数.解:设组中值依次为,频数依次为,129,,,x x x 129,,,n n n +=++=912n n n n 100,()=∑=911i i in x 3950;()=+=∑=911912i i in xn n x 39.5;()()-=-==∑∑==29129123ss n x x n xnx i i ii i i 210039.5166300-⨯=10275;()==s ss 100142102.75; ()=s 510.137;()=-=*ss n s 1162103.788 ()=*s 710.188;()=⨯=*1008xs cv 25.79;()93742或众数是()50,210=n ;中位数为39.523742=+;()11极差为:62-22=40;()4783,0.7568,12612512分位数为+++=+++=∴n n n n n n .3.略.4. 设是一组实数,a 和是任意非零实数,n x x x ,,,12 b bx ay i i -=(i n 1,, =),x 、y 分别为、的均值, =i x i y 2xs ∑-iixn(x 2)1,=2ys 1n(y y i i-)∑2,试证明:① b x a y -=;② 222b s s x y =. 解①:∑∑==-==ni i ni i b x a ny ny 1111= ()∑=-ni i x a bn11= ⎪⎪⎭⎫ ⎝⎛-∑=n i i x na nb 11= b x a -;②=2y s 1n∑-ii y y 2()=∑=⎪⎪⎭⎫⎝⎛---ni i b x a b x a n121=∑=⎪⎪⎭⎫⎝⎛-ni i b x x n 121=221x s b .1.求分位数(1),(2)()820.05x ()1220.95x 。
数理统计考试题及答案

1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni i p2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X ∙=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=n i iXY 122)(1μσ,则EY=n解:∑=-=n i iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i iX X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i iX X,则⎪⎪⎪⎪⎭⎫⎝⎛≤-=⎪⎪⎪⎪⎭⎫⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi i i i X X P X X P sP s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752三.设总体X 的概率密度为f(x)=(1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
数理统计试题及答案

数理统计试题及答案一、选择题1. 在一次试验中,事件A和事件B是互斥事件,概率分别为0.4和0.3。
则事件“A或B”发生的概率是多少?A. 0.1B. 0.2C. 0.3D. 0.7答案:D. 0.72. 一批产品的重量服从正态分布,均值为100g,标准差为5g。
若随机抽取一件产品,其重量大于105g的概率是多少?A. 0.6827B. 0.1587C. 0.3413D. 0.0228答案:B. 0.15873. 一家量化投资公司共有1000名员工,调查结果显示,有700人拥有股票,400人拥有债券,300人既拥有股票又拥有债券。
随机选择一名员工,问其既拥有股票又拥有债券的概率是多少?A. 0.3B. 0.4C. 0.2D. 0.15答案:A. 0.34. 设X和Y为两个随机变量,已知X的期望为2,方差为4;Y的期望为5,方差为9,且X与Y的协方差为6。
则X + Y的期望为多少?A. 5B. 7C. 6D. 9答案:B. 7二、计算题1. 一箱产品中有10个次品,从中随机抽取3个,求抽到1个次品的概率。
解答:总共的可能抽取组合数为C(10,3) = 120。
抽取到1个次品的组合数为C(10,1) * C(90,2) = 4005。
所以,抽到1个次品的概率为4005/120 = 33.375%。
2. 已知某城市的男性身高服从正态分布,均值为172cm,标准差为5cm;女性身高也服从正态分布,均值为160cm,标准差为4cm。
问男性身高高于女性身高的概率是多少?解答:需要计算男性身高大于女性身高的概率,可以转化为计算两个正态分布随机变量之差的概率。
设随机变量X表示男性身高,Y表示女性身高,则X - Y服从正态分布,其均值为172cm - 160cm = 12cm,方差为5cm^2 + 4cm^2 =41cm^2。
要计算男性身高高于女性身高的概率,即计算P(X - Y > 0)。
首先,标准化X - Y,得到标准正态分布的随机变量Z:Z = (X - Y - 12) / sqrt(41)所以,P(X - Y > 0) = P(Z > (0 - 12) / sqrt(41)) = P(Z > -2.464)查标准正态分布表可知,P(Z > -2.464) ≈ 0.9937所以,男性身高高于女性身高的概率约为99.37%。
(完整版)数理统计考试题及答案

1、 离散型随机变量X 的分布律为P (X=x i )=p i ,i=1.2…..,则11=∑=ni ip2、 设两个随机变量X ,Y 的联合分布函数F (x ,y ),边际分布Fx (x ),Fy (y ),则X 、Y相互独立的条件是)()(),(y F x F y x F Y X •=3、 X 1,X 2,….X 10是总体X~N (0,1)的样本,若2102221X X X +⋅⋅⋅++=ξ,则ξ的上侧分位数025.0ξ=解:因为X~N (0,1),所以2102221X X X +⋅⋅⋅++=ξ~)10(2χ,查表得025.0ξ=20.54、 设X~N (0,1),若Φ(x )=0.576,则Φ(-x )= 解:Φ(-x )=1-Φ(x )=1-0.576=0.4245、设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=ni iXY 122)(1μσ,则EY=n解:∑=-=ni iXY 122)(1μσ~)(2n χ,E 2χ=n ,D 2χ=2n二、设设X 1,X 2,….X n 是总体),(~2σμN X 的样本,∑=-=6122)(51i i X X s ,试求)5665.2(22σ≤s P 。
解:因为),(~2σμN X ,所以有)5(~)(126122χσ∑=-i i X X ,则⎪⎪⎪⎪⎭⎫ ⎝⎛≤-=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-=≤=≤∑∑==8325.12)(5665.25)()5665.2()5665.2(261226122222σσσσi ii i X X P X X P s P s P 查2χ分布表得=≤)5665.2(22σs P ⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=8325.12)(2612σi i X X P =1-α=1-0.0248=0.9752 三.设总体X 的概率密度为f(x)= (1),(01)0a x x α⎧+<<⎨⎩,其他,其中α>0,求参数α的矩估计和极大似然估计量。
《数理统计》测验卷一答案

1 •设随机变量X「X2,…,X10相互独立,且;■ 0,有___________10A. P{P' X i一1 I::: ;} _1 一丫i 410C. P{P X i -10卜:;} _1 -20 ;'i 4EX i =1 , DX i = 2 ( i = 1,2,…,10 ),则对于任意给定的C10P{| a X i -1 卜:;}乞1 一;'i 410D. P{p' X i -1卜:;}乞1 -20;‘i丄B.A岀现的次数, p是事件A在每次试验中出现的概率,则对于任意,广>0,均有lim P j—-p< ®n_jpc n:2 •设」n是n次重复试验中,事件A. = 0B. = 1 3•设X1, X2,…,X n是来自总体1 n nA—、X i2 B. ' (X j」)2 n i 4 i 1C. 02N (•仁)的样本,D.不存在J为未知参数,则是一个统计量。
D. (X r二)2 t 24. X“X2,…,X n是来自总体的样本,记A.样本矩B.二阶原点矩5 •设总体X在区间[-1,1]上服从均匀分布,1 n—X i的方差D(X) = __________n i 11 nX为样本均值,则 -n -1 TC.二阶中心矩D.统计量X1 , X 2^ , X n为其样本,(X i -X)2则样本均值A. 01B.-31C.—3nD. 3166. X i,X2,…,X i6是来自总体X ~A. t(15)B. t(16) 7•设X「X2,…,X n是来自总体XA. 2(n -1)B. 2(n)2--------------------- 1N(2,二)的一个样本,X X i,则16 yD. N(0,1)n __2 、(X i -X) 丫二丄二2Acr 2 D. N(=) n1n2二乙、(X i -)24X -8C. 2 (15)〜N(亠二2)的样本,C. N(Y2)8 •设总体X〜),X1, X2/ ,X n为其样本,则A. 2(n -1)B. 2(n)C. t(n _1),其中X为样本均值,则服从分布9 •设总体X ~ N(」F2),X1,X2,…,X n为其样本,D.t (n)1 nX X in i彳B1n二丄7 (X i _x)2,则n u丫二n - 1(X -)服从的分布是S nA. (n -1)B. N(0,1)C. t(n -1)D.t(n)22 210 •设总体X ~ N(0,匚),匚为已知常数,X i , X 2,…,X n 为其样本,二1^ X i 为样本均值,则服 n i 丄2 从 分布的统计量是 ,(其中 So X - 1 A. SCn C. 1 n 2(X i —X)2 )o n i 41 n 2、(X i -X) CT i 4 11 •若X i ,X 2,…,X n 是来自总体N(0,1)的一个样本,则统计量 n D” i 二 X a 2 (X i -X)2 X ; (n-1)X 12D. F(n,1) X ;A. 2(n -1)B. 2(n) 12 •两种水稻的亩产量分别为 X 与丫,(X 1,X 2,…,X n )、(丫1,丫2,…,Y n )为分别来自总体 X 、丫的样本, 且 E(X)二丄1 , D(X)=G 2, E(Y)^2, D(Y)=/ , CA.叫乞込 13 •矩估计必然是A.无偏估计C. F(n _1,1) 当条件 满足时,品种X 不次于品种Y 。
最新数理统计试题及答案

数理统计考试试卷一、填空题(本题15分,每题3分)1、总体)3,20(~N X 的容量分别为10,15的两独立样本均值差~Y X -________;2、设1621,...,,X X X 为取自总体)5.0,0(~2N X 的一个样本,若已知0.32)16(201.0=χ,则}8{1612∑=≥i i X P =________;3、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;4、设n X X X ,..,,21为取自总体),(~2σμN X 的一个样本,对于给定的显著性水平α,已知关于2σ检验的拒绝域为χ2≤)1(21--n αχ,则相应的备择假设1H 为________;5、设总体),(~2σμN X ,2σ已知,在显著性水平0.05下,检验假设00:μμ≥H ,01:μμ<H ,拒绝域是________。
1、)210(,N ; 2、0.01; 3、nS n t )1(2-α; 4、202σσ<; 5、05.0z z -≤。
二、选择题(本题15分,每题3分)1、设321,,X X X 是取自总体X 的一个样本,α是未知参数,以下函数是统计量的为()。
(A ))(321X X X ++α (B )321X X X ++ (C )3211X X X α(D )231)(31α-∑=i i X2、设n X X X ,...,,21为取自总体),(~2σμN X 的样本,X 为样本均值,212)(1X X n S i n i n -=∑=,则服从自由度为1-n 的t 分布的统计量为( )。
(A )σμ)-X n ( (B )n S X n )(μ- (C )σμ)--X n (1 (D )n S X n )(1μ--3、设n X X X ,,,21 是来自总体的样本,2)(σ=X D 存在, 212)(11X X n S i ni --=∑=, 则( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数理统计试题及答案[5篇范文]第一篇:数理统计试题及答案数理统计考试试卷一、填空题(本题15分,每题3分)1、总体的容量分别为10,15的两独立样本均值差________;2、设为取自总体的一个样本,若已知,则=________;3、设总体,若和均未知,为样本容量,总体均值的置信水平为的置信区间为,则的值为________;4、设为取自总体的一个样本,对于给定的显著性水平,已知关于检验的拒绝域为2≤,则相应的备择假设为________;5、设总体,已知,在显著性水平0.05下,检验假设,,拒绝域是________。
1、;2、0.01;3、;4、;5、。
二、选择题(本题15分,每题3分)1、设是取自总体的一个样本,是未知参数,以下函数是统计量的为()。
(A)(B)(C)(D)2、设为取自总体的样本,为样本均值,则服从自由度为的分布的统计量为()。
(A)(B)(C)(D)3、设是来自总体的样本,存在,, 则()。
(A)是的矩估计(B)是的极大似然估计(C)是的无偏估计和相合估计(D)作为的估计其优良性与分布有关 4、设总体相互独立,样本容量分别为,样本方差分别为,在显著性水平下,检验的拒绝域为()。
(A)(B)(C)(D)5、设总体,已知,未知,是来自总体的样本观察值,已知的置信水平为0.95的置信区间为(4.71,5.69),则取显著性水平时,检验假设的结果是()。
(A)不能确定(B)接受(C)拒绝(D)条件不足无法检验 1、B;2、D;3、C;4、A;5、B.三、(本题14分)设随机变量X的概率密度为:,其中未知参数,是来自的样本,求(1)的矩估计;(2)的极大似然估计。
解:(1),令,得为参数的矩估计量。
(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为。
四、(本题14分)设总体,且是样本观察值,样本方差,(1)求的置信水平为0.95的置信区间;(2)已知,求的置信水平为0.95的置信区间;(,)。
解:(1)的置信水平为0.95的置信区间为,即为(0.9462,6.6667);(2)=;由于是的单调减少函数,置信区间为,即为(0.3000,2.1137)。
五、(本题10分)设总体服从参数为的指数分布,其中未知,为取自总体的样本,若已知,求:(1)的置信水平为的单侧置信下限;(2)某种元件的寿命(单位:h)服从上述指数分布,现从中抽得容量为16的样本,测得样本均值为5010(h),试求元件的平均寿命的置信水平为0.90的单侧置信下限。
解:(1)即的单侧置信下限为;(2)。
六、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度,今阶段性抽取10个水样,测得平均浓度为10.8(mg/L),标准差为1.2(mg/L),问该工厂生产是否正常?()解:(1)检验假设H0:2=1,H1:2≠1;取统计量:;拒绝域为:2≤=2.70或2≥=19.023,经计算:,由于2,故接受H0,即可以认为排出的污水中动植物油浓度的方差为2=1。
(2)检验假设;取统计量:~ ;拒绝域为;<2.2622,所以接受,即可以认为排出的污水中动植物油的平均浓度是10(mg/L)。
综上,认为工厂生产正常。
七、(本题10分)设为取自总体的样本,对假设检验问题,(1)在显著性水平0.05下求拒绝域;(2)若=6,求上述检验所犯的第二类错误的概率。
解:(1)拒绝域为;(2)由(1)解得接受域为(1.08,8.92),当=6时,接受的概率为。
八、(本题8分)设随机变量服从自由度为的分布,(1)证明:随机变量服从自由度为的分布;(2)若,且,求的值。
证明:因为,由分布的定义可令,其中,与相互独立,所以。
当时,与服从自由度为的分布,故有,从而。
数理统计试卷参考答案一、填空题(本题15分,每题3分)1、;2、0.01;3、;4、;5、。
二、选择题(本题15分,每题3分)1、B;2、D;3、C;4、A;5、B.三、(本题14分)解:(1),令,得为参数的矩估计量。
(2)似然函数为:,而是的单调减少函数,所以的极大似然估计量为。
四、(本题14分)解:(1)的置信水平为0.95的置信区间为,即为(0.9462,6.6667);(2)=;由于是的单调减少函数,置信区间为,即为(0.3000,2.1137)。
五、(本题10分)解:(1)即的单侧置信下限为;(2)。
六、(本题14分)解:(1)检验假设H0:2=1,H1:2≠1;取统计量:;拒绝域为:2≤=2.70或2≥=19.023,经计算:,由于2,故接受H0,即可以认为排出的污水中动植物油浓度的方差为2=1。
(2)检验假设;取统计量:~ ;拒绝域为;<2.2622,所以接受,即可以认为排出的污水中动植物油的平均浓度是10(mg/L)。
综上,认为工厂生产正常。
七、(本题10分)解:(1)拒绝域为;(2)由(1)解得接受域为(1.08,8.92),当=6时,接受的概率为。
八、(本题8分)证明:因为,由分布的定义可令,其中,与相互独立,所以。
当时,与服从自由度为的分布,故有,从而。
第二篇:数理统计试题及答案一、填空题(本题15分,每题3分)1、总体X~N(20,3)的容量分别为10,15的两独立样本均值差X Y~________;22、设X1,X2,...,X16为取自总体X~N(0,0.52)的一个样本,若已知χ0.01(16)=32.0,则P{∑Xi2≥8}=________;i=1163、设总体X~N(μ,σ2),若μ和σ均未知,n为样本容量,总体均值μ的置信水平为21-α的置信区间为(X-λ,X+λ),则λ的值为________;4、设X1,X2,...,Xn为取自总体X~N(μ,σ2)的一个样本,对于给定的显著性水平α,已知关于σ检验的拒绝域为χ2≤χ12-α(n-1),则相应的备择假设H1为________; 2σ已知,5、设总体X~N(μ,σ2),在显著性水平0.05下,检验假设H0:μ≥μ0,H1:μ<μ0,拒绝域是________。
1、N(0,);2、0.01;3、tα(n-1)2212Sn2;4、σ2<σ0;5、z≤-z0.05。
二、选择题(本题15分,每题3分)1、设X1,X2,X3是取自总体X的一个样本,α是未知参数,以下函数是统计量的为()。
13(A)α(X1+X2+X3)(B)X1+X2+X3(C)X1X2X3(D)∑(Xi-α)23i=1α1n22.,Xn为取自总体X~N(μ,σ)的样本,X为样本均值,Sn=∑(Xi-X)2,2、设X1,X2,ni=11则服从自由度为n-1的t分布的统计量为()。
(A)n-1(X-μ)n(X-μ)n(X-μ)n-1(X-μ)(B)(C)(D)σσSnSn221n(Xi-X)2,3、设X1,X2,Λ,Xn是来自总体的样本,D(X)=σ存在,S=∑n-1i=1则()。
(A)S2是σ2的矩估计(B)S2是σ2的极大似然估计(D)S2作为σ2的估计其优良性与分布有关(C)S2是σ2的无偏估计和相合估计224、设总体X~N(μ1,σ1),Y~N(μ2,σ2)相互独立,样本容量分别为n1,n2,样本方差分别2222为S12,S2,在显著性水平α下,检验H0:σ1的拒绝域为()。
≥σ2,H1:σ12<σ2(A)2s2s122s2≥Fα(n2-1,n1-1)(B)2s2s122s2≥F1-α2(n2-1,n1-1)(C)s12≤Fα(n1-1,n2-1)(D)2s12≤F1-α2(n1-1,n2-1)5、设总体X~N(μ,σ2),σ已知,μ未知,x1,x2,Λ,xn是来自总体的样本观察值,已知μ的置信水平为0.95的置信区间为(4.71,5.69),则取显著性水平α=0.05时,检验假设H0:μ=5.0,H1:μ≠5.0的结果是()。
(A)不能确定(B)接受H0(C)拒绝H0(D)条件不足无法检验1、B;2、D;3、C;4、A;5、B.⎧2x0<x<θ⎪,三、(本题14分)设随机变量X的概率密度为:f(x)=⎨θ2,其中未知其他⎪⎩0,参数θ>0,X1,Λ,Xn是来自X的样本,求(1)θ的矩估计;(2)θ的极大似然估计。
解:(1)E(X)=⎰-∞xf(x)dx=⎰0+∞θ2x2dx=θ,3θ22ˆ=ˆ)=X=θ,得θ令E(X(2)似然函数为:L(xi,θ)=∏i=1n233X为参数θ的矩估计量。
2=2n2xiθ2θ2n0<xi<θ,(i=1,2,Λ,n),∏xi,i=1nˆ=max{X,X,Λ,X}。
而L(θ)是θ的单调减少函数,所以θ的极大似然估计量为θ12n四、(本题14分)设总体X~N(0,σ2),且x1,x2Λx10是样本观察值,样本方差s2=2,(1)求σ的置信水平为0.95的置信区间;(2)已知Y=2X2σ2⎛X2⎫⎪~χ(1),求D σ3⎪的置信⎝⎭222水平为0.95的置信区间;(χ0。
.975(9)=2.70,χ0.025(9)=19.023)解:⎛1818⎫⎪,即为(0.9462,6.6667)(1)σ的置信水平为0.95的置信区间为;χ2(9),χ2(9)⎪0.975⎝0.025⎭2⎛X2⎫1⎛X2⎫122⎪= ⎪=(2)D ;DD[χ(1)]=2 σ3⎪σ2 σ2⎪σ2σ⎝⎭⎝⎭⎛22⎫⎛X2⎫22 ⎪,⎪=σ由于D 是的单调减少函数,置信区间为, σ3⎪σ2 σ2σ2⎪⎝⎭⎝⎭即为(0.3000,2.1137)。
五、(本题10分)设总体X服从参数为θ的指数分布,其中θ>0未知,X1,Λ,Xn为取自总体X的样本,若已知U=Xi~χ2(2n),求:∑θi=12n(1)θ的置信水平为1-α的单侧置信下限;(2)某种元件的寿命(单位:h)服从上述指数分布,现从中抽得容量为16的样本,测得样本均值为5010(h),试求元件的平均寿命的置信水平为0.90的单侧置信下限。
22(χ0)=44.985,χ0.05(31.10(32)=42.585)。
解:(1)ΘP⎨⎧2nX⎩θ⎧⎫2nX⎫⎪⎪2<χα(2n)⎬=1-α,∴P⎨θ>2⎬=1-α,⎪χα(2n)⎪⎭⎩⎭2nX2⨯16⨯5010;(2)θ==3764.706。
242.585χα(2n)即θ的单侧置信下限为θ=六、(本题14分)某工厂正常生产时,排出的污水中动植物油的浓度X~N(10,1),今阶段性抽取10个水样,测得平均浓度为10.8(mg/L),标准差为1.2(mg/L),问该工厂生产是22否正常?(α=0.05,t0.025(9)=2.2622,χ0.025(9)=19.023,χ0.975(9)=2.700)解:(1)检验假设H0:σ=1,H1:σ≠1;取统计量:χ=222(n-1)s22σ0;拒绝域为:χ2≤χ21-α22222(n-1)=χ0.975(9)=2.70或χ≥χα(n-1)=χ0.025=19.023,2经计算:χ=2(n-1)s22σ09⨯1.22==12.96,由于χ2=12.96∈(2.700,19.023)2,1故接受H0,即可以认为排出的污水中动植物油浓度的方差为σ2=1。