1电子系统设计基础
电子基础培训资料

电子基础培训资料电子技术是现代社会的基础,无论是通信设备、家用电器还是计算机,都离不开电子组件和电路的支持。
为了满足市场需求,培养一支专业的电子技术人才队伍是非常必要的。
本文将介绍电子基础培训的相关资料,以帮助初学者快速掌握电子技术的基本知识。
一、电子基础知识1. 电子元器件分类和基本特性电子元器件是构成电子电路的基本单元,主要包括电阻、电容、电感、二极管和晶体管等。
每种元器件都有其独特的特性和用途,初学者应该了解它们的基本分类和特点。
2. 电路分析方法电路分析是电子技术的重要基础,包括直流电路和交流电路的分析方法。
直流电路的分析主要涉及欧姆定律和基尔霍夫定律等,而交流电路则涉及到复数和相量的概念。
3. 信号与系统信号与系统是电子技术中的重要概念,它涉及到信号的传输、变换和处理等内容。
初学者需要了解信号的分类、性质以及系统的基本特性,为后续的学习打下基础。
二、数字电路基础1. 逻辑门与布尔代数数字电路是电子技术中的重要分支,它使用离散的信号进行信息的处理。
了解逻辑门的类型、真值表以及其在布尔代数中的表示方法对于理解数字电路的原理和设计方法至关重要。
2. 组合逻辑电路组合逻辑电路是由逻辑门组成的,它将多个输入信号通过门电路得到相应的输出信号。
初学者需要了解组合逻辑电路中的与门、与非门、或门、异或门等常见电路,并能够进行逻辑方程到电路的转换。
3. 时序逻辑电路时序逻辑电路是基于时钟信号进行时序控制的电路,它具有记忆能力和状态转换特性。
了解触发器、计数器等时序逻辑元件的工作原理以及它们在数字系统中的应用是必要的。
三、模拟电路基础1. 放大器与滤波器放大器是电子系统中的核心部件之一,它能够将输入信号进行增益处理。
初学者需要了解放大器的基本分类、特性参数和常用电路拓扑,以及滤波器的基本原理与设计方法。
2. 模拟运算放大器模拟运算放大器(Op-Amp)是模拟电路中应用最广泛的集成电路之一,它可实现电压放大、电流放大和运算等功能。
电子系统设计课程设计

电子系统设计课程设计一、课程目标知识目标:1. 让学生理解电子系统的基本原理,掌握电子元件的功能和电子电路的设计方法。
2. 使学生能够运用所学知识,设计并搭建简单的电子系统,如传感器应用、信号处理和控制系统。
3. 引导学生了解电子系统在实际应用中的发展现状和未来趋势。
技能目标:1. 培养学生运用电子绘图软件进行电路图设计的能力。
2. 提高学生动手实践能力,能够正确组装和调试电子系统。
3. 培养学生团队协作和问题解决能力,能够共同完成电子系统的设计与制作。
情感态度价值观目标:1. 培养学生对电子科学的兴趣,激发创新意识,增强探究精神。
2. 引导学生树立正确的工程伦理观念,注重环保和资源利用,培养社会责任感。
3. 培养学生严谨、细致的学习态度,养成良好的学习习惯和团队合作精神。
课程性质:本课程为实践性较强的学科,结合理论教学和动手实践,注重培养学生的实际操作能力和创新意识。
学生特点:学生已具备一定的电子基础知识,具有较强的求知欲和动手能力,但对电子系统设计的整体认识尚浅。
教学要求:教师需结合学生特点,以理论为基础,实践为导向,引导学生主动参与,注重培养学生的实际操作能力和解决问题的能力。
通过课程学习,使学生能够将所学知识应用于实际电子系统的设计与制作,达到学以致用的目的。
二、教学内容本课程教学内容主要包括以下几部分:1. 电子系统设计基础理论:- 电子元件特性与选型- 电路图绘制原则与方法- 电子电路的基本分析方法2. 电子系统设计实践:- 传感器应用电路设计- 信号处理电路设计- 控制系统电路设计3. 电子系统设计与制作:- 设计流程与方法- 电子绘图软件操作- 电子系统组装与调试4. 电子系统设计案例分析:- 现有电子产品的原理与结构分析- 创新电子系统设计实例讲解- 学生作品展示与评价教学内容根据课程目标,结合教材相关章节,制定以下教学大纲:第1周:电子系统设计基础理论第2周:电子元件特性与选型第3周:电路图绘制原则与方法第4周:电子电路的基本分析方法第5周:传感器应用电路设计第6周:信号处理电路设计第7周:控制系统电路设计第8周:设计流程与方法第9周:电子绘图软件操作第10周:电子系统组装与调试第11周:现有电子产品案例分析第12周:学生作品设计与制作第13周:学生作品展示与评价教学内容注重科学性和系统性,旨在使学生掌握电子系统设计的基本知识和技能,培养实际操作能力和创新意识。
电子系统设计知识点

电子系统设计知识点电子系统设计是指在电子技术领域中,通过理论与实践相结合,采用适当的设计方法和技术,设计出满足特定功能需求的电子系统的过程。
电子系统设计涉及到多个知识领域,包括电路设计、信号处理、通信原理等。
下面将介绍一些电子系统设计中的重要知识点。
一、模拟电路设计在电子系统设计中,模拟电路设计是基础且重要的一部分。
模拟电路是以连续时间和连续幅度的信号为基础,使用电子元器件构建的电路。
模拟电路设计的主要内容包括放大器设计、滤波器设计、稳压电源设计等。
设计时需要考虑电路的性能指标,如增益、带宽、失真等,以及电路的稳定性和可靠性。
二、数字电路设计数字电路设计是指采用逻辑门、触发器、计数器等数字元件和数字电路模块,通过逻辑运算和时序控制等方式实现逻辑功能的电路设计。
数字电路设计的主要内容包括逻辑门电路设计、时序电路设计和组合电路设计等。
设计时需要考虑电路的逻辑功能是否满足需求,电路的功耗和噪声等因素。
三、嵌入式系统设计嵌入式系统设计是指将计算机技术与电子技术相结合,将计算能力和控制能力嵌入到各种电子设备中,实现特定功能的系统设计。
嵌入式系统设计的主要内容包括微控制器选择与应用、实时操作系统设计、接口设计等。
设计时需要综合考虑系统的计算能力、存储空间、接口要求以及功耗等因素。
四、通信系统设计通信系统设计是指用来传输信息的电子系统的设计。
通信系统设计的主要内容包括调制解调器设计、编码译码器设计、信道编码与纠错设计等。
设计时需要考虑信号传输的可靠性、抗干扰能力以及系统的带宽和速率等。
五、电源系统设计电源系统设计是指为电子设备提供稳定、可靠的电源的设计。
电源系统设计的主要内容包括直流电源设计、交流电源设计、电池管理系统设计等。
设计时需要考虑电源的输出稳定性、效率和噪声等指标。
六、硬件描述语言(HDL)硬件描述语言(HDL)是一种用于电子系统设计的计算机语言。
HDL可以描述电路的结构和行为,用于模拟和验证电子系统设计。
电子系统设计的基本原则和方法

电子系统设计的基本原则和设计方法一、电子系统设计的基本原则:电子电路设计最基本的原则应该使用最经济的资源实现最好的电路功能。
具体如下:1、整体性原则在设计电子系统时,应当从整体出发,从分析电子电路整体内部各组成元件的关系以及电路整体与外部环境之间的关系入手,去揭示与掌握电子系统整体性质,判断电子系统类型,明确所要设计的电子系统应具有哪些功能、相互信号与控制关系如何、参数指标在那个功能模块实现等,从而确定总体设计方案。
整体原则强调以综合为基础,在综合的控制与指导下,进行分析,并且对分析的结果进行恰当的综合。
基本的要点是:(1)电子系统分析必须以综合为目的,以综合为前提。
离开了综合的分析是盲目的,不全面的。
(2)在以分析为主的过程中往往包含着小的综合。
即在对电子系统各部分进行分别考察的过程中,往往也需要又电子局部的综合。
(3)综合不许以分析为基础。
只有对电子系统的分析了解打到一定程度以后,才能进行综合。
没有详尽以分析电子系统作基础,综合就是匆忙的、不坚定的,往往带有某种主管臆测的成分。
2、最优化原则最优化原则是一个基本达到设计性能指标的电子系统而言的,由于元件自身或相互配合、功能模块的相互配合或耦合还存在一些缺陷,使电子系统对信号的传送、处理等方面不尽完美,需要在约束条件的限制下,从电路中每个待调整的原器件或功能模块入手,进行参数分析,分别计算每个优化指标,并根据有忽而指标的要求,调整元器件或功能模块的参数,知道目标参数满足最优化目标值的要求,完成这个系统的最优化设计。
3、功能性原则任何一个复杂的电子系统都可以逐步划分成不同层次的较小的电子子系统。
仙子系统设计一般先将大电子系统分为若干个具有相对独立的功能部分,并将其作为独立电子系统更能模块;再全面分析各模块功能类型及功能要求,考虑如何实现这些技术功能,即采用那些电路来完成它;然后选用具体的实际电路,选择出合适的元器件,计算元器件参数并设计个单元电路。
电子系统设计实验指导书(FPGA基础篇Vivado版)

实验指导书(FPGA 基础篇 Vivado 版)
东南大学 电子科学 ........................................................................................................................................................... 1
安全使用规范
东南大学 电子科学与工程学院
无论何时,外部电源供电与 USB 两种供电方式只能用其中一种,避免因为电压有所差别而烧坏电路板。 采用电压高于5.5V的任何电源连接器可能造成永久性的损害。 插拔接插件前请关闭电路板总开关,否则易损坏器件。 电路板应在绝缘平台上使用,否则可能引起电路板损坏。 不同编码机制不要混接。 安装设备需防止静电。 液晶显示器件或模块结雾时,不要通电工作,防止电极化学反应,产生断线。 遇到正负极连接时需谨慎,避免接反引起开发板的损坏。 保持电路板的表面清洁。 小心轻放,避免不必要的硬件损伤。
实验目的 ....................................................................................................................................................... 17 实验内容 ....................................................................................................................................................... 17 实验要求 ....................................................................................................................................................... 17 实验步骤 ....................................................................................................................................................... 17 实验结果 ....................................................................................................................................................... 22
电子工程知识点总结

电子工程知识点总结电子工程是一门综合性比较强的工程学科,它涵盖了多个领域,包括电路设计、电子元器件、通信工程、控制工程、嵌入式系统等等。
本文将从电子工程的基础知识到一些前沿技术进行总结,以便读者了解电子工程的基本概念和技术发展趋势。
一、电子工程基础知识1. 电路基础电子工程的基础是电路理论,它主要包括基本电子器件、电路分析和设计等方面的内容。
其中,基本电子器件主要包括二极管、晶体管、场效应管等,它们是电子器件的基本组成单元,电路分析和设计则是掌握电路原理和知识的基础。
2. 信号与系统信号与系统是电子工程的另一个基础知识,它主要包括连续时间信号与系统、离散时间信号与系统等内容。
信号与系统的理论是电子工程的核心内容,它广泛应用于通信工程、控制工程等领域。
3. 电磁场理论电磁场理论是电子工程的另一个重要基础知识,它主要包括电场、磁场、电磁波等内容。
电磁场理论是电子器件和电路设计的理论基础,也是通信工程、雷达工程等领域的重要理论基础。
4. 数字信号处理数字信号处理是电子工程的重要知识点,它主要包括数字信号的表示与处理、数字滤波、频谱分析等内容。
数字信号处理是电子工程中的新兴领域,它在通信工程、嵌入式系统等领域有着广泛的应用。
二、电子工程的应用领域1. 通信工程通信工程是电子工程的一个重要应用领域,它涉及到信号处理、通信原理、调制解调等内容。
在现代社会中,通信工程具有重要的作用,无论是移动通信系统、互联网还是卫星通信系统都离不开通信工程的支持。
2. 控制工程控制工程是电子工程的另一个重要应用领域,它主要包括控制系统的设计与分析、自动控制、工业控制系统等内容。
控制工程在工业生产、机器人技术等方面有着广泛的应用。
3. 嵌入式系统嵌入式系统是电子工程的另一个重要应用领域,它主要包括嵌入式系统的设计、嵌入式软件开发等内容。
嵌入式系统在智能家居、智能手机、汽车电子等领域有着广泛的应用。
4. 电力电子电力电子是电子工程的另一个重要应用领域,它主要包括电力系统的稳定性分析、电力电子器件的设计与应用等内容。
电子系统设计与实践课程设计 (2)

电子系统设计与实践课程设计1. 课程背景电子系统设计与实践课程是为电子工程专业本科生设计的一门专业基础课程,旨在让学生掌握电子系统设计的基本理论和方法,了解相关技术领域的最新发展趋势,更好地为未来的职业生涯做准备。
该课程的核心在于通过项目实践引导学生深入学习电子系统设计的理论知识,发挥学生的团队协作和创新能力,在真实的场景中体验电子系统设计的基本流程和实践操作,提高其综合素质和实践能力。
2. 课程目标通过本课程的学习,学生将具备以下能力:1.掌握电子系统设计的基本理论和方法,了解相关技术领域的最新发展趋势。
2.熟悉电子系统设计的基本流程,具备系统设计和实现的实践能力。
3.培养学生的团队协作精神和创新能力,在真实的场景中锻炼学生的综合素质和实践能力。
3. 课程内容本课程的内容主要包括以下几个方面:3.1 电子系统设计基础1.电子系统设计的基本原理和方法2.电子元器件的基本特性和应用3.模拟电路和数字电路的基本理论和实践技能3.2 电子系统设计流程1.电子系统设计流程的基本概念和方法2.电子系统设计的需求分析和规划3.电子系统设计的硬件实现和软件编程3.3 电子系统设计实践1.电子系统设计实践的基本流程和方法2.电子系统设计实践的项目选择和题目确定3.电子系统设计实践的实验报告和成果展示4. 课程设计本课程的设计通过项目实践引导学生深入学习电子系统设计的理论知识,发挥学生的团队协作和创新能力,在真实的场景中体验电子系统设计的基本流程和实践操作,提高其综合素质和实践能力。
本课程的设计分为三个部分。
第一部分是课堂讲解,通过讲解电子系统设计的基本理论和方法,为学生打好基础。
第二部分是课程实践,学生在老师的指导下组成小组,自行选择项目进行实践,采用融合学习、研讨与实践等方法,体验电子系统设计的基本流程和实践操作,最终完成实验报告和成果展示。
第三部分是复习与考核,老师将通过平时作业、课堂问答和课程测验等方式进行评估,对学生的综合表现进行评分。
电子系统设计--课程设计

Power
Output Amplifier
➢ Amplifiers are the system interface to the outside world ➢ They directly impact the user experience(用户体验)
➢ What you can see, hear,or measure
Байду номын сангаас
一、面包板
二、万用板
设计经验和意识
➢功率意识
➢分工合作、加强沟通,提高合作效率
➢模块设计概念
➢理论中理想阻容、运放等芯片模型与工程实践非理 想模型认知,
➢设计辅助工具应用,提高设计效率
➢工艺
及可测试性设计
结束语
谢谢
Thanks!
一、单元设计
➢原理设计(电路参数确定、
)
➢仿真分析验证理论(例如滤波器设计:采用TI的filterPro,模拟电 路分析multisim或者Tina仿真分析,数字可用Multisim或Proteus)
➢关键器件参数分析及测试、仿真模型建立验证、
➢硬件焊接、
(模拟分单元设计:供电单元、传感器单元、
信号调理单元、采集单元、数字单元、信号产生单元、驱动单元等)
➢对着输入需求,逐条罗列出指标和功能检查,并且测试记录数据, 分析达到效果,逐步优化
➢紧固焊接,加固线束和元器件等,尤其面包板线保障可靠,提高可 靠性,追求航天工艺标准整理线束规范,焊接工艺美观可靠,测试 点标识清楚,随时等待验收,携带测试报告比对
(示波器拷贝或者拍照、或者 绘制),绘制表格,数据误差分析等,对比理论分析、仿真分析、 实践测试三者数据和误差,总结实训。
➢综合能力:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、电子系统设计基础1.1 电子设计概述 1.2 现代电子设计的特点1.3 电子系统的设计步骤 1.4 电子系统设计方法1.5 系统设计与系统仿真技术 1.6 板卡设计与板卡仿真技术1.7 芯片设计与仿真技术 1.8 电子系统综合设计概述1.9 专用数字集成电路综合设计概述1.1 电子设计概述电子系统分为模拟型、数字型及两者兼而有之的混合型三种,无论哪一种电子系统,它们都是能够完成某种任务的电子设备。
通常把规模较小、功能单一的电子系统称为单元电路,实际应用中的电子系统由若干单元电路构成。
一般的电子系统由输入、输出、信息处理三大部分组成,用来实现对信息的采集处理、变换与传输功能。
图1.1.1为电子系统基本组成方框图。
图1.1.1 电子系统方框图从系统的角度看,电子系统是能按特定的控制信号,执行所设想的功能,由一组元件(通常是电子元件)联成的一个整体。
这样,很多东西,譬如从单级放大器到最复杂的计算机都可以称为一个电子系统。
我们可以将很多元件集成为一个功能单元,再用若干个功能单元去描述一个系统。
在认识、理解与设计电子系统的过程中,这样的功能单元常常不用给出详细的内部结构,而只需从输入输出特性去描述,这就需要用到黑箱分析法。
黑箱辨识方法是系统科学中的主要方法之一。
人们在从事科学研究时,常常会遇到一些需要认识或控制的系统(称为客体)。
由于种种条件限制,这些客体的内部结构和机理尚不能或不便被直接观察到,仿若一个不透明的密封箱子,将这种客体称为黑箱(B1ack Box)是极其形象的。
所谓黑箱辨识方法,就是通过考察黑箱的输入、输出及其动态过程,而不是通过直接考察其内部结构,来定量地研究黑箱的功能特性、行为方式,从而探索其内部结构和机理。
1.2 现代电子设计的特点人类要改造自然,就要进行设计。
把预定的目标经过一系列规划、分析和决策,产生相应的文字、数据、图形等信息,这就是设计。
然后或通过实践转化为某项工程,或通过制造成为产品。
产品设计过程从本质上是一个创新过程,是将创新构思转化为有竞争力的产品的过程。
从工程的角度来看,设计这个词有两种概念。
广义的概念指的是发展过程的安排,包括发展的方向、程序、细节及达到的目标。
狭义的概念指的是将客观需求转化为满足该需求的技术系统的活动,各种产品包括电子产品的设计即属此种概念。
上世纪60年代以来,人们由工程技术领域总结出来的现代设计方法对电子设计工作起到了极大的推动作用。
现代设计是过去长期的传统设计活动的延伸和发展,是随着设计实践经验的积累,由个别到一般,具体到抽象,感性到理性,逐步归纳、演绎、综合而发展起来的。
由于科技进步的速度日益增快,特别是计算机的高速发展,人们在掌握事物的客观规律和人的思维规律的同时,运用相关的科学技术原理,进行过去长期以来难以想象的综合集成设计计算,使设计工作包括电子产品的设计工作产生了质的飞跃。
现代电子设计主要有下列特点: 1. 系统性 2. 社会性 3. 创造性 4. 最优化 5. 动态化 6. 人性化 7. 智能化8. EDA化1.3 电子系统的设计步骤电子系统的设计方法,没有一成不变的规定的步骤,它往往与设计者的经验、兴趣、爱好密切相关,为了便于理解,这里把总的设计过程归纳为以下五个技术环节,一般的设计流程如图1.2.1。
1.4 电子系统设计方法在传统与现代电子系统设计中有如下几中常用的设计方法:自底向上设计方法:传统的系统设计采用自底向上的设计方法。
这种设计方法采用“分而治之”的思想,在系统功能划分完成后,利用所选择的元器件进行逻辑电路设计,完成系统各独立功能模块设计,然后将各功能模块按搭积木的方式连接起来构成更大的功能模块,直到构成整个系统,完成系统的硬件设计。
这个过程从系统的最底层开始设计,直至完成顶层设计,因此将这种设计方法称为自底向上的设计方法。
用自底向上设计方法进行系统设计时,整个系统的功能验证要在所有底层模块设计完成之后才能进行,一旦不满足设计要求,所有底层模块可能需要重新设计,延长了设计时间。
自顶向下设计方法:目前VLSI系统设计中主要采用的方法是自顶向下设计方法,这种设计方法的主要特征是采用综合技术和硬件描述语言,让设计人员用正向的思维方式重点考虑求解的目标问题。
这种采用概念和规则驱动的设计思想从高层次的系统级入手,从最抽象的行为描述开始把设计的主要精力放在系统的构成、功能、验证直至底层的设计上,从而实现设计、测试、工艺的一体化。
当前EDA工具及算法把逻辑综合和物理设计过程结合起来的方式,有高层工具的前向预测(lookahead)能力,较好地支持了自顶向下设计方法在电子系统设计中的应用。
层次式设计方法:它的基本策略是将一个复杂系统按功能分解成可以独立设计的子系统,子系统设计完成后,将各子系统拼接在一起完成整个系统的设计。
一个复杂的系统分解成子系统进行设计可大大降低设计复杂度。
由于各子系统可以单独设计,因此具有局部性,即各子系统的设计与修改只影响子系统本身,而不会影响其它子系统。
利用层次性,将一个系统划分成若干子系统,然后子系统可以再分解成更小的子系统,重复这一过程,直至子系统的复杂性达到了在细节上可以理解的适当的程度。
模块化是实现层次式设计方法的重要技术途径,模块化是将一个系统划分成一系列的子模块,对这些子模块的功能和物理界面明确地加以定义,模块化可以帮助设计人员阐明或明确解决问题的方法,还可以在模块建立时检查其属性的正确性,因而使系统设计更加简单明了。
将一个系统的设计划分成一系列已定义的模块还有助于进行集体间共同设计,使设计工作能够并行开展,缩短设计时间。
嵌入式设计方法:现代电子系统的规模越来越复杂,而产品的上市时间(time to market)却要求越来越短,即使采用自顶向下设计方法和更好的计算机辅助设计技术,对于一个百万门级规模的应用电子系统,完全从零开始自主设计是难以满足上市时间要求的。
嵌入式设计方法在这种背景下应运而生。
嵌入式设计方法除继续采用自顶向下设计方法和计算机综合技术外,它的最主要的特点是大量知识产权(Intellectual Property-IP)模块的复用,这种IP模块可以是RAM、CPU、及数字信号处理器等。
在系统设计中引入IP模块,使得设计者可以只设计实现系统其它功能的部分以及与IP模块的互连部分,从而简化设计,缩短设计时间。
一个复杂的系统通常既包含有硬件,又有软件,因此需要考虑哪些功能用硬件实现,哪些功能用软件实现,这就是硬件/软件协同设计的问题。
硬件/软件协同设计要求硬件和软件同时进行设计,并在设计的各个阶段进行模拟验证,减少设计的反复,缩短设计时间。
硬件/软件协同是将一个嵌入式系统描述划分为硬件和软件模块以满足系统的功耗、面积和速度等约束的过程。
嵌入式系统的规模和复杂度逐渐增长,其发展的另一趋势是系统中软件实现功能增加,并用软件区分不同的产品,增加灵活性、快速响应标准的改变,降低升级费用和缩短产品上市时间。
基于IP的系统芯片(S0C)的设计:为了解决当前集成电路的设计能力落后于加工技术的发展与集成电路行业的产品更新换代周期短等问题,基于IP的集成电路设计方法应运而生。
IP的基本定义是知识产权模块。
对于集成电路设计师来说,IP则是可以完成特定电路功能的模块,在设计电路时可以将IP看作黑匣子,只需保证IP模块与外部电路的接口,无需关心其内部操作。
这样在设计芯片时所处理的是一个个的模块。
而不是单个的门电路,可以大幅度地降低电路设计的工作量,加快芯片的设计流程。
利用IP还可以使设计师不必了解设计芯片所需要的所有技术,降低了芯片设计的技术难度。
利用IP进行设计的另一好处是消除了不必要的重复劳动。
IP与工业产品不同,复制IP是不需要花费任何代价的,一旦完成了IP的设计,使用的次数越多,则分摊到每个芯片的原始投资越少,芯片的设计费用也因此会降低。
SOC(System on a Chip)系统芯片有各种不同的定义方式。
具体到芯片功能来说,SOC芯片意味着在单个芯片上,完成以前需要一个或多个印刷线路板才能够完成的电路功能。
SOC芯片意味着在单芯片上集成一个完整的数据处理系统,其结构是比较复杂的。
SOC芯片的运行需要强大的软件支持,而且芯片的功能会随支持软件的不同而变化,因此在设计芯片的同时需要进行软件编制工作,并非以往单纯的电路设计。
这一特点在增强芯片功能及适用范围的同时增加了芯片的设计与验证难度,在芯片设计的初期需要仔细地进行功能划分,确定芯片的运算结构,并评估系统的性能与代价。
SOC芯片的出现在芯片的优化设计方面也提出了很大的挑战。
芯片的设计需要系统设计人员与软件设计人员的深入参与,在SOC 芯片的设计流程中,一般都结合了从顶向下和从底向上设计的特点,与传统的芯片设计相比SOC芯片设计有以下几项主要特点:①芯片的软件设计与硬件设计同步进行;②各模块的综合与验证同步进行;③在综合阶段考虑芯片的布局布线;④只在没有可利用的硬模块或软宏模块的情况下重新设计模块。
电路设计中的成本控制方法:优秀的电路实现方案应该是简洁、可靠的。
要以最少的社会劳动消耗获得最大的劳动成果。
这里所说的社会劳动,包括在产品设计、产品生产、产品维护以及元器件的生产中所付出的劳动。
为了控制产品成本,常常采用目标价格反算法,也就是先根据市场调查对相应的技术指标制定目标价格,然后在设计实施中找出影响产品经济指标的关键因素,并采取针对性较强的措施。
1.5 系统设计与系统仿真技术对于设计开发整机电子产品的工程师来说,新产品的开发总是从系统设计入手。
系统设计的主体工作是将设计任务要求转换成明确的、可实现的功能和技术指标要求,确定可行的技术方案,在系统一级描述系统的功能和技术指标要求。
一般通过系统功能的模块划分来落实系统功能和技术指标的分配,同时确定各功能模块之间的接口关系。
它运用框图与层次的方法自顶向下进行设计。
系统设计通常把系统功能逐步细分,然后从器件、电路和工艺等方面确定技术方案。
随着系统变得复杂和庞大,工程师在系统设计时应该使用EDA工具。
多种系统级设计EDA工具的出现为系统设计师们提供了优越的环境和有力的保障。
自上而下的正向设计是综合和优化的过程,以概念和设想为驱动,经过反复的综合和优化,从而给出可行的设计方案及合适的性能指标。
借助EDA工具,采用“自顶向下”的设计方法,使开发者从一开始就要考虑到产品生产周期的诸多方面,包括质量成本、开发周期等因素。
系统设计与仿真包括这样几个步骤:第一步,从系统方案设计入手,在顶层进行系统功能划分和结构设计;第二步,用VHDL、Verilog-HDL等硬件描述语言对高层次的系统行为进行描述;第三步,通过编译器形成标准的VHDL文件,并在系统级验证系统功能的设计正确性;第四步,用逻辑综合优化工具生成具体的门级逻辑电路的网络表,这是将高层次的描述转化为硬件电路的关键;第五步,将利用产生的网络表进行适配前的时序仿真;最后系统的物理实现级,它可以是CPLD、FPGA或ASIC。