单脉冲雷达原理

合集下载

雷达大作业---振幅和差角度测量及仿真

雷达大作业---振幅和差角度测量及仿真

雷达原理大作业单脉冲自动测角的原理及应用学院:电子工程学院作者:2016年5月21日单脉冲自动测角的原理及应用一.摘要单脉冲测角法是属于振幅法测角中的等信号法中的一种,其测角精度高,抗干扰能力强,在现实中得到了广泛的应用。

而其中对于接收支路要求不太严格的双平面振幅和差式单脉冲雷达,更是备受青睐。

本文首先讲述了单平面振幅和差式单脉冲雷达自动测角的原理,再简述了双平面振幅和差式单脉冲雷达自动测角的结构框图,接着简述了本文仿真所用的一些原理和公式推导,包括天线方向图函数及其导数的推导,最后做了基于高斯形天线方向图函数的单脉冲自动测角,基于辛克函数形天线方向图函数的单脉冲自动测角,和基于高斯形天线方向图函数的双平面单脉冲自动测角。

源代码在附录里。

二.重要的符号说明三.单平面振幅和差式单脉冲自动测角原理单脉冲测角法是属于振幅法测角中的等信号法中的一种。

在单平面内,两个相同的波束部分重叠,交叠方向即为等信号轴的方向。

将这两个波束接收到的回波信号进行比较就可以在一定范围内,一定精度要求下测到目标的所在角度。

因为两个波束同时接到回波,故单脉冲测角获得目标角误差信息的时间可以很短,理论上只要分析一个回波脉冲即可,所以称之为“单脉冲”。

因取出角误差的具体方式不同,单脉冲雷达种类很多,其中应用最广的是振幅和差式单脉冲雷达,其基本原理说明如下:1.角误差信号雷达天线在一个平面内有两个重叠的部分,如下图1所示:图1.振幅和差式单脉冲雷达波束图(a)两馈源形成的波束 (b)和波束 (c)差波束振幅和差式单脉冲雷达取得角误差信号基本方法是将这两个波束同时收到的信号进行和差处理,分别得到和信号和差信号。

其中差信号即为该角平面内角误差信号。

若目标处在天线轴方向(等信号轴),误差角0ε=,则两波束收到的回波信号振幅相同,差信号等于0。

目标偏离等信号轴而有一个误差角ε时,差信号输出振幅与ε成正比而其符号则由偏离方向决定。

2.和差比较器这里主要使用双T 插头,示意图如下图2(a )所示。

单脉冲测角原理

单脉冲测角原理

单脉冲测角原理单脉冲测角(Monopulse Angle Measurement)是一种常用的雷达测角方法,它通过对目标返回信号的处理,实现对目标的方位角和俯仰角的测量。

单脉冲测角原理是基于相控阵雷达技术的,它具有测量精度高、抗干扰能力强等优点,在军事和民用雷达领域得到了广泛的应用。

单脉冲测角原理的基本思想是利用相控阵天线阵列的空间波束形成特性,通过对目标返回信号的相位差进行测量,从而实现对目标方位角和俯仰角的测量。

相控阵天线阵列由多个天线单元组成,每个天线单元都可以独立控制相位和幅度,从而实现对空间波束的形成和控制。

当目标位于相控阵的波束覆盖范围内时,每个天线单元接收到的目标返回信号会存在一定的相位差,通过对这些相位差的测量和处理,就可以得到目标的方位角和俯仰角信息。

在单脉冲测角中,常用的测量方法包括相位比较法、幅度比较法和双差法。

相位比较法是通过比较不同通道接收到的信号相位差来实现测角,它的测量精度较高,但对系统的动态范围和线性度要求较高;幅度比较法是通过比较不同通道接收到的信号幅度差来实现测角,它的测量精度相对较低,但对系统的动态范围和线性度要求较低;双差法是通过比较两个天线单元之间的相位差和幅度差来实现测角,它综合了相位比较法和幅度比较法的优点,具有较高的测量精度和较低的系统要求。

单脉冲测角原理的实现需要对雷达系统进行精确的设计和调试,包括天线阵列的设计、相控阵的控制和信号处理部分的设计等。

在实际应用中,还需要考虑目标信号的特性、系统的工作环境和干扰情况等因素,从而进一步提高测量精度和抗干扰能力。

总之,单脉冲测角原理是一种重要的雷达测角方法,它通过对目标返回信号的相位差进行测量,实现对目标方位角和俯仰角的精确测量。

在现代雷达系统中得到了广泛的应用,为目标探测、跟踪和定位提供了重要的技术支持。

随着雷达技术的不断发展和完善,相信单脉冲测角原理将会发挥越来越重要的作用,为雷达应用领域带来更多的技术创新和发展。

单脉冲二次雷达相位修正

单脉冲二次雷达相位修正

单脉冲二次雷达相位修正摘要本文介绍了单脉冲二次雷达的单脉冲工作原理,对空管目前主用的三种单脉冲二次雷达的和、差通道相位的测量、修正的方法进行阐述,并结合实践,提出了一些新的相位修正方法。

关键词雷达;相位;修正中图分类号tn95 文献标识码a 文章编号1674-6708(2010)30-0155-030 引言随着2007年11月22日我国高空开始实施缩小垂直间隔(rvsm),对二次雷达获取目标信息的准确性要求越来越高,而对单脉冲二次雷达性能起决定性影响的是和、差接收通道的相位一致性,下面以我国空管目前主用的3种型号的mssr为例,对其和、差接收通道相位一致性的测量、修正方法进行初步探讨。

1 单脉冲原理单脉冲二次雷达具有和、控制收发通道以及差接收通道,能够从应答机的一个应答信号中获取精确的目标方位信息。

差通道的接收信号由天线左右两边分别接收到的信号经过相减得到,通过比较和与差的信号幅度可得知目标在天线轴向前方或后方,得到的和差比(sdr)用于查表以提供偏离天线瞄准轴的角度(oba),通过提供轴向方位的oba值,就可得到一精确的目标方位,理论上只需一个脉冲就可计算出目标的方位即单脉冲,实际上需要一定数量的应答以确保送出的目标信息的可靠性。

图2是单脉冲二次雷达接收通路的简单框图,和、差相位一致性问题主要在天线输出至接收机鉴相器之间的接收通路中,其中主要包括了同轴电缆、旋转铰链、接收机模块等部件,这些部件都可能对和、差相位的一致性造成影响。

2 raytheon mk2raytheon mk2单脉冲二次雷达的和、差通道相位一致性问题主要受几个方面的影响:同轴电缆、旋转铰链、接收机模块。

下面对3个影响要素进行分析并给出相位测量、修正的方法。

2.1 同轴电缆二次雷达站大多建在山上,室外同轴电缆架一般不做封闭处理,大多直接架设在室外,在长期的山区昼夜温差、冬寒夏暖的温度变化条件下,同轴电缆会产生一定的热胀冷缩,加上电缆架设时的机械拉伸、弯曲、挤压等因素,这些都会引起同轴电缆的物理长度发生变化,从而改变了同轴电缆的相位长度。

单脉冲雷达角度跟踪原理

单脉冲雷达角度跟踪原理

单脉冲雷达角度跟踪原理引言单脉冲雷达是一种精密跟踪雷达。

它有较高的测角精度、分辨率和数据率,但设备比较复杂。

单脉冲雷达早在60年代就已广泛应用。

美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。

目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。

中国的跟踪雷达技术的发展大体上分为两个阶段。

在50年代仿制圆锥扫描体制的炮瞄雷达、机载截击雷达等;50年代末期开始单脉冲技术的研究。

1960~1961年间研制出第一个微波复合比较器,对单脉冲天线的实现起了推动作用。

1963年研制成功第一部单脉冲体制试验雷达,随后陆续研制出各种用途的单脉冲跟踪雷达。

一、单脉冲雷达分类根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。

这3种测角法又可用3种角度鉴别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。

通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。

二、工作原理单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。

它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高;测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。

单脉冲和差测角ppt课件

单脉冲和差测角ppt课件
(2)天线电压方向性函数
雷达测角的基础是电波在均匀介质中传 播的直线性和雷达天线的方向性。天线的方 向性可用其方向性函数或根据方向性函数画 出的方向图表示。但方向图的准确表达式往 往很复杂,因而常采用简单函数来近似,常 用的有余弦函数、高斯函数、辛克函数。方 向图的主要技术指标是半功率波束宽度θ以 及副瓣电平。
★★★★★ 雷达对抗原理





★单脉冲和差测角原理
1、雷达测角的基础: 电波在均匀介质中传播的直线性和雷达天线
的方向性 2、分类:
测 角
振幅法


相位法
等信号法 最大信号法
2
★单脉冲和差测角原理
3、原理
(1) 如图所示,若目标处在两波
束的交叠轴OA方向,则两波束收到的
信号强度相等,否则一个波束收到的
9
10
11
12
13
14
15
16
17
18
0.2050 0.2270 0.2488 0.2704 0.2916 0.3126 0.3333 0.3537 0.3738 0.3935
19
20
0.4128 0.4318
8
★★单脉冲和差测角仿真
2、仿真分析
由于最大单值测角范围为有限,因此只选择在
[-20,20]范围内的数据
在等信号轴附近差信号及和信号可近似表示为 归一化和差值为
Δ/∑由于正比于目标偏离θ0的角度θt,故可用它来
判读的大小及方向
6
★★单脉冲和差测角仿真
1、仿真图形
两个响应
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

脉冲波雷达抗干扰的原理

脉冲波雷达抗干扰的原理

脉冲波雷达抗干扰的原理
脉冲波雷达抗干扰的原理主要包括以下几个方面:
1. 抗杂波抗多径干扰:通过合理设计雷达的发射脉冲宽度和重复频率以及接收滤波器的带宽,可以抑制接收到的杂波和多径干扰的影响。

2. 抗离散干扰:通过在雷达设备中加入多个接收通道,采用多通道处理技术,可以抑制由于离散干扰产生的虚假回波。

3. 抗干扰滤波和抑制:通过在雷达接收系统中增加抗干扰滤波器,对接收信号进行滤波和抑制,去除掉噪声和干扰信号,提高信噪比。

4. 抗射频干扰:通过在雷达系统中采用频段选择滤波器、射频前端增益控制器等,对射频信号进行优化处理,排除射频干扰信号。

5. 抗动目标干扰:通过利用雷达信号中的时频特性,结合自适应脉冲压缩和调频处理技术,对动目标产生的干扰信号进行抑制和分离。

总之,脉冲波雷达抗干扰的原理是通过设计和优化雷达系统的硬件和软件,采用各种信号处理技术,抑制和消除不同类型的干扰信号,提高雷达系统的抗干扰性能和工作可靠性。

单脉冲雷达距离和速度测量精度技术解析

单脉冲雷达距离和速度测量精度技术解析

单脉冲雷达距离和速度测量精度技术解析摘要:科技在快速的发展,社会在不断的进步,分析了单脉冲雷达测量误差的不同来源及其对测量精度的贡献,并给出了误差分类,对于随机误差给出了工程上常用的减小误差方法。

关键词:单脉冲雷达;测量精度;误差分析;卡尔曼滤波引言单脉冲雷达属于一种较为精密测量雷达,通过测量运动目标距离测站的距离变化和距离变化率,再结合伺服跟踪系统的测角数据,从而完成对目标运行轨迹测量。

单脉冲雷达在进行距离测量时,很容易受内外因素的影响,导致距离测量存在较大的误差,会造成目标飞行任务不必要的损失。

因此,为了提升单脉冲雷达距离的准确性,采用合理的速度测量精度技术是非常必要的,下面就对单脉冲雷达距离和速度测量精度技术的相关内容,展开分析和阐述。

1单脉冲雷达的主要干扰技术分析随着电子干扰技术的迅速发展,如今能够对雷达实施干扰的技术非常多,我们从战术应用角度将其分为常规干扰和非常规干扰两大类。

其中,常规干扰具体指的是雷达对抗中经常采用的普适性较强的一些干扰方法,其主要干扰原理是有效降低雷达接收信号的信噪比。

常用的常规干扰技术主要包括阻塞噪声、射频存储转发干扰和无源干扰等。

雷达抗常规干扰的主要方法是提升雷达的跟踪和探测性能,比如增加隐身天线、增加发射功率以及采用低截获概率技术等。

非常规干扰主要是指对采用了特定技术的雷达或者构造、功能比较特殊的雷达实施干扰的方法和措施。

一般来讲,对特定的雷达进行非常规干扰应当先侦查、收集被干扰雷达的一些特定信息(比如雷达频率、雷达操作系统等),然后使干扰机在逼真复现被干扰雷达信号的同时有效控制信号,从而产生虚假现象,通过制造假的雷达目标回波,让被干扰雷达产生错误的数据和信息。

非常规干扰方法对跟踪雷达的干扰更为有效,这也是对单脉冲雷达进行干扰时经常采用的方法。

这类干扰技术主要有距离欺骗、角度欺骗、速度欺骗和自动增益控制欺骗等。

其中,距离欺骗的特点是利用干扰信号将雷达距离波门从真目标上脱开,以控制、转发或延迟等有效手段使雷达产生距离假目标。

脉冲雷达原理

脉冲雷达原理

脉冲雷达原理
脉冲雷达是一种利用电磁波进行测距的设备,它利用电磁波运动的速度很快的特点,在发射端发射短脉冲电磁波信号,当这些信号遇到目标物体时,部分能量被目标物体吸收或反射回来,然后被接收端接收并处理。

脉冲雷达的工作原理基于时间差测量的原理。

当发射端发出脉冲信号后,信号在空间中以光速传播,当碰到目标物体后一部分信号被散射回来,经由接收天线收集到接收端。

接收端通过计算从发射到接收所经过的时间差,并乘以光速,就可以得到目标物体与雷达的距离。

脉冲雷达的测距精度取决于脉冲的宽度。

脉冲宽度越窄,测量时间差越精确,测距精度也就越高。

同时,脉冲雷达还可以通过调整发射端的功率和接收端的增益来适应不同距离的测量。

除了测距,脉冲雷达还可以通过比较不同角度的反射信号来获取目标物体的方位信息。

这是因为当电磁波遇到目标物体后,会发生散射现象,根据散射信号的强弱和相位差,就可以确定目标物体的方位。

脉冲雷达在军事、航空、气象和交通等领域中有着广泛的应用。

它可以用于飞机的导航、防空和目标探测;也可以在车辆上用于避免碰撞和测量车辆距离;甚至还可以用于探测天气、测量天空的云层高度等。

总结来说,脉冲雷达通过发射和接收脉冲电磁波信号,并测量
信号的往返时间差,实现对目标物体的测距和方位探测。

它具有测量精度高、反应速度快等特点,并在众多领域中发挥着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单脉冲雷达原理
单脉冲雷达是一种使用单个脉冲进行测量和探测的雷达系统。

其工作原理基于以下几个步骤。

首先,雷达系统发送一个短脉冲信号。

这个脉冲信号会以一定的速度传播到目标物体并被反射回来。

接着,雷达系统接收到从目标物体反射回来的信号。

这个接收到的信号称为回波信号。

然后,雷达系统会通过测量回波信号的时间延迟来计算目标物体的距离。

这是通过测量脉冲信号发送和回波信号接收之间的时间差来实现的。

根据电磁波在空气中的传播速度,可以将时间差转换为距离。

最后,利用回波信号的幅度变化,可以获取目标物体的强度信息。

这可以帮助雷达系统判断目标物体的大小、形状和反射特性。

总的来说,单脉冲雷达通过发送和接收一个脉冲信号,并利用时间差和幅度变化来对目标物体进行测量和探测。

相比于其他雷达系统,单脉冲雷达具有简单、高效的特点,并广泛应用于各种领域,如航空、远程测距和目标识别等。

相关文档
最新文档