高考高中数学计数原理

合集下载

高考数学 计数原理 知识汇总

高考数学 计数原理 知识汇总

计数原理课表要求1、会用两个计数原理分析解决简单的实际问题;2、理解排列概念,会推导排列数公式并能简单应用;3、理解组合概念,会推导组合数公式并能解决简单问题;4、综合应用排列组合知识解决简单的实际问题;5、会用二项式定理解决与二项展开式有关的简单问题;6、会用二项式定理求某项的二项式系数或展开式系数,会用赋值法求系数之和。

突破方法1.加强对基础知识的复习,深刻理解分类计数原理、分步计数原理、排列组合等基本概念,牢固掌握二项式定理、二项展开式的通项、二项式系数的性质。

2.加强对数学方法的掌握和应用,特别是解决排列组合应用性问题时,注重方法的选取。

比如:直接法、间接法等;几何问题、涂色问题、数字问题、其他实际问题等;把握每种方法使用特点及使用范围等。

3.重视数学思维的训练,注重数学思想的应用,在解题过程中注重化归与转化思想的应用,将不同背景的问题归结为同一个数学模型求解;注重数形结合、分类讨论思想、整体思想等,使问题化难为易。

知识点1、分类加法计数原理完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类办法中有m2种不同的方法,……在第n类办法中有m n种不同的方法。

那么完成这件事共有:N=m1+m2+……+m n种不同的方法。

注意:(1)分类加法计数原理的使用关键是分类,分类必须明确标准,要求每一种方法必须属于某一类方法,不同类的任意两种方法是不同的方法,这时分类问题中所要求的“不重复”、“不遗漏”。

(2)完成一件事的n类办法是相互独立的。

从集合角度看,完成一件事分A、B两类办法,则A∩B=∅,A∪B=I(I表示全集)。

(3)明确题目中所指的“完成一件事”是指什么事,完成这件事可以有哪些办法,怎样才算是完成这件事。

2、分步乘法计数原理完成一件事,需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有:N=m1·m2·……·m n种不同的方法。

高中数学:《计数原理》(理)知识点串讲

高中数学:《计数原理》(理)知识点串讲

《计数原理》(理)知识点串讲一、基本计数原理1.分类加法计数原理做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的办法,在第二类办法中有2m 种不同的办法,…在第n 类办法中有n m 种不同的办法.那么完成这件事共有12n N m m m =+++种不同的办法.2.分步乘法计数原理做一件事,完成它需要分成n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法,…,做第n 个步骤有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.说明:①分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个分事件来完成.②两个原理的区别在于一个与分类有关,一个与分步有关,如果完成一件事情有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能独立完成这件事情,可类比物理中的“并联”电路来理解;如果完成一件事情需要分成n 个步骤,各个步骤都是相依的、不可缺少的,一个步骤只能完成事情的一部分,必须依次完成所有的步骤,才能完成这件事情,可类比物理中的“串联”电路来理解.③运用两个基本原理解题时,应善于从语言的差异与变化中弄清面临怎样的“一件事”,弄清事件之间的关系是相依还是相斥,然后按照恰当的“对象”进行分类或分步,合理的设计相应的做事方式.分类要做到“不重不漏”,分步要做到“步骤完整”.这两个原理是解决排列组合问题的理论基础.二、排列与组合1.排列一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.说明:①排列的定义中包括两个基本内容:一是“取出元素”;二是“按照一定的顺序排列”.②只有取出的元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素不完全相同,或元素完全相同而顺序不同的排列属于不同排列.如1,2,3与2,3,4是不同排列;1,2,3与1,3,2也是不同排列.③排列中元素的有序性是判断一个具体问题是不是排列问题的标准,也是与组合问题的根本区别.例如:从1,2,3,5这四个数中每次任取两个数相加(或相乘),可得到多少个不同的和(积)?因为加法(乘法)满足交换律,它们的和(积)与顺序无关,如3+5=5+3,因此不是排列问题.如果从四个数中任取两个数相减(相除),一共有多少个不同的差(商)?因为减法(除法)不满足交换律,35355353⎛⎫-≠-≠ ⎪⎝⎭,取出的两个数就与顺序有关了,属于排列问题.2.排列数(1)定义:从n 个不同元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出()m m n ≤个元素的排列数,用符号mn A 表示.说明:排列和排列数是两个不同的概念:一个排列是取出的m 个元素按照一定顺序排成的一个具体的排列,是具体的“一件事”;排列数是一个数,是所有的具体排列的数目. 如:从1、2、3中每次任取出两个元素,组成一个两位数.所有的排列有12,13,23,21,31,32.其中每一个数都是一个排列,而排列数是236card()A B ==,{}121323213132B ,,,,,.(2)排列数公式:!(1)(2)(1)()()!m n n A n n n n m n m m n n m =---+=∈N -,,≤. 说明:规定0!1=;乘积形式多用于数字计算,阶乘形式多用于证明恒等式;排列数性质:11m m n n A nA --=;111m m m n n n A mA A ---=+.3.组合一般地,从n 个不同元素中,任意取出()m m n ≤个元素并成一组,叫做从n 个不同元素中取出()m m n ≤个元素的组合.说明:如果两个组合中的元素完全相同,不管它们的顺序如何都是相同的组合.组合的定义中包含两个基本内容:一是取出元素;二是并成一组,并成一组表示将元素合在一起与元素取出的顺序无关.取出的元素是否有顺序,是区分排列和组合的根本依据.4.组合数(1)定义:从n 个不同元素中,任意取出()m m n ≤个元素的所有的组合的个数,叫做从n 个不同元素中取出()m m n ≤个元素的组合数,用符号C m n 表示.(2)组合数公式(1)(1)C !m n n n n m m --+=,C m m n n m mA A =. 5.组合数的性质性质1:C C m n m n n -=;性质112:C C C m m m n n n -+=+. 说明:性质1突出了从n 个不同元素中取出m 个元素与从n 个不同元素中取出n m -个元素是一一对应关系,当2n m <时,不计算C m n 而改为计算C n m n -.性质2中注意它的变形公式的应用,如1212(1)C C C (1)m m m n n n n n n m m m -----==-,11C C mm n n m n --=等.6.解排列组合问题的方法(1)先要判断是组合问题还是排列问题,按照元素的性质分类,按照事件的发生过程分步,不重不漏.借助树形图,框图等形的工具直观帮助解题.总体上有三种方法:直接法(先安排特殊元素和特殊位置),间接法(正难则反),分类讨论法.(2)排列组合问题的16字方针,12个技巧.方针是:分类相加、分步相乘、有序排列、无序组合;技巧是:相邻问题捆绑法(莫忘松绑),不相邻问题插空法,多排问题直排法,定序问题可能法,定位问题优先法,有序分配问题先整体后局部分步法,多元问题分类法,构造模型处理法,至少、至多问题间接法,选排问题先选后排法,局部与整体问题排除法,复杂问题转化法.(3)分组问题的求法:设有m n 个元素,平均分成n 组,每组m 个,则有(1)(2)C C C C mm m mm n n m n m mnn A --种分法;平均分成n 组,再分配到n 个位置,有(1)(2)C C C C mm m m mn n m n m m--种分法.若不平均分组或不平均分组再分配,如:6个元素分成3组,一组1个,二组2个,三组3个,则有123653C C C ;若再将这3组分配给3个位置,则有12336533C C C A 种分法.三、二项式定理1.二项展开式在011222()C C C C C n n n n r n r r n n n n n n na b a a b a b a b b ---+=++++++中,右边的多项式叫做()n a b +的二项展开式,其中各项的系数C (012)r n r n =,,,,叫做二项式系数.式中的C r n r r n a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项;1r n r r r n T C a b -+=(0r n ≤≤,r ∈N ,n +∈N ),此公式称为二项展开式的通项公式. 说明:①其右端展开式共有1n +项.②通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤表示的是第1(0)r r n +≤≤项.③a 与b 的位置不能互换,对于任意实数a 与b ,上面的等式恒成立.④二项式系数指01r n n n n n C C C C ,,,,,,二项展开式的系数与a b ,前面的系数有关.2.杨辉三角杨辉三角是我国古代数学的研究成果,它给我们提供了一种研究问题的数学模型,从不同的角度观察研究模型,就可以得到二项式系数的性质:一是对称性,结合公式m n m n n C C -=理解;二是增减性与最大值,如果二项式的幂指数是偶数,中间一项的二项式系数最大,最大为2nnC ;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,最大为1122n n n n C C -+=;三是各项的二项式系数的和等于2n ,即012r n n n n n n C C C C +++++=,它表明集合S 含有n 个元素,那么它的所有的子集(包括空集)的个数为2n 个.另外,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即1350242n n n n n n n C C C C C C -+++=+++=.3.二项展开式的应用(1)利用通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤求指定项、特征项(常数项,有理项等)或特征项的系数.(2)近似计算,当a 与1相比较很小且n 不大时,常用近似公式(1)1n a na ±≈±,使用公式时要注意a 的条件以及对计算精确度的要求.(3)整除性问题与求余数问题,对被除式进行合理的变形,把它写成恰当的二项式的形式,使其展开后的每一项含有除式的因式或只有一、二项不能整除.(4)求展开式的各项的系数和,对形如()n ax b +,2()()n ax bx c a b c ++∈R ,,的式子求其展开式的各项的系数和常用赋值法,即只需令1x =即可,奇数项的系数和为(1)(1)2f f +-,偶数项的系数和为(1)(1)2f f --. (5)最大系数与系数最大项的求法,如求()()nax b a b +∈R ,,展开式的系数最大的项,一般采用待定系数法,设展开式的各项系数分别为121n A A A +,,,,设第r 项的系数最大,应有11r r r r A A A A -+⎧⎨⎩,,≥≥,由此解出r 即可.。

高考数学试题逐类透析——计数原理

高考数学试题逐类透析——计数原理

精品基础教育教学资料,仅供参考,需要可下载使用!九、计数原理与古典概率(一)计数原理一、高考考什么?[考试说明]1. 理解分类加法计数原理和分步乘法计数原理.2. 了解排列、组合的概念,会用排列数公式、组合数公式.解决简单的实际问题[知识梳理] 1.排列数公式!(1)(2)(1)()()!m n n A n n n n m m n n m =---+=≤-;!(1)(2)21nn A n n n n ==--⋅。

2.组合数公式()(1)(1)!()(1)21!!mmn nm m A n n n m n C m n A m m m n m ⋅-⋅⋅-+===≤⋅-⋅⋅⋅-;规定01=!,01n C =. 3.排列数、组合数的性质:①m n mn n C C -=; ②111m m m n n n C C C ---=+;③; ④1121++++=++++r n r n r r r r r r C C C C C ; 4.解排列组合11k k n n kC nC --=问题的常用方法:(1)特殊元素、特殊位置优先法(元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置)。

(2)间接法(对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉))。

(3)相邻问题捆绑法(把相邻的若干个特殊元素“捆绑”为一个大元素,然后再与其余“普通元素”全排列,最后再“松绑”,将特殊元素在这些位置上全排列)。

(4)不相邻(相间)问题插空法(某些元素不能相邻或某些元素要在某特殊位置时可采用插空法,即先安排好没有限制条件的元素,然后再把有限制条件的元素按要求插入排好的元素之间)。

[全面解读]考试说明寥寥数语,仅需掌握两个原理,两个概念,但具体到题上却灵活多变,主要要解决几个数学模型:排数问题、排队问题、涂色问题,解题时要注意是有序的还是无序的,是相邻的还是互不相邻的,有没有特殊元素或特殊位置,这些注意到了,正确率就提高了。

计数原理知识点总结高中

计数原理知识点总结高中

计数原理知识点总结高中一、基本原理计数原理的基本原理包括加法原理和乘法原理。

1. 加法原理加法原理是指当一个事件可以分解为几个不相容的部分时,这个事件的总数等于各部分的事件数之和。

加法原理可以用于求解排列组合等问题。

举例: 一个班上有男生20人、女生25人,那么班上的学生总数为20+25=45人。

2. 乘法原理乘法原理是指当一个事件要发生的步骤可以划分为若干个子事件时,这个事件发生的总次数等于各子事件发生次数的乘积。

举例: 要在4x4的格子中按照某种规则走,从左上角到右下角,每一步只能向右或者向下移动,那么一共有6步,每一步有两种选择,那么总共有2^6=64种不同的走法。

二、排列组合排列和组合是计数原理中的两个重要概念,它们是用来计算不同元素的排列和组合的方法。

1. 排列在数学中,排列的定义是指从若干不同的元素中取出一部分进行排列,排列的顺序是有意义的。

对于n个元素中取出m个元素进行排列,共有n(n-1)(n-2)...(n-m+1)种排列,记作A(n,m)。

2. 组合组合是指从若干不同的元素中取出一部分进行组合,组合的顺序是没有意义的。

对于n个元素中取出m个元素进行组合,共有C(n,m) = n!/((n-m)!m!)种组合。

排列和组合在实际问题中有着广泛的应用,比如在组合学、密码学等领域,都会涉及到排列和组合的计算。

因此,掌握排列和组合的相关知识是非常重要的。

三、分配原理分配原理是指把若干个不同的物体分给若干个相异的盒子的方法,它与排列和组合有着密切的联系。

分配原理也是计数原理中的重要内容之一,可以在实际问题中得到广泛的应用。

举例: 有10个苹果和3个盒子,要求将这10个苹果分给这3个盒子,每个盒子至少有一个苹果,求分法的总数。

按照分配原理,将10个苹果放入3个盒子,总共有${{10-1}\choose{3-1}}=36$种不同的分法。

分配原理在实际问题中也有着广泛的应用,比如在计算机科学中的任务调度、网络流量控制等方面都会用到分配原理的相关知识。

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 分类加法计数原理与分步乘法计数原理)

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 分类加法计数原理与分步乘法计数原理)

第十一章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理两个计数原理(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.二、常用结论1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A 到O 有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a 1a 2a 3”满足a 1<a 2且a 2>a 3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a 2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a 2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a 2=4,满足条件的“凸数”有3×4=12(个),…,若a 2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240考点二 分步乘法计数原理[典例精析](1)已知集合M ={-3,-2,-1,0,1,2},P (a ,b )(a ,b ∈M )表示平面上的点,则P 可表示坐标平面上第二象限的点的个数为( )A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析] (1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[题组训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:186考点三两个计数原理的综合应用[典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[题组训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40[课时跟踪检测]A级1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析:选B当x=2时,x≠y,点的个数为1×7=7.当x≠2时,∵P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插第一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10解析:选C分两类情况讨论:第1类,直线a 分别与直线b 上的8个点可以确定8个不同的平面;第2类,直线b 分别与直线a 上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个B.34个C.36个D.38个解析:选A 将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C 12=2(种).共有2×2×2×2×2=32(个)子集.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.8解析:选D 当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.故共有8个等比数列.6.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为( )A.6种B.12种C.18种D.24种解析:选A 根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A 或B 处,若8放在B 处,则可以从5,6,7这3个数字中选一个放在C 处,剩余两个位置固定,此时共有3种方法,同理,若8放在A 处,也有3种方法,所以共有6种方法.7.(2019·郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:选A 分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320(种)不同的涂色方法.3 4 12 D 34 A C B 98.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).9.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 88010.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8B级1.把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种解析:选C第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种投法.2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).3.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48种不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.4.(2018·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300-3,-2,-1,0,1,2,若a,b,c∈M,则:5.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。

高中数学知识点总结 计数原理

高中数学知识点总结 计数原理

高中数学知识点总结计数原理一、分类加法计数原理和分步乘法计数原理1.分类加法计数原理和分步乘法计数原理【注意】区分分类与分步的依据在于“一次性”完成.若能“一次性”完成,则不需分步,只需分类;否则就分步处理.2.两个计数原理的区别与联系123,,,,{}n a a a a 的子集有2n 个,真子集有21n -个.二、排列1.排列的定义一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 特别提醒确定一个具体问题是否为排列问题的方法:(1)首先要保证元素的无重复性,即是从n 个不同元素中取出m (m ≤n )个不同的元素,否则不是排列问题.(2)其次要保证元素的有序性,即安排这m 个元素时是有顺序的,有序的就是排列,无序的不是排列.而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变化就是有顺序,无变化就是无顺序.2.解决排列应用问题的步骤:(1)分清问题是否与元素的顺序有关,若与顺序有关则是排列问题.(2)注意对元素或位置有无特殊要求.(3)借助排列数公式计算. 特别提醒当问题的正面分类较多或计算较复杂,而问题的反面分类较少或计算更简便时往往使用“间接法”.含“至多”、“至少”类词语的排列(组合)问题,是需要分类问题,常用间接法(即排除法)解答.这时可以先不考虑特殊元素(位置),而列出所有元素的全排列数,从中再减去不满足特殊元素(位置)要求的排列数,即排除法.3.排列数、排列数公式从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.特别提醒排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数”,它是一个数.三、组合1.组合的定义一般地,从n 个不同元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.特别提醒解答排列、组合综合问题的一般思路和注意点:(1)一般思路:“先选后排”,也就是把符合题意的元素都选出来,再对元素或位置进行排列.(2)注意点:①元素是否有序是区分排列与组合的基本方法,元素无序是组合问题,元素有序是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.3.组合数的性质性质1:C C m n m n n-=. 性质1表明从n 个不同元素中取出m 个元素的组合,与剩下的n m -个元素的组合是一一对应关系.性质2:11C C C m m m n n n-+=+. 性质2表明从1n +个不同元素中任取m 个元素的组合,可以分为两类:第1类,取出的m 个元素中不含某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取m 个即可,有C mn 个组合;第2类,取出的m 个元素中含有某个元素a 的组合,只需在除去a 的其余n 个元素中任取1m -个后再取出元素a 即可,有1C m n-个组合.四、二项式定理1.二项式定理 011()C C C C ()n n n k n k k n n n n n na b a a b a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有n +1项,其中各项的系数C ({0,1,2,,})kn k n ∈L 叫做二项式系数.二项展开式中的C k n k k n a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第1k +项:1C k n k k k nT a b -+=. 2.二项式系数的性质(4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即2131C C C C 2n n n n n -++=++=L L . 特别提醒求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k,再将k 的值代回通项求解,注意k的取值范围(0,1,2,,L).k n(1)第m项::此时k+1=m,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程.(3)有理项:令通项中“变元”的幂指数为整数建立方程.。

高中数学选修计数原理概率知识点总结

高中数学选修计数原理概率知识点总结

选修2-3定理概念及公式总结第一章基数原理1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法 N=m 1+m 2+……+m n 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整”3.两个计数原理的区别:如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理,如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理.!4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.(1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-⋅⋅⋅--=m n n n n A mn用于计算, 或m nA )!(!m n n -=()n m N m n ≤∈*,, 用于证明。

nnA =!n =()1231⨯⨯⨯⨯- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合(1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用mn C 表示[(2)组合数公式: (1)(2)(1)!m m n nm m A n n n n m C A m ---+== 用于计算,或)!(!!m n m n C m n -=),,(n m N m n ≤∈*且 用于证明。

高中数学计数原理(解析版)

高中数学计数原理(解析版)

计数原理计数原理包含排列组合与二项式定理,在高考数学中通常是以填空题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解. 【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如 此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数.【考查题型】填空题【限时检测】(建议用时:60分钟) 一、单选题1.(2020·上海嘉定区·高三一模)已知0x ≠,*n N ∈,则“2n =”是“1nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【答案】A【分析】运用二项式的展开式的通项公式,结合充分性、必要性的定义进行判断即可. 【详解】1nx x ⎛⎫+ ⎪⎝⎭展开式的通项公式为:211()r n r r r n rr n n T C x C x x --+=⋅⋅=⋅, 当2n r =时,存在常数项,此时n 为正偶数,因此当2n =时,一定能推出1nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项, 但是由1nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项不一定能推出2n =.因此“2n =”是“1nx x ⎛⎫+ ⎪⎝⎭的二项展开式中存在常数项”的充分非必要条件.故选:A2.(2020·上海徐汇区·高三一模)设T 是平面直角坐标系xOy 上以()0,2A 、()1B -、)1C-为顶点的正三角形.考虑以下五种平面上的变换:①绕原点作120︒的逆时针旋转;②绕原点作240︒的逆时针旋转;③关于直线OA 的对称;④关于直线OB 的对称;⑤关于直线OC 的对称.任选三种..变换(可以相同)共有125种变换方式,若要使得T 变回起始位置(即点A 、B 、C 分别都在原有位置),共有( )种变换方式? A .12 B .16C .20D .24【答案】C【分析】要使得T 变回起始位置,可通过三次旋转变换或者一次旋转变换+两次对称变换结合得到. 【详解】第一类:只用旋转变化时:可以按①或者②旋转3次得到;第二类:使用对称与旋转结合时,不能出现相同的对称变换,()1若第一位选择旋转变化,可选①或者②,则第二位的对称变化可在③、④、⑤中任选一种,前两位确定以后第三位就跟着确定,故方法有:23=6⨯种;()2若旋转在第二位,第一位的对称可在③、④、⑤中任选一种,则第二位旋转也在①或者②中选一种,前两位确定以后第三位就跟着确定,故方法有:23=6⨯种;()3若旋转在第三位,第一位的对称可在③、④、⑤中任选一种,则第二位的对称不能选第一位的,前两位定了以后第三位也跟着确定,故有23=6⨯种. 综上所述:共有6662=20+++种方法. 故选:C.【点睛】排列组合的题目关键是找到分类的标准,做到不重不漏.3.(2020·上海市建平中学高三月考)2位男生和3位女生共5位同学站成一排,若 3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A .144 B .72 C .54 D .36【答案】B【分析】两位女生相邻,将其捆绑在一起,和另一位女生不相邻,采用插空法.【详解】根据题意,把3位女生的两位捆绑在一起看做一个复合元素,和剩下的一位女生, 插入到2位男生全排列后形成的3个空中的2个空中,故有22232372A A A =种, 故选:B .【点睛】本题考查排列组合,需熟练掌握捆绑、插空法,属于基础题二、填空题4.(2019·上海高考真题)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有_____种(结果用数值表示) 【答案】24【分析】首先安排甲,可知连续2天的情况共有4种,其余的人全排列,相乘得到结果. 【详解】在5天里,连续2天的情况,一共有4种 剩下的3人全排列:33A故一共有:33424A ⨯=种【点睛】本题考查基础的排列组合问题,解题的关键在于对排列组合问题中的特殊元素,要优先考虑,然后再考虑普通元素.5.(2019·上海高考真题)在6x⎛+ ⎝的二项展开式中,常数项的值为__________【答案】15【分析】写出二项展开式通项,通过3602r-=得到4r =,从而求得常数项.【详解】二项展开式通项为:366622666rr r r rr r r C x C x x C x----⋅⋅=⋅⋅=⋅ 当3602r-=时,4r = ∴常数项为:4615C =本题正确结果:15【点睛】本题考查二项式定理的应用,属于基础题.6.(2018·上海高考真题)在()71x +的二项展开式中,2x 项的系数为 .(结果用数值表示). 【答案】21.【分析】利用二项式展开式的通项公式求得展开式中x 2的系数. 【详解】二项式(1+x )7展开式的通项公式为 T r+1=7rC •x r ,令r=2,得展开式中x 2的系数为27C =21. 故答案为:21.【点睛】求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第r +1项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第r +1项,由特定项得出r 值,最后求出其参数.7.(2020·上海闵行区·高三一模)新冠病毒爆发初期,全国支援武汉的活动中,需要从A 医院某科室的6名男医生(含一名主任医师)、4名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,要求至少有一名主任医师参加,则不同的选派方案共有___________种.(用数字作答) 【答案】90【分析】根据题意,先算出从6名男医生(含一名主任医师)、4名女医生(含一名主任医师)中分别选派3名男医生和2名女医生的选派方案种数,再算出男女主任都没有参加的选派方案种数,两者相减求得结果. 【详解】根据题意,从6名男医生(含一名主任医师)、4名女医生(含一名主任医师)中分别选派3名男医生和2名女医生,共有3264206120C C ⋅=⨯=种选派方案,如果所选的男女主任都没有参加,共有215330C C ⨯=种选派方案,所以至少有一名主任医师参加有1203090-=种, 故答案为:90.【点睛】方法点睛:该题考查的是有关组合的综合问题,方法如下: (1)要用好两个计数原理;(2)可以用间接法求解,用总的减去不满足条件的就是要求的;(3)也可以用直接法求解,包括男主任参加女主任不参加、男主任不参加女主任参加和男女主任都参加,相加即可.8.(2020·上海嘉定区·高三一模)甲和乙等5名志愿者参加进博会A B C D 、、、四个不同的岗位服务,每人一个岗位,每个岗位至少1人,且甲和乙不在同一个岗位服务,则共有___________种不同的参加方法(结果用数值表示). 【答案】216【分析】先求出没有条件限制的种数,再求出甲和乙在同一个岗位服务的分配方法,利用间接法,即可得解.【详解】由题意得,有且只有2人分到一组,然后再分到四个不同的岗位,则有2454240C A =种方法,甲和乙在同一个岗位服务的分配方法有4424A =种,所以甲和乙不在同一个岗位服务的方法有24024216-=种, 故答案为:216.【点睛】方法点睛:本题主要考查排列的应用,属于中档题.常见排列数的求法为: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.9.(2020·上海高三一模)在81x x ⎛⎫- ⎪⎝⎭的二项展开式中4x 项的系数为__________. 【答案】28【分析】写出二项展开式的通项公式,令x 的指数等于4,求出r 可得结果. 【详解】二项展开式的通项公式为882881()(1)r rr r r r C x C x x---=-,0,1,2,,8r =,令824r -=,得2r,所以二项展开式中4x 项的系数为228(1)28C -=.故答案为:28【点睛】关键点点睛:利用二项展开式的通项公式求解是解题关键.10.(2020·上海长宁区·高三一模)在61()x x+的二项展开式中,2x 项的系数为__________. 【答案】15【分析】写出二项展开式通项公式,由x 的指数为2求得项数,从而得到系数. 【详解】由题意6621661rrrr rr T C x C x x --+⎛⎫== ⎪⎝⎭, 令622r -=,得2r,所以2x 项的系数为2615C =.故答案为:15.11.(2020·上海崇明区·高三一模)若23(2)na b +的展开式中有一项为412ma b ,则m =__________.【答案】60【分析】根据二项展开式的通项公式,得出23(2)na b +的展开式的第1r +项,求出412a b 的系数,即可得出结果.【详解】因为23(2)na b +展开式的第1r +项为22312r n r n r r r n T C ab --+=, 令224312n r r -=⎧⎨=⎩,解得64n r =⎧⎨=⎩,则426260m C ==. 故答案为:60.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.12.(2020·上海大学附属中学高三三模)二项式153x x 展开式中的常数项是______.【答案】5005【分析】写出二项式153x x 展开式的通项,令x 的指数为零,求出参数的值,然后代入通项即可求出该二项式展开式中的常数项.【详解】二项式15展开式的通项为()5155615151kkkk kk C C x--⎛⋅⋅=⋅-⋅ ⎝, 令5506k -=,得6k =,因此,该二项式展开式中的常数项为()661515005C ⋅-=. 故答案为:5005.【点睛】本题考查二项式展开式中常数项的求解,一般利用二项展开式通项中x 的指数为零来求解,考查运算求解能力,属于中等题. 三、解答题13.(2020·上海奉贤区·高三二模)两个数列{}n α、{}n β,当{}n α和{}n β同时在0n n =时取得相同的最大值,我们称{}n α与{}n β具有性质P ,其中*n ∈N .(1)设2022(1)x +的二项展开式中k x 的系数为k a (0,1,2,3,,2022k =⋅⋅⋅),k ∈N ,记01a c =,12a c =,⋅⋅⋅,依次下去,20222023a c =,组成的数列是{}n c ;同样地,20221()x x-的二项展开式中k x 的系数为kb (0,1,2,3,,2022k =⋅⋅⋅),k ∈N ,记01b d =,12b d =,⋅⋅⋅,依次下去,20222023b d =,组成的数列是{}n d ;判别{}nc 与{}nd 是否具有性质P ,请说明理由;(2)数列{}t dn -的前n 项和是n S ,数列{19823}n -的前n 项和是n T ,若{}n S 与{}n T 具有性质P ,*,N d t ∈,则这样的数列{}t dn -一共有多少个?请说明理由;(3)两个有限项数列{}n a 与{}n b 满足11()n n n n a a b b λ++-=-,*n ∈N ,且110a b ==,是否存在实数λ,使得{}n a 与{}n b 具有性质P ,请说明理由.【分析】(1)2022(1)x +展开式中系数最大项为101110112022C x ,然后再判断20221()x x-展开式中1011x 的系数是否是最大值,即可得结果;(2)令19823nn b =-,则3(13)331982198231322n n n T n n -=-=+-⋅-,结合11n n nn T T T T -+≥⎧⎨≥⎩,求得6n =,求得n T 的最大值,由{}n S 与{}n T 具有性质P ,可得6n =时,max ()10800n S =,由n a t dn =-,结合60,70t d t d ->-<求得t 的范围,再由n a t dn =-是等差数列,可得6(6)6=108002t d t d S -+-⨯=,然后联立*,27360067t d N t d d t d ⎧∈⎪-=⎨⎪<<⎩,解出数列{}t dn -的个数;(3)由11()n n n n a a b b λ++-=-进行迭代,可得n n a b λ=,因为{}n a 与{}n b 具有性质P , 所以00n n a b =,从而可1λ= 【详解】解:(1)2022(1)x +展开式的通项为12022r r r T C x +=,则数列{}n c 的通项为-12022n n c C = 故数列{}n c 中的最大值为101110122022c C =20221()x x -展开式的通项为'2022202221202220221(1)rr r r rr r T C x C x x --+⎛⎫=⋅-=- ⎪⎝⎭,而当202221011r -=时,得10112r N =∉, 所以{}n c 与{}n d 不具有性质P(2)令19823nn b =-,则3(13)331982198231322n n n T n n -=-=+-⋅-,由11n n n n T T T T -+≥⎧⎨≥⎩,即113333198231982(1)322223333198231982(1)32222n n n n n n n n -+⎧+-⋅≥-+-⋅⎪⎪⎨⎪+-⋅≥++-⋅⎪⎩,解得13198231982n n +⎧≤⎨≥⎩,因为*2,n n N ≥∈,673729,32187== 所以当6n =时,6max 33()19826+31080022n T =⨯-⋅=, 因为 {}n S 与{}n T 具有性质P , 所以6n =时,max ()10800n S =, 因为n a t dn =-,所以60,70t d t d ->-<, 因为n a t dn =-, 所以6(6)6=108002t d t d S -+-⨯=,由*,27360067t d N t d d t d⎧∈⎪-=⎨⎪<<⎩,解得360636134313,,,516518718t t t d d d ===⎧⎧⎧⋅⋅⋅⎨⎨⎨===⎩⎩⎩共有102个数列;(3)因为11()n n n n a a b b λ++-=-,*n ∈N 当2n ≥,*n ∈N 时,112211()()()n n n n n a a a a a a a a ---=-+-+⋅⋅⋅+-+ 112211()()()n n n n b b b b b b b λλλ---=-+-+⋅⋅⋅+-+所以n n a b λ=当1n =时,110a b ==符合上式 所以n n a b λ=,因为{}n a 与{}n b 是有限项数列,所以一定存在最大项, 设00max max (),()n n n n a a b b ==,因为{}n a 与{}n b 具有性质P , 所以00n n a b =,1λ=显然成立,假设1λ>,则显然00max max (),()n n n n a a b b ==,000n n n a b b λ=>矛盾 同理,1λ<也矛盾, 所以1λ=【点睛】此题考查了二项式定理、数列求和、不等式的性质等性质,综合性强,考查了运算能力,属于难题.14.(2019·上海浦东新区·高三二模)已知各项均不为零的数列{}n a 满足11,a =前n 项的和为n S ,且22212,,2n n nS S n n n a *--=∈≥N ,数列{}n b 满足1,n n n b a a n +=+∈N*. (1)求23,a a ; (2)求2019S ;(3)已知等式11k k n n kC n C --=⋅对0,,k n k n ≤≤∈N*成立. 请用该结论求有穷数列{},1,2,,,k k n b C k n =的前n 项和n T .【答案】(1)见解析;(2)4078379;(3)()2222nn n ++⋅-【分析】(1)由222*122n n n S S n n N n a ,,--=∈≥,可得212n n S S n -+=,结合a 1=1,依次求得a 2,a 3的值; (2)由212n n S S n -+=(n ≥2),得212(1)n n S S n ++=+,两式作差可得a n +a n +1=4n +2,结合等差数列的前n 项和求S 2019;(3)由b k =a k +a k +1=4k +2,得123123nn n n n n n T b C b C b C b C =++++,然后结合已知组合数公式的性质求解有穷数列{}12kk n b C k n =,,,,,的前n 项和T n . 【详解】(1)因为()22221122,2n n n n n S S n a nS S n ---==-≥,又数列{}n a 各项均不为零,所以212n n S S n -+=.当2n =时,211218S S a a a +=++=,所以26a =. 当3n =时,()32123218S S a a a +=++=,所以34a =.(2)由(1)知()211212,242,221,1n n n n n n S S n n a a n n S S n n -++⎧+=≥⎪⇒+=+≥⎨+=+≥⎪⎩. ()()()()2019123452018201914246201821009S a a a a a a a =+++++++=++++++⨯4078379=.(3)由(2)知7,142,2n n b n n =⎧=⎨+≥⎩.1212nn n n n n T b C b C b C =+++()()1232374232n nn n n n n n n C n C C nC C C C =++++++++()()121012301121742n n n n n n n n n n n n n n C C C C C C C C C C ----=++++++++++--()()17421221n n n n n -=+-+--()2222n n n =++⋅-.【点睛】本题考查数列递推式,考查了数列的分组求和与等差数列前n 项和,考查二项式系数的性质,是难题.15.(2020·上海青浦区·复旦附中青浦分校高三月考)等差数列{}n a 和等比数列{}n b 中, 112a b ==,222a b b ==+,n S 是{}n b 前n 项和.(1)若 lim 3n n S b →∞=-,求实数b 的值; (2)是否存在正整数b ,使得数列{}n b 的所有项都在数列{}n a 中?若存在,求出所有的b ,若不存在,说明理由;(3)是否存在正实数b ,使得数列{}n b 中至少有三项在数列{}n a 中,但{}n b 中的项不都在数列{}n a 中?若存在,求出一个可能的b 的值,若不存在,请说明理由.【答案】(1) 1b =-.(2) 所有的符合题意的*2()b k k N =∈.(3) 2b =.【解析】试题分析:(1)数列{}n b 是等比数列,其前n 和的极限存在,因此有公式q 满足1q <,且极限为11b q -;(2)由于b 是正整数,因此可对b 按奇偶来分类讨论,因此当b 为奇数时,等比数列{}n b 的公比不是整数,是分数,从而数列{}n b 从第三项开始每一项都不是整数,都不在数列{}n a 中,而当b 为偶数时,数列{}n b 的所有项都在{}n a 中,设2b k =,则2212k q k +==+,12(1)n n b k -=⋅+展开有0112112(n n n n n b C k C k ----=++ 2111)n n n n C k C ----+022122()n n n n k C k C ---=+++,这里用到了二项式定理,22(1)ma k m =+-,结论为真;(3)存在时只要找一个b ,首先b 不能为整数,下面我们只要写两数列的通项公式,让m k b a =(,3)m k ≥,取特殊值求出b ,如取4,3m k ==,可得2b =,此时4b 在数列{}n a 中,由于2b =是无理数,会发现数列{}n a 除第一项以外都是无理数,而38b =是整数,不在数列{}n a 中,命题得证,(如取其它的,m k 又可得到另外的b 值).试题解析:(1)对等比数列{}n b ,公比2122b b q +==+.因为01q <<,所以40b -<<. 2分解方程231(1)2b b =--+, 4分得4b =或1-.因为40b -<<,所以1b =-. 6分(2)当b 取偶数(2,*)b k k N =∈时,{}n b 中所有项都是{}n a 中的项. 8分证: 由题意:均在数列中, 当时,110112*********()2(1)2()2n n n n n n n n n n n b b k C k C k C k C ----------+==+=++++ 021*******(1)1n n n n n n k C k C k C ------⎡⎤=+++++-⎣⎦说明{}n b 的第n 项是{}n a 中的第021321111n n n n n n C k C k C ------++++项. 10分当b 取奇数(21,*)b k k N =+∈时,因为n b 不是整数,所以数列的所有项都不在数列中. 12分综上,所有的符合题意的. (3)由题意,因为12,b b 在{}n a 中,所以{}n b 中至少存在一项()3m b m ≥在{}n a 中,另一项()t b t m ≠不在{}n a 中. 14分由m k b a =得12(1)2(1)2m bk b -+=+-, 取4m =得()321212b k b ⎛⎫+=+- ⎪⎝⎭,即()()2242b k +=-. 取k =4,得222b =(舍负值).此时43b a =. 16分当222b =时,38b =,()()21222n a n =+-,对任意n ,3n a b ≠. 18分综上,取222b =.(此问答案不唯一,请参照给分)考点:(1)数列的极限,无穷等比数列的和;(2)等差数列与等比数列的通项公式;(3)数列的项的综合问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
乘法原理 做一件事情,完成它需要分 成n个步骤,做第一步有m1种不同的方法 ,做第二步有m2种不同的方法,……,做 第n步有mn种不同的方法,那么完成这件 事有 N=m1×m2×…×mn 种不同的方法。
例1、某班级有男生30人,女生24人。 (1)从中任选一人去比赛, 共有多少种 不同的选法? (2) 从中任选男、女生各一名代班 级参加比赛,共有多少种不同的选法?
2. 一个三位密码锁,各位上数字由0,1,2,3,4,5, 6,7,8,9十个数字组成,可以设置多少种三位数 的密码(各位上的数字允许重复)?首位数字 不为0的密码数是多少?首位数字是0的密码 数又是多少?
3.如条路可通;从甲地到丁地有4条路可通, 从 丁地到丙地有2条路可通。从甲地到丙地共有 多少种不同的走法?
甲地
乙地
丁地
丙地
练习1
1. 一件工作可以用两种方法完成。有5人会用第一种方 法完成,另有4人会用第二种方法完成。选出一个人来 完成这件工作,共有多少种选法?
4 + 5 = 9
3本文艺术里任选一本,共有多少种不同的选法?
2. 在读书活动中,一个学生要从2本科技书,2本政治书,
2 + 2 + 3 = 7
3.乘积( a1+ a 2+ a 3 )( b1 + b 2 + b3 + b4 )(c1 + c2 + c3 + c4 + c5 )展开后共有项? 3×4×5=60
练习2
1
书架的上层放有 5 本不同的数学书,中层放有6本不同的语文书, 下层放有4本不同的英语书,从中任取1 本书的不同取法的种数 是( ) A A. 5 + 6+4 = 15 B. 1 C. 6×5×4 = 120 D. 3 在上题中,如果从中任取3本,数学,语文,英语各一本,则不同取法的 种数是 ( C ) A. 1 + 1 + 1 = 3 B.5 + 6 + 4 =15 C. 5×6×4 = 120 C ) D. 1 把四封信任意投入三个信箱中,不同投法种数是 (
分析: 从甲地到乙地有3类方法, 第一类方法, 乘火车,有4种方法; 第二类方法, 乘汽车,有2种方法; 第三类方法, 乘轮船, 有3种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。
问题2. 如图,由A村去B村的道路有3条, 由B村去C村的道路有2条。从A村经B村 去C村,共有多少种不同的走法?
排列、组合是计算有关完成某项工作的 方法种数的知识,概率则是研究现实世界中 某些事件发生可能性大小的一门学问,应用 十分广泛.这两部分内容的关系十分密切. 实际上,排列、组合不仅有着许多直接应用, 而且还是学习概率的准备知识.
分类加法计数原理与 分步乘法计数原理
问题 1. 从甲地到乙地,可以乘火车,也可 以乘汽车,还可以乘轮船。一天中,火车 有4 班, 汽车有2班,轮船有3班。那么一天 中乘坐这些交通工具从甲地到乙地共有多 少种不同的走法?
北 B村 北 南 C村
A村


分析: 从A村经 B村去C村有2步, 第一步, 由A村去B村有3种方法, 第二步, 由B村去C村有3种方法, 所以 从A村经 B村去C村共有 3 ×2 = 6 种不同的方法。
加法原理 做一件事情,完成它可以有n类 办法,在第一类办法中有m1种不同的方法,在 第二类办法中有m2种不同的方法,……,在 第n类办法中有mn种不同的方法。那么完成 这件事共有 N=m1+m2+…+mn 种不同的方法。
2
3
A. 12
B.64
C.81
D.7
4 火车上有10名乘客,沿途有5个车站,乘客下车的可能方式有
( A )种 A. 510 B. 105 C. 50 D. 以上都不对
例2、 书架的第1层放有4本不同的计算机书,第2层放有 3本不同的文艺书,第3层放有2本不同的体育书. (1)从书架上任取1本书,有多少种不同的取法? (2)从书架的第1、2、3层各取1本书,有多少种不同的 取法?
1.在所有的两位数中,个位数字大于十位数字 的两位数共有多少个? 分析1: 按个位数字是2,3,4,5,6,7,8,9分成8类,在 每一类中满足条件的两位数分别是 1个,2个,3个,4个,5个,6个,7 个,8 个.则根 据加法原理共有 1+2+3+4+5+6+7+ 8 =36 (个). 分析2: 按十位数字是1,2,3,4,5,6,7,8分成8类, 在每一类中满足条件的两位数分别是 8个,7个,6个,5个,4个,3个,2个,1个. 则根据加法原理共有 8+7+6+5+4+3+2+1 = 36 (个)
相关文档
最新文档