高中数学-立体几何-线面角知识点

高中数学-立体几何-线面角知识点
高中数学-立体几何-线面角知识点

立体几何知识点整理一.直线和平面的三种位置关系:

1. 线面平行

2. 线面相交

3. 线在面内

二.平行关系:

1.线线平行:

方法一:用线面平行实现。

方法二:用面面平行实现。

方法三:用线面垂直实现。

若α

α⊥

⊥m

l,,则m

l//。

方法四:用向量方法:

若向量和向量共线且l、m不重合,则m

l//。

2.线面平行:

方法一:用线线平行实现。

α

α

α//

//

l

l

m

m

l

?

?

?

?

?

?

?

?

m

l

m

l//

//

?

?

?

?

?

?

=

?

=

?

β

γ

α

γ

β

α

m

l

m

l

l

//

//

?

?

?

?

?

?

=

?

?

β

α

β

α

l

α

l

方法二:用面面平行实现。

αββα////l l ??

??

?

方法三:用平面法向量实现。

若为平面α的一个法向量,⊥且α?l ,则α//l 。

3. 面面平行:

方法一:用线线平行实现。

β

ααβ//',','//'

//?????

?????且相交且相交m l m l m m l l

方法二:用线面平行实现。

βαβαα

//,////???

?

???且相交m l m l

三.垂直关系: 1. 线面垂直:

方法一:用线线垂直实现。

αα⊥????

?

???

?=?⊥⊥l AB AC A AB AC AB l AC l ,

方法二:用面面垂直实现。

αββαβα⊥???

?

??

?⊥=?⊥l l m l m ,

2. 面面垂直:

方法一:用线面垂直实现。

βαβα⊥??

??

?⊥l l 方法二:计算所成二面角为直角。

3. 线线垂直:

方法一:用线面垂直实现。

m l m l ⊥??

??

?⊥αα

方法二:三垂线定理及其逆定理。

PO l OA l PA l αα⊥?

?

⊥?⊥????

方法三:用向量方法:

若向量和向量的数量积为0,则m l ⊥。

三.夹角问题。

(一)异面直线所成的角: (1)范围:]90,0(?? (2)求法: 方法一:定义法。

步骤1:平移,使它们相交,找到夹角。

步骤2:解三角形求出角。(常用到余弦定理) 余弦定理:

ab

c b a 2cos 222-+=θ

(计算结果可能是其补角)

θ

c

b

a

方法二:向量法。转化为向量的夹角 (计算结果可能是其补角):

=

θcos

(二)线面角

(1)定义:直线l 上任取一点P (交点除外),作PO ⊥

α于O,连结AO ,则AO 为斜线PA

在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[??

当?=0θ时,α?l 或α//l ;当?=90θ时,α⊥l (3)求法: 方法一:定义法。

步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。

(三)二面角及其平面角

(1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。 (2)范围:]180,0[?? (3)求法: 方法一:定义法。

步骤1:作出二面角的平面角(三垂线定理),并证明。 步骤2:解三角形,求出二面角的平面角。 方法二:截面法。

步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。

步骤2:解三角形,求出二面角。

方法三:坐标法(计算结果可能与二面角互补)。

步骤一:计算12

1212

cos n n n n n n ?=?

步骤二:判断θ与12n n

的关系,可能相等或者互补。

四.距离问题。

1.点面距。 方法一:几何法。

步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。

步骤2:计算线段PO 的长度。(直接解三角形;等体积法和等面积法;换点法)

2.线面距、面面距均可转化为点面距。

3.异面直线之间的距离 方法一:转化为线面距离。

如图,m 和n 为两条异面直线,α?n 且α//m ,则异面直线m 和n 之间的距离可转化为直线m 与平面α之间的距离。 方法二:直接计算公垂线段的长度。 方法三:公式法。

如图,AD 是直线m 和n 的公垂线段,m ∥m`,则异面直线m 和n 的距离为

θ

cos 2222ab b a c d ±--=

m

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

高三立体几何大题线面角专题

高三立体几何专题 1.如图,在四棱锥中,底面为平行四边形,为等边三角形,平面平面,,,, (Ⅰ)设分别为的中点,求证:平面; (Ⅱ)求证:平面; (Ⅲ)求直线与平面所成角的正弦值. 1.解析 (Ⅰ)连接,易知,.又由, 故,又因为平面,平面,所以平面. (Ⅱ)取棱的中点,连接.依题意,得,又因为平面平面,平面平面,所以平面,又平面,故. 又已知,,所以平面. (Ⅲ)连接,由(Ⅱ)中平面,可知为直线与平面所成的角, 因为为等边三角形,且为的中点,所以 又, 故在中,. 所以,直线与平面所成角的正弦值为 . 2.如图 ,已知三棱柱,平面平面,, 分别是AC ,A 1 B 1的中点. (1)证明:; (2)求直线EF 与平面A 1BC 所成角的余弦值. P ABCD -ABCD PCD PAC ⊥PCD PA CD ⊥2CD =3AD =G H ,PB AC ,GH ∥PAD PA ⊥PCD AD PAC BD AC BD H =BH DH =BG PG =GH PD ∥GH ?PAD PD ?PAD GH ∥PAD PC N DN DN PC ⊥PAC ⊥PCD PAC PCD PC =DN ⊥PAC PA ?PAC DN PA ⊥PA CD ⊥CD DN D =PA ⊥PCD AN DN ⊥PAC DAN ∠AD PAC PCD △2CD =N PC DN =DN AN ⊥Rt AND △sin 3 DN DAN AD ∠= =AD PAC 3 111ABC A B C -11A ACC ⊥ABC 90ABC ∠=?11 30,,,BAC A A AC AC E F ∠=?==EF BC ⊥

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

立体几何线面角专题

立体几何线面角专题(五十八) 1.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别是棱B 1C 1,C 1D 1 的中点.试求: (1)AD 1与EF 所成角的大小; (2)AF 与平面BEB 1所成角的余弦值; (3)二面角C 1-DB -B 1的正切值. 答案 (1)60° (2)223 (3)22 思路 解析 建立如图所示的空间直角坐标系,则B 1(0,0,0),A(1,0, 1),B(0,0,1),D 1(1,1,0),E(0,12,0),F(12 ,1,0),D(1,1,1). (1)因为AD 1→=(0,1,-1),EF →=(12,12,0), 所以cos AD 1→,EF →=(0,1,-1)·(12,12,0)2×22=12, 即AD 1与EF 所成的角为60°. (2)FA →=(12,-1,1),由图可得,BA →=(1,0,0)为平面BEB 1的一个法向量,设AF 与平面BEB 1所成的角为θ, 则sin θ=|cos BA →,FA →|=|(1,0,0)·(12,-1,1)1×(12)2+(-1)2+12|=13,所以cos θ=223. (3)设平面DBB 1的法向量为n 1=(x ,y ,z),

DB →=(-1,-1,0),B 1B →=(0,0,1), 由?????n 1⊥DB →,n 1⊥B 1B →,得?????n 1·DB →=-x -y =0, n 1·B 1B →=z =0, 令y =1,则n 1=(-1,1,0). 同理,可得平面C 1DB 的一个法向量为n 2=(-1,1,1). 则cos n 1,n 2=(-1,1,0)·(-1,1,1)2×3=63. 所以tan n 1,n 2=22. 2.如图所示,在三棱锥P -ABC 中,PA ⊥底面ABC ,PA =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC. (1)求证:BC ⊥平面PAC ; (2)当D 为PB 的中点时,求AD 与平面PAC 所成的角的余弦值; (3)是否存在点E 使得二面角A -DE -P 为直二面角?并说明理由. 答案 (1)略 (2)144 (3)存在点E 解析 方法一:(1)∵PA ⊥底面ABC , ∴PA ⊥BC.又∠BCA =90°, ∴AC ⊥BC ,∴BC ⊥平面PAC. (2)∵D 为PB 的中点,DE ∥BC , ∴DE =12 BC. 又由(1)知,BC ⊥平面PAC , ∴DE ⊥平面PAC ,垂足为点E. ∴∠DAE 是AD 与平面PAC 所成的角. ∵PA ⊥底面ABC ,∴PA ⊥AB. 又PA =AB ,∴△ABP 为等腰直角三角形. ∴AD =12 AB. 在Rt △ABC 中,∠ABC =60°.∴BC =12 AB.

文科立体几何线面角二面角专题_带答案

文科立体几何线面角二面角专题 学校: ___________ 姓名:____________ 班级:____________ 考号: ___________ 一、解答题 1 .如图,在三棱锥,「中,肚一二/,举一厂:- H-钗-化为的中点. (1)证明:卜「"-L平面; (2)若点鮎在棱吃上,且二面角材-PA弋为剜,求PC与平面P3所成角的正弦值. 2 ?如图,在三棱锥|P"BC中,嗣訂0 2辽,"",卩<:"04,0为蚯的中点. (1)证明:P°丄平面 (2 )若点皿在棱比上,且MC = 2^B,求点匕到平面P°何的距离. 3 . (2018 年浙江卷)如图,已知多面体ABCAiBiCi , AiA , BiB , CiC均垂直于平 面ABC,/ ABC=120 ° , AiA=4 , CiC=1 , AB=BC=B iB=2 . (I)证明:ABi丄平面A1B1C1 ; (H)求直线ACi与平面ABB i所成的角的正弦值. 4 .如图,在三棱柱ABC_A i B i C i中,点p, G分别是& 叽的中点,已知吗丄平面 AAJ B#] A.B, A#」 ABC , = =3 , = =2. (I)求异面直线与AB所成角的余弦值;

(II)求证:丄平面吆匚』i; (III )求直线吒丄与平面BCG%所成角的正弦值

5 ?如图,四棱锥P-AB8,底面ABCO是正方形,PA = PD"E = 1 , PAPO型,E ,卜分 别是阳,8的中点? (1)求证; (2)求二面角匚的余弦值. 6 ?如图,三棱柱ABC-A i B i C i中,侧棱吗丄底面ABC ,且各棱长均相等D , E , F分别为 棱’?,, 的中点? (1)证明:?平面’ ; (2)证明:平面珀8」平面气曾; (3)求直线I町I与直线所成角的正弦值? 7 .如图,在四边形ABCD 中,AB//CD ,/ AB D=30 ° , AB = 2CD = 2AD = 2 , DE 丄平面ABCD , EF// BD,且BD = 2EF . (I)求证:平面ADE丄平面BDEF ; (H)若二面角C BF D的大小为60。,求CF与平面ABCD所成角的正弦值. P-A0CD 中PA 丄平面A9CD PA = AB = BC = AD = CD = 1 8 .如图,在四棱锥

高三数学立体几何专题

立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为,,m n k , =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=,22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号.

线线角、线面角,二面角(高考立体几何法宝)

1 A 1 B 1 C 1 D A B C D E F G 线线角、线面角、二面角的求法 1.空间向量的直角坐标运算律: ⑴两个非零向量与垂直的充要条件是 1122330a b a b a b a b ⊥?++= ⑵两个非零向量与平行的充要条件是 a 2 b =±|a ||b | 2.向量的数量积公式 若a 与b 的夹角为θ(0≤θ≤π),且123(,,)a a a a =,123(,,)b b b b =,则 (1)点乘公式: a 2b =|a ||b | cos θ (2)模长公式:则2 12||a a a a a =?=++,2 ||b b b b =?=+(3)夹角公式:2 cos ||||a b a b a b a ??==?+ (4)两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则 2 | |(AB AB x ==,A B d = ①两条异面直线a 、b 间夹角0,2πα?? ∈ ??? 在直线a 上取两点A 、B ,在直线b 上取两点C 、D ,若直线a 与b 的夹角为θ,则cos |cos ,|AB CD θ=<>= 例1 (福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) A .5 15arccos B . 4 π C .5 10 arccos D .2π (向量法,传统法)

P B C A 例 2 (2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 解:(1)向量法 (2)割补法:将此多面体补成正方体'''DBCA D B C P -,PB 与AC 所成的角的大小即此正方体主对角线PB 与棱BD 所成角的大小,在Rt △PDB 中 ,即 t a n 2PD DBA DB ∠ = =. 点评:本题是将三棱柱补成正方体'''DBCA D B C P - ②直线a 与平面α所成的角0,2πθ?? ∈ ??? (重点讲述平行与垂直的证明) 可转化成用向量→ a 与平面α的法向量→ n 的夹角ω表示,由向量平移得:若 ππ(图);若ππ 平面α的法向量→ n 是向量的一个重要内容,是求直线与平面所成角、求点到平面距离的必备工具.求平面法向量的一般步骤: (1)找出(求出)平面内的两个不共线的向量的坐标111222(,,),(,,)a a b c b a b c == (2)设出平面的一个法向量为(,,)n x y z = (3)根据法向量的定义建立关于x,y,z 的方程组(0a << (4)解方程组,取其中的一组解,即得法向量。 图1- 图1- 图1- 1 D 1 B 1 C P D B C A

立体几何大题线面角训练1

立体几何大题训练(1) 1、如图,三棱柱ABC-A1B1C1的底面是边长为2的等边三角形,AA1⊥底面ABC,点E,F分别是棱CC1,BB1上的点,且EC=B1F=2FB. (1)证明:平面AEF⊥平面ACC1A1; (2)若AA1=3,求直线AB与平面AEF所成角的正弦值.

2、如图,在四棱锥ABCD P -中,⊥AB 平面BCP ,//CD 平面ABP , 22=====CD BP CP BC AB . (1)证明:平面⊥BAP 平面DAP ; (2)点M 为线段AB (含端点)上一点,设直线MP 与平面DCP 所成角为α,求αsin 的取值围.

3、如图,四棱锥ABCD P -中,底面ABCD 为菱形,⊥PA 底面ABCD ,22=AC ,2=PA ,E 是PC 上的一点,EC PE 2=. (1)证明:⊥PC 平面BED ; (2)设二面角C PB A --为90?,求直线PD 与平面PBC 所成角的大小.

4、如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,135BCD ∠=?, 侧面PAB ⊥底面ABCD ,902BAP AB AC PA E F ∠=?===,,,分别为BC AD ,的中点,点M 在线段PD 上. (1)求证:EF ⊥平面PAC ; (2)如果直线ME 与平面PBC 所成的角和直线ME 与平面ABCD 所成的角相等,求PM PD 的值.

5、在四边形ABCD 中,对角线,AC BD 垂直相交于点O ,且4OA OB OD ===,3OC =.将BCD △沿BD 折到BED △的位置,使得二面角E BD A --的大小为90?(如图).已知Q 为EO 的中点,点P 在线段AB 上,且2AP =. (1)证明:直线PQ ADE ∥平面; (2)求直线BD 与平面ADE 所成角θ的正弦值.

重点高中数学必修2立体几何专题线面角典型例题求法总结

重点高中数学必修2立体几何专题线面角典型例题求法总结

————————————————————————————————作者:————————————————————————————————日期:

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D

立体几何专题复习(自己精心整理)

专题一证明平行垂直问题 题型一证明平行关系 (1)如图所示,在正方体ABCD-A1B1C1D1中,M,N分别 是C1C,B1C1的中点.求证:MN∥平面A1BD. (2)在正方体AC1中,M,N,E,F分别是A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN∥平面EFDB. 思考题1(1)如图所示,平面PAD⊥平面ABCD,ABCD为正方形, △PAD是直角三角形,且PA=AD=2,E,F,G分别是线段PA,PD,CD 的中点,求证:平面EFG∥平面PBC. (2)如图,在四面体A-BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=22,M是AD的中点,P是BM的中点,点Q在线段AC上,且 AQ=3QC.求证:PQ∥平面BCD. 题型二证明垂直关系(微专题) 微专题1:证明线线垂直 (1)已知空间四边形OABC中,M为BC中点,N为AC 中点,P为OA中点,Q为OB中点,若AB=OC.求证:PM⊥QN. (2)(2019·山西太原检测)如图,直三棱柱ABC-A1B1C1中,AA1=AB =AC=1,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的 点,求证:DF⊥AE. 微专题2:证明线面垂直 (3)在正方体ABCD-A1B1C1D1中,求证:BD1⊥平面ACB1. (4)(2019·河南六市一模)在如图所示的几何体中,ABC-A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.若AA1=AC,求证:AC1⊥平面A1B1CD.

微专题3:证明面面垂直 (5)已知正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点, 求证:平面DEA ⊥平面A 1FD 1. (6)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD ,求证:平面PQC ⊥平面DCQ. 思考题2 (1)(2019·北京东城区模拟)如图,在四棱锥P -ABCD 中, 底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD =DC ,E 是PC 的中点, 作EF ⊥BP 交BP 于点F ,求证:PB ⊥平面EFD. (2)(2019·济南质检)如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上.已知BC =8,PO =4, AO =3,OD =2. ①证明:AP ⊥BC ; ②若点M 是线段AP 上一点,且AM =3,试证明平面AMC ⊥平面BMC. 题型三 探究性问题 在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点. (1)求证:EF ⊥CD ; (2)在平面PAD 内是否存在一点G ,使GF ⊥平面PCB.若存在,确 定G 点的位置;若不存在,试说明理由. 思考题3 (2019·山西长治二模)如图所示,四棱锥P -ABCD 的底面 是边长为1的正方形,PA ⊥CD ,PA =1,PD =2,E 为PD 上一点,PE =2ED. (1)求证:PA ⊥平面ABCD ; (2)在侧棱PC 上是否存在一点F ,使得BF ∥平面AEC ?若存在,指出F 点的位置,并证明;若不存在,说明理由.

立体几何(几何法)—线面角

立体几何(几何法)—线面角例1(本小题满分12分)(注意:在试题卷上作答无效 .........) 如图,四棱锥P ABCD -中,底面ABCD为菱形,PA⊥底面 ABCD ,AC=2 PA=,E是PC上的一点,2 PE EC =。 (Ⅰ)证明:PC⊥平面BED; (Ⅱ)设二面角A PB C --为90o,求PD与平面PBC所成角的大小。 【答案】解:方法一:(1)证明:因为底面ABCD为菱形,所以BD⊥AC,又P A⊥底面ABCD,所以PC⊥BD. 设AC∩BD=F,连结EF.因为AC=22, P A=2,PE=2EC,故 PC=23,EC=23 3 ,FC=2, 从而PC FC =6,AC EC = 6. 因为PC FC =AC EC ,∠FCE=∠PCA,所以 △FCE∽△PCA,∠FEC=∠P AC=90°,由此知PC⊥EF. D

PC 与平面BED 内两条相交直线BD ,EF 都垂直,所以PC ⊥平面BED . (2)在平面P AB 内过点A 作AG ⊥PB ,G 为垂足. 因为二面角A -PB -C 为90°,所以平面P AB ⊥平面PBC . 又平面P AB ∩平面PBC =PB , 故AG ⊥平面PBC ,AG ⊥BC . BC 与平面P AB 内两条相交直线P A ,AG 都垂直,故BC ⊥平面P AB ,于是BC ⊥AB ,所以底面ABCD 为正方形,AD =2,PD = P A 2+AD 2=2 2. 设D 到平面PBC 的距离为d . 因为AD ∥BC ,且AD ?平面PBC ,BC ?平面PBC ,故AD ∥平面PBC ,AD 两点到平面PBC 的距离相等,即d =AG = 2. 设PD 与平面PBC 所成的角为α,则sin α=d PD =12. 所以PD 与平面PBC 所成的角为30°. 方法二:(1)以A 为坐标原点,射线AC 为x 轴的正半轴,建立如图所示的空间直角坐标系A -xyz . 设C (22,0,0),D (2,b,0),其中b >0,则P (0,0,2),E ? ???? 423 ,0,23,B (2,

高中数学-立体几何-线面角知识点

立体几何知识点整理一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 方法二:用面面平行实现。 方法三:用线面垂直实现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 α α α// // l l m m l ? ? ? ? ? ? ? ? m l m l// // ? ? ? ? ? ? = ? = ? β γ α γ β α m l m l l // // ? ? ? ? ? ? = ? ? β α β α l α l

方法二:用面面平行实现。 αββα////l l ?? ?? ? 方法三:用平面法向量实现。 若为平面α的一个法向量,⊥且α?l ,则α//l 。 3. 面面平行: 方法一:用线线平行实现。 β ααβ//',','//' //????? ?????且相交且相交m l m l m m l l 方法二:用线面平行实现。 βαβαα //,////??? ? ???且相交m l m l 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 αα⊥???? ? ??? ?=?⊥⊥l AB AC A AB AC AB l AC l , 方法二:用面面垂直实现。 αββαβα⊥??? ? ?? ?⊥=?⊥l l m l m ,

2. 面面垂直: 方法一:用线面垂直实现。 βαβα⊥?? ?? ?⊥l l 方法二:计算所成二面角为直角。 3. 线线垂直: 方法一:用线面垂直实现。 m l m l ⊥?? ?? ?⊥αα 方法二:三垂线定理及其逆定理。 PO l OA l PA l αα⊥? ? ⊥?⊥???? 方法三:用向量方法: 若向量和向量的数量积为0,则m l ⊥。 三.夹角问题。 (一)异面直线所成的角: (1)范围:]90,0(?? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: ab c b a 2cos 222-+=θ (计算结果可能是其补角) θ c b a

立体几何专题——空间几何角和距离的计算

立体几何专题:空间角和距离的计算 一 线线角 1.直三棱柱A 1B 1C 1-ABC ,∠BCA=900,点D 1,F 1分别是A 1B 1和A 1C 1的中点,若BC=CA=CC 1,求BD 1与AF 1所成角的余弦值。 B 1 2.在四棱锥P-ABCD 中,底面ABCD 是直角梯形,∠BAD=900,AD ∥BC ,AB=BC=a ,AD=2a ,且PA ⊥面ABCD ,PD 与底面成300角,(1)若AE ⊥PD ,E 为垂足,求证:BE ⊥PD ;(2)若AE ⊥PD ,求异面直线AE 与CD 所成角的大小; D 二.线面角 1.正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为BB 1、CD 的中点,且正方体的棱长为2,(1)求直线D 1F 和AB 和所成的角;(2)求D 1F 与平面AED 所成的角。 1 2.在三棱柱A 1B 1C 1-ABC 中,四边形AA 1B 1B 是菱形,四边形BCC 1B 1是矩形,C 1B 1⊥AB , AB=4,C 1B 1=3,∠ABB 1=600,求AC 1与平面BCC 1B 1所成角 的大小。 B 1

三.二面角 1.已知A 1B 1C 1-ABC 是正三棱柱,D 是AC 中点,(1)证明AB 1∥平面DBC 1;(2)设AB 1⊥BC 1,求以BC 1为棱,DBC 1与CBC 1为面的二面角的大小。 B 1 2.ABCD 是直角梯形,∠ABC=900,SA ⊥面ABCD ,SA=AB=BC=1,AD=0.5,(1)求面SCD 与面SBA 所成的二面角的大小;(2)求SC 与面ABCD 所成的角。 B C 3.已知A 1B 1C 1-ABC 是三棱柱,底面是正三角形,∠A 1AC=600,∠A 1AB=450,求二面角B —AA 1—C 的大小。 1 四 空间距离计算 (点到点、异面直线间距离)1.在棱长为a 的正方体ABCD-A 1B 1C 1D 1中,P 是BC 的中点,DP 交AC 于M ,B 1P 交BC 1于N ,(1)求证:MN 上异面直线AC 和BC 1的公垂线;(2)求异面直线AC 和BC 1间的距离; C 1 A

高中数学专题——立体几何专题

专题三 立体几何专题 【命题趋向】高考对空间想象能力的考查集中体现在立体几何试题上,着重考查空间 点、线、面的位置关系的判断及空间角等几何量的计算.既有以选择题、填空题形式出现的试题,也有以解答题形式出现的试题.选择题、填空题大多考查概念辨析、位置关系探究、空间几何量的简单计算求解,考查画图、识图、用图的能力;解答题一般以简单几何体为载体,考查直线与直线、直线与平面、平面与平面的位置关系,以及空间几何量的求解问题,综合考查空间想象能力、推理论证能力和运算求解能力.试题在突出对空间想象能力考查的同时,关注对平行、垂直关系的探究,关注对条件或结论不完备情形下的开放性问题的探究. 【考点透析】立体几何主要考点是柱、锥、台、球及其简单组合体的结构特征、三视 图、直观图,表面积体积的计算,空间点、直线、平面的位置关系判断与证明,(理科)空间向量在平行、垂直关系证明中的应用,空间向量在计算空间角中的应用等. 【例题解析】 题型1 空间几何体的三视图以及面积和体积计算 例1(2008高考海南宁夏卷)某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a b +的最大值为 A . 22 B . 32 C . 4 D . 52 分析:想像投影方式,将问题归结到一个具体的空间几何体中解决. 解析:结合长方体的对角线在三个面的投影来理解计算,如图设长方体的高宽高分别为 ,,m n k =1n ?=, a = b =,所以22(1)(1)6a b -+-= 228a b ?+=, 22222()282816a b a ab b ab a b +=++=+≤++=∴4a b ?+≤当且仅当2a b ==时取等号.

最新文科立体几何线面角二面角专题-带答案

文科立体几何线面角二面角专题学校:___________姓名:___________班 级:___________考号:___________ 一、解答题 1中, (1 (2,求 2中, (1)证明: (2)若点 3.(2018年浙江卷)如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.

(Ⅰ)证明:AB1⊥平面A1B1C1; (Ⅱ)求直线AC1与平面ABB1所成的角的正弦值. 4P,G 面ABC (I AB所成角的余弦值; (II (III)求直线. 5是正方形,,, .

(1 (2. 6中,侧棱 的中点. (1 (2 (3. 7.如图,在四边形ABCD中,AB//CD,∠AB D=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF. (Ⅰ)求证:平面ADE⊥平面BDEF; (Ⅱ)若二面角的大小为60°,求CF与平面ABCD所成角的正弦值. 8

(1 (2与平面. 9.在多面体中,底面是梯形,四边形是正方 (1 (2. 10 (1 (2.

参考答案 1.(1)见解析(2 【解析】分析:(1)根据等腰三角形性质得PO垂直AC,再通过计算,根据勾股定理得PO垂直OB,最后根据线面垂直判定定理得结论,(2)根据条件建立空间直角坐标系,设立各点坐标,根据方程组解出平面PAM一个法向量,利用向量数量积求出两个法向量夹角,根据二面角与法向量夹角相等或互补关系列方程,解得M坐标,再利用向量数量积求得向量PC与平面PAM法向量夹角,最后根据线面角与向量夹角互余得结果. 详解:(1)因为 ,所以 知 (2 由已知平法向量

线面角(立体几何)

立体几何 (04年)如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2=AB ,1=AF ,M 是线段EF 的中点。 (Ⅰ)求证AM ∥平面BDE ; (Ⅱ)求证⊥AM 平面BDE ; (Ⅲ)求二面角B DF A --的大小。 (05年)如图,在三棱锥ABC P -中,BC AB ⊥,PA BC AB 2 1 ==,点O 、D 分别是AC 、PC 的中点,⊥OP 底面ABC 。 (Ⅰ)求证OD ∥平面PAB ; (Ⅱ)求直线OD 与平面PBC 所成角的大小。 B C P D A o

(06年)如图,在四棱锥ABCD P -中,底面为直角梯形,AD ∥BC ,?=∠90BAC ,⊥PA 底面ABCD ,且BC AB AD PA 2===,M 、N 分别是PC 、PB 的中点。 (Ⅰ)求证:DM PB ⊥; (Ⅱ)求BD 与平面ADMN 所成的角。 (07年)在如图所示的几何体中,⊥EA 平面ABC ,⊥DB 平面ABC , BC AC ⊥,且 AE BD BC AC 2===,M 是AB 的中点。 (Ⅰ)求证:EM CM ⊥; (Ⅱ)求DE 与平面EMC 所成角的正切值。

(08年)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,?=∠=∠90CEF BCF , 3=AD ,2=EF 。 (Ⅰ)求证:AE ∥平面DCF ; (Ⅱ)当AB 的长为何值时,二面角C EF A --所的大小为?60? (09年)如图,⊥DC 平面ABC ,BE ∥DC ,22====DC EB BC AC ,?=∠120ACB ,P ,Q 分别是AE ,AB 的中点。 (Ⅰ)证明:PQ ∥平面ACD ; (Ⅱ)求AD 与平面ABE 所成角的正弦值。

高中立体几何专题:线面角与线线角

线面角与线线角 1、异面直线所成的角:(1)范围:(0,]2 π θ∈;(2)求法; 2、直线和平面所成的角:(1)定义:(2)范围:[0,90]o o ;(3)求法; 【典型例题】 例1:(1)在正方体1111ABCD A B C D -中,下列几种说法正确的是 ( ) A 、11AC AD ⊥ B 、11D C AB ⊥ C 、1AC 与DC 成45o 角 D 、11AC 与1B C 成60o 角 答案:D 。解析:A 1C 1与AD 成45°,D 1C 1与AB 平行,AC 1与DC 。 (2)在正方体AC 1中,过它的任意两条棱作平面,则能作得与A 1B 成300角的平面的个数为 ( ) A 、2个 B 、4个 C 、6个 D 、8个 答案:B 。解析:平面A 1ACC 1,平面BB 1D 1D ,平面ABC 1D 1,平面A 1D 1CC 1。 (3)正六棱柱ABCDEF -A 1B 1C 1D 1E 1F 1底面边长是1 面对角线E 1D 与BC 1所成的角是 ( ) A .90o B .60o C .45o D .30o 答案:B 。解析将BC 1平移到E 1F 即可。 (4)在空间四边形ABCD 中,AB ⊥CD ,BC ⊥DA ,那么对角线AC 与BD 的位置关系是 。 答案:AC ⊥BD 。解析:过A 作AH ⊥平面BCD ,垂足为H ,因为CD ⊥AB ,BC ⊥AD ,所以CD ⊥BH ,BC ⊥DH ,故H 为△BCD 的垂心,从而BD ⊥CH ,可得BD ⊥AC 。 (5)点AB 到平面α距离距离分别为12,20,若斜线AB 与α成030的角,则AB 的长等于__ ___. 答案:16或64。解析:分A 、B 在平面α的同侧和异侧进行讨论。 例3: 如图, 四棱锥P-ABCD 的底面是AB=2, BC =2的矩形, 侧面PAB 是等边三角形, 且侧面 PAB ⊥底面ABCD. (Ⅰ) 证明:BC ⊥侧面PAB; (Ⅱ) 证明: 侧面PAD ⊥侧面PAB; (Ⅲ) 求侧棱PC 与底面ABCD 所成角的大小; 答案: (Ⅰ)证: ∵侧面PAB ⊥底面ABCD, 且侧面PAB 与底面ABCD 的交线是AB, 在矩形ABCD 中, BC ⊥AB ,.∴BC ⊥侧面PAB. (Ⅱ)证: 在矩形ABCD 中, AD ∥BC, BC ⊥侧面PAB, ∴AD ⊥侧面PAB. 又AD ?平面PAD, ∴侧面PAD ⊥侧面PAB. (Ⅲ)解: 在侧面PAB 内, 过点P 做PE ⊥AB, 垂足为E, 连结EC, ∵侧面PAB 与底面ABCD 的交线是AB, PE ⊥AB, ∴PE ⊥底面ABCD. 于是EC 为PC 在底面ABCD 内的射影. A B C D P

相关文档
最新文档