九年级圆 几何综合专题练习(word版

九年级圆 几何综合专题练习(word版
九年级圆 几何综合专题练习(word版

九年级圆几何综合专题练习(word版

一、初三数学圆易错题压轴题(难)

1.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE.

⑴当t为何值时,线段CD的长为4;

⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围;

⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切?

【答案】(1); (2) 4-<t≤; (3)或.

【解析】

试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值;

(2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切

时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当

OG<时,直线与圆相交,据此即可求得t的范围;

(3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值.

(1)过点C作CF⊥AD于点F,

在Rt△AOB中,OA=4,OB=4,

∴∠ABO=30°,

由题意得:BC=2t,AD=t,

∵CE⊥BO,

∴在Rt△CEB中,CE=t,EB=t,

∵CF⊥AD,AO⊥BO,

∴四边形CFOE是矩形,

∴OF=CE=t,OE=CF=4-t,

在Rt△CFD中,DF2+CF2=CD2,

∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0,

解得:t=,t=4,

∵0<t<4,

∴当t=时,线段CD的长是4;

(2)过点O作OG⊥DE于点G(如图2),

∵AD∥CE,AD=CE=t

∴四边形ADEC是平行四边形,

∴DE∥AB

∴∠GEO=30°,

∴OG=OE=(4-t)

当线段DE与⊙O相切时,则OG=,

∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点;

(3)当⊙C与⊙O外切时,t=;

当⊙C与⊙O内切时,t=;

∴当t=或秒时,两圆相切.

考点:圆的综合题.

2.已知:四边形ABCD内接于⊙O,∠ADC=90°,DE⊥AB,垂足为点E,DE的锯长线交⊙O于点F,DC的延长线与FB的延长线交于点G.

(1)如图1,求证:GD=GF;

(2)如图2,过点B作BH⊥AD,垂足为点M,B交DF于点P,连接OG,若点P在线段OG上,且PB=PH,求∠ADF的大小;

(3)如图3,在(2)的条件下,点M是PH的中点,点K在BC上,连接DK,PC,D交PC点N,连接MN,若AB=122,HM+CN=MN,求DK的长.

【答案】(1)见解析;(2)∠ADF=45°;(3)1810

【解析】

【分析】

(1)利用“同圆中,同弧所对的圆周角相等”可得∠A=∠GFD,由“等角的余角相等”可得∠A=∠GDF,等量代换得∠GDF=∠GFD,根据“三角形中,等角对等边”得GD=GF;(2)连接OD、OF,由△DPH≌△FPB可得:∠GBH=90°,由四边形内角和为360°可得:∠G=90°,即可得:∠ADF=45°;

(3)由等腰直角三角形可得AH=BH=12,DF=AB=12,由四边形ABCD内接于⊙O,可得:∠BCG=45°=∠CBG,GC=GB,可证四边形CDHP是矩形,令CN=m,利用勾股定理可求得m=2,过点N作NS⊥DP于S,连接AF,FK,过点F作FQ⊥AD于点Q,过点F 作FR⊥DK交DK的延长线于点R,通过构造直角三角形,应用解直角三角形方法球得DK.【详解】

解:(1)证明:∵DE⊥AB

∴∠BED=90°

∴∠A+∠ADE=90°

∵∠ADC=90°

∴∠GDF+∠ADE=90°

∴∠A=∠GDF

∵BD BD

∴∠A =∠GFD ∴∠GDF =∠GFD ∴GD =GF (2)连接OD 、OF ∵OD =OF ,GD =GF ∴OG ⊥DF ,PD =PF 在△DPH 和△FPB 中

PD PF DPH FPB PH PB =??

∠=∠??=?

∴△DPH ≌△FPB (SAS ) ∴∠FBP =∠DHP =90° ∴∠GBH =90°

∴∠DGF =360°﹣90°﹣90°﹣90°=90° ∴∠GDF =∠DFG =45° ∴∠ADF =45°

(3)在Rt △ABH 中,∵∠BAH =45°,AB =

∴AH =BH =12 ∴PH =PB =6 ∵∠HDP =∠HPD =45° ∴DH =PH =6

∴AD =12+6=18,PN =HM =1

2

PH =3,PD =

∵∠BFE =∠EBF =45° ∴EF =BE

∵∠DAE =∠ADE =45° ∴DE =AE ∴DF =AB =

∵四边形ABCD 内接于⊙O ∴∠DAB +∠BCD =180° ∴∠BCD =135° ∴∠BCG =45°=∠CBG ∴GC =GB

又∵∠CGP =∠BGP =45°,GP =GP ∴△GCP ≌△GBP (SAS ) ∴∠PCG =∠PBG =90° ∴∠PCD =∠CDH =∠DHP =90° ∴四边形CDHP 是矩形

∴CD =HP =6,PC =DH =6,∠CPH =90° 令CN =m ,则PN =6﹣m ,MN =m +3 在Rt △PMN 中,∵PM 2+PN 2=MN 2 ∴32+(6﹣m )2=(m +3)2,解得m =2 ∴PN =4

过点N 作NS ⊥DP 于S , 在Rt △PSN 中,PS =SN =22 DS =62﹣22=42

SN 221

tan DS 2

42SDN ∠=

== 连接AF ,FK ,过点F 作FQ ⊥AD 于点Q ,过点F 作FR ⊥DK 交DK 的延长线于点R 在Rt △DFQ 中,FQ =DQ =12 ∴AQ =18﹣12=6 ∴tan 12

26

FQ FAQ AQ ∠=

== ∵四边形AFKD 内接于⊙O , ∴∠DAF +∠DKF =180° ∴∠DAF =180°﹣∠DKF =∠FKR 在Rt △DFR 中,∵DF =1122,tan 2

FDR ∠=

∴12102410

,55

FR DR =

=

在Rt △FKR 中,∵FR =

1210

tan ∠FKR =2 ∴KR =

610

∴DK =DR ﹣KR =24106101810

=

-=

【点睛】

本题是一道有关圆的几何综合题,难度较大,主要考查了圆内接四边形的性质,圆周角定理,全等三角形性质及判定,等腰直角三角形性质,解直角三角形等知识点;解题关键是

添加辅助线构造直角三角形.

3.已知:在△ABC中,AB=6,BC=8,AC=10,O为AB边上的一点,以O为圆心,OA长为半径作圆交AC于D点,过D作⊙O的切线交BC于E.

(1)若O为AB的中点(如图1),则ED与EC的大小关系为:ED EC(填“”“”或“”)(2)若OA<3时(如图2),(1)中的关系是否还成立?为什么?

(3)当⊙O过BC中点时(如图3),求CE长.

【答案】(1)ED=EC;(2)成立;(3)3

【解析】

试题分析:(1)连接OD,根据切线的性质可得∠ODE=90°,则∠CDE+∠ADO=90°,由

AB=6,BC=8,AC=10根据勾股定理的逆定理可证得∠ABC=90°,则∠A+∠C=90°,根据圆的基本性质可得∠A=∠ADO,即可得到∠CDE=∠C,从而证得结论;

(2)证法同(1);

(3)根据直角三角形的性质结合圆的基本性质求解即可.

(1)连接OD

∵DE为⊙O的切线

∴∠ODE=90°

∴∠CDE+∠ADO=90°

∵AB=6,BC=8,AC=10

∴∠ABC=90°

∴∠A+∠C=90°

∵AO=DO

∴∠A=∠ADO

∴∠CDE=∠C

∴ED=EC;

(2)连接OD

∵DE为⊙O的切线

∴∠ODE=90°

∴∠CDE+∠ADO=90°

∵AB=6,BC=8,AC=10

∴∠ABC=90°

∴∠A+∠C=90°

∵AO=DO

∴∠A=∠ADO

∴∠CDE=∠C

∴ED=EC;

(3)CE=3.

考点:圆的综合题

点评:此类问题综合性强,难度较大,在中考中比较常见,一般作为压轴题,题目比较典型.

4.如图,在△ABC中,∠C=90°,∠CAB=30°,AB=10,点D在线段AB上,AD=2.点P,Q 以相同的速度从D点同时出发,点P沿DB方向运动,点Q沿DA方向到点A后立刻以原速返回向点B运动.以PQ为直径构造⊙O,过点P作⊙O的切线交折线AC﹣CB于点E,将线段EP绕点E顺时针旋转60°得到EF,过F作FG⊥EP于G,当P运动到点B时,Q也停止运动,设DP=m.

(1)当2<m≤8时,AP=,AQ=.(用m的代数式表示)

(2)当线段FG长度达到最大时,求m的值;

(3)在点P,Q整个运动过程中,

①当m为何值时,⊙O与△ABC的一边相切?

②直接写出点F所经过的路径长是.(结果保留根号)

【答案】(1)2+m ,m ﹣2;(2)m=5.5;(3)①当m=1或4或10﹣4

33

时,⊙O 与△ABC 的边相切.②点F 的运动路径的长为1136+5

72

. 【解析】

试题分析:(1)根据题意可得AP =2+m ,AQ =m ?2.

(2)如图1中在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=, 推出3

cos30cos30FG EF PE EP =?=?=,所以当点E 与点C 重合时,PE 的值最大,求出此时EP 的长即可解决问题.

(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设O 切AC 于H ,连接OH .

当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )?(m ?2)=4,如图3中,设

O 切AC 于H .连接

OH .如图4中,设O 切BC 于N ,连接ON .

分别求解即可.

②如图5中,点F 的运动轨迹是F 1→F 2→B .分别求出122F F F B ,即可解决问题. 试题解析:(1)当28m <≤时,AP =2+m ,AQ =m ?2. 故答案为2+m ,m ?2. (2)如图1中,

在Rt △EFG 中, 30,90EFG A EGF ∠=∠=∠=,

3

cos30cos30FG EF PE EP ∴=?=?=

, ∴当点E 与点C 重合时,PE 的值最大, 易知此时53553

AC BC EP AB ??=

==

3tan30(2)3

EP AP m =?=+?

, 533

(2)m ∴

=+?,

∴m =5.5

(3)①当02t <≤ (Q 在往A 运动)时,如图2中,设

O 切AC 于H ,连接OH .

则有AD =2DH =2, ∴DH =DQ =1,即m =1.

当28m <≤(Q 从A 向B 运动)时,则PQ =(2+m )?(m ?2)=4, 如图3中,设

O 切AC 于H .连接OH .

则AO =2OH =4,AP =4+2=6, ∴2+m =6, ∴m =4. 如图4中,设

O 切BC 于N ,连接ON .

在Rt △OBN 中, 43

sin603

OB ON ==

, 43

10AO ∴=-

, 43

123AP ∴=-

, 43

2123

m ∴+=-, 43

10m ∴=-

, 综上所述,当m =1或4或43

10-

时,O 与△ABC 的边相切。 ②如图5中,点F 的运动轨迹是F 1→F 2→B .

易知122353

53AF CF AC =

==,

122353113

53F F ∴== 60,30FEP PEB ∠=∠=,

90FEB ∴∠=,

tan EF EP EBF EB EB

∴∠=

=为定值, ∴点F 的第二段的轨迹是线段2BF , 在2Rt BF C 中, 222222535

5(

722

BF BC F C =+=+=,

∴点F 115

37.62

5.如图,已知抛物线y=ax 2+bx+c (a >0,c <0)交x 轴于点A ,B ,交y 轴于点C ,设过点

A,B,C三点的圆与y轴的另一个交点为D.

(1)如图1,已知点A,B,C的坐标分别为(-2,0),(8,0),(0,-4);

①求此抛物线的函数解析式;

②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;

(2)如图2,若a=1,c=-4,求证:无论b取何值,点D的坐标均不改变.

【答案】(1)①y=x2-x-4;②△BDM的面积有最大值为36;(2)证明见解析.

【解析】

试题分析:(1)①只需运用待定系数法就可解决问题;②过点M作ME∥y轴,交BD于点E,连接BC,如图1.根据勾股定理的逆定理可得∠ACB=90°,从而可得AB为直径,根据垂径定理可得OD=OC,即可得到D(0,4),然后运用待定系数法可求得直线BD的解

析式为y=-x+4,设M(x,x2-x-4),则E(x,-x+4),从而得到ME=-x2+x+8,运用割补法可得S△BDM=S△DEM+S△BEM=-(x-2)2+36,然后根据二次函数的最值性就可求出△BDM 的面积的最大值;

(2)连接AD、BC,如图2.若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,可得C(0,-4),OC=4.设点A(x1,0),B(x2,0),则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,根据根与系数的关系可得OA?OB=4.由A、D、B、C四点共圆可得

∠ADC=∠ABC,∠DAB=∠DCB,从而可得△ADO∽∽△CBO,根据相似三角形的性质可得OC?OD=OA?OB=4,从而可得OD=1,即可得到D(0,1),因而无论b取何值,点D的坐标均不改变.

试题解析:(1)①∵抛物线y=ax2+bx+c过点A(-2,0),B(8,0),C(0,-4),∴,

解得.

∴抛物线的解析式为y=x2-x-4;

②过点M作ME∥y轴,交BD于点E,连接BC,如图1.

∵A(-2,0),B(8,0),C(0,-4),∴OA=2,OB=8,OC=4,

∴AB=10,AC=2,BC=4,

∴AB2=AC2+BC2,

∴∠ACB=90°,

∴AB为直径.

∵CD⊥AB,

∴OD=OC,

∴D(0,4).

设直线BD的解析式为y=mx+n.

∵B(8,0),D(0,4),

∴,

解得,

∴直线BD的解析式为y=-x+4.

设M(x,x2-x-4),则E(x,-x+4),∴ME=(-x+4)-(x2-x-4)=-x2+x+8,

∴S△BDM=S△DEM+S△BEM

=ME(x E-x D)+ME(x B-x E)=ME(x B-x D)

=(-x2+x+8)×8=-x2+4x+32=-(x-2)2+36.∵0<x<8,

∴当x=2时,△BDM的面积有最大值为36;(2)连接AD、BC,如图2.

若a=1,c=-4,则抛物线的解析式为y=x2+bx-4,

则C(0,-4),OC=4.

设点A(x1,0),B(x2,0),

则OA=-x1,OB=x2,且x1、x2是方程x2+bx-4=0的两根,

∴OA?OB=-x1?x2=-(-4)=4.

∵A、D、B、C四点共圆,

∴∠ADC=∠ABC,∠DAB=∠DCB,

∴△ADO∽△CBO,

∴,

∴OC?OD=OA?OB=4,

∴4OD=4,

∴OD=1,

∴D(0,1),

∴无论b取何值,点D的坐标均不改变.

考点:圆的综合题

6.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线交BC于点D,以D为圆心,D长为半径作作⊙D.

⑴求证:AC是⊙D的切线.

⑵设AC与⊙D切于点E,DB=1,连接DE,BF,EF.

①当∠BAD= 时,四边形BDEF为菱形;

②当AB= 时,△CDE为等腰三角形.

【答案】(1)见解析;(2)①30°,②2+1

【解析】

【分析】

(1) 作DE⊥AC于M,由∠ABC=90°,进一步说明DM=DB,即DB是⊙D的半径,即可完成证明;

(2)①先说明△BDF是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x,则AE=x,分别表示出AC、BC、AB的长,然后再运用勾股定理解答即可.

【详解】

⑴证明:如图:作DE⊥AC于M,

∵∠ABC=90°,∠BAC的平分线交BC于点D,

∴DE=DB.

∴DM是⊙D的半径,

∴AC是⊙D的切线;

⑵①如图:

∵四边形BDEF 为菱形; ∴△BDF 是等边三角形 ∴∠ADB=60° ∴∠BAD=90°-60°=30°

∴当∠BAD=30°时,四边形BDEF 为菱形; ②∵△CDE 为等腰三角形. ∴DE=CE=BD=1, ∴DC=2 设AB=x ,则AE=x

∴在Rt △ABC 中,AB=x ,AC=1+x ,BC=1+2 ∴()2

22(12)1x x ++=+ ,解得x=2+1

∴当AB=2+1时,△CDE 为等腰三角形. 【点睛】

本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.

7.如图,PA ,PB 分别与O 相切于点A 和点B ,点C 为弧AB 上一点,连接PC 并延

长交

O 于点F ,D 为弧AF 上的一点,连接BD 交FC 于点E ,连接AD ,且

2180APB PEB ∠+∠=?.

(1)如图1,求证://PF AD ;

(2)如图2,连接AE ,若90APB ∠=?,求证:PE 平分AEB ∠; (3)如图3,在(2)的条件下,连接AB 交PE 于点H ,连接OE ,8AD =,

4

sin 5

ABD ∠=

,求PH 的长. 【答案】(1)见解析;(2)见解析;(3)257

【解析】 【分析】

(1)连接OA 、OB ,由切线的性质可得90OAP OBP ∠=∠=?,由四边形内角和是

360?,得180∠+∠=?P AOB ,由同弧所对的圆心角是圆周角的一半,得到

2AOB ADB ∠=∠,等量代换得到ADB PEB ∠=∠,由同位角相等两直线平行,得到//PF AD ;

(2)过点P 做PK PF ⊥交EB 延长线于点K ,由90APB ∠=?得290PEB ∠=?,从而45PEB ∠=?,由切线的性质,得PA PB =,由PK PE ⊥,45PEK ∠=?,得PE PK =,从而90APE EPB ?∠=-∠,进而APE BPK ∠=∠,即可证得

APE BPK ??≌由此45K AEP ∠=∠=?,得到AEP PEB ∠=∠,即可证得PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM ,由

45ADE ∠=?,90AED ∠=?,可得DE AE =,由OA 、OD 为半径,可得OA OD =,即可证出DEO AEO ??≌,由直径所对的圆周角是直角,可得90ADM ∠=?,在

Rt ADM ?中,由正弦定义可得10AM =,由此5OA OB ==,由OAPB 为正方形,对

角线AB 垂直平分OP ,从而,OH PH =.在Rt OAP ?中,252OP OA =

=.延长EO

交AD 于K ,在Rt OEP ?中,由勾股定理得7PE =,在Rt OEH ?中,由勾股定理得

257

PH =

. 【详解】 (1)连接OA 、OB

∵PA 、PB 与圆O 相切于点A 、B ,且OA 、OB 为半径, ∴OA AP ⊥,OB BP ⊥, ∴90OAP OBP ∠=∠=?,

∴在四边形AOBP 中,360180180P AOB ∠+∠=?-?=?, ∵AB AB =, ∴2AOB ADB ∠=∠, ∴2180P ADB ∠+∠=?, ∵2180P PEB ∠+∠=?,

∴ADB PEB ∠=∠, ∴//PF AD

(2)过点P 做PK PF ⊥交EB 延长线于点K

∵90APB ∠=?,

∴21809090PEB ∠=?-?=?, ∴45PEB ∠=?,

∵PA 、PB 为圆O 的切线, ∴PA PB =,

∵PK PE ⊥,45PEK ∠=?, ∴PE PK = ,

∵9090APE EPB KPB EPB ??∠=-∠=∠=-∠, ∴APE BPK ∠=∠, ∴APE BPK ??≌, ∴45K AEP ∠=∠=?, ∴AEP PEB ∠=∠, ∴PE 平分AEB ∠;

(3)连接AO 并延长交圆O 于点M ,连接OB 、OH 、OP 、OD 、DM

∵45ADE ∠=?,90AED ∠=?, ∴DE AE =, ∵OA 、OD 为半径, ∴OA OD =, ∵OE OE =, ∴DEO AEO ??≌, ∴1

452

AEO OED AED ∠=∠=∠=?, ∴90OEP ∠=?,

∵AM 为圆O 的直径, ∴90ADM ∠=?, ∵弧AD =弧AD , ∴ABD AMD ∠=∠,

在Rt ADM ?中,8AD =,4

sin 5

AMD ∠=,则10AM =, ∴5OA OB ==,

由题易证四边形OAPB 为正方形, ∴对角线AB 垂直平分OP ,AB OP =, ∵H 在AB 上, ∴OH PH =,

在Rt OAP ?中,OP ==

延长EO 交AD 于K ,

∵DE AE =,可证OK AD ⊥,DOK ABD ∠=∠, ∴4DK KE ==,3OK =,1OE =

∴在Rt OEP ?中,7PE == 在Rt OEH ?中,222OH OE EH =+ ∵OH PH =,7EH PE HP PH =-=- ∴()2

2217PH PH =+-

∴257

PH =

. 【点睛】

本题考查了圆的综合题,圆的性质,等腰三角形的性质,相交弦定理,正弦定理,勾股定理,灵活运用这些性质定理解决问题是本题的关键.

8.如图.在Rt ABC 中,90ACB ∠=?,6AC =,10AB =,DE 是ABC 的中位线,连结BD ,点F 是边BC 上的一个动点,连结AF 交BD 于H ,交DE 于G . (1)当点F 是BC 的中点时,求

DH

BH

的值及GH 的长 (2) 当四边形DCFH 与四边形BEGH 的面积相等时,求CF 的长: (3)如图2.以CF 为直径作O .

①当O 正好经过点H 时,求证:BD 是O 的切线:

②当

DH

BH

的值满足什么条件时,O 与线段DE 有且只有一个交点.

【答案】(1)12DH BH =,13

GH =;(2)83CF =;(3)①见解析;②当32DH BH =或

2514DH BH >时,O 与线段DE 有且只有一个交点. 【解析】 【分析】

(1)根据题意得H 为ABC 的重心,即可得

DH

BH

的值,由重心和中位线的性质求得1

6

=

GH AF ,由勾股定理求得AF 的长,即可得GH 的长; (2)根据图中面积的关系得S 四边形DCFG =DEB

S ,列出关系式求解即可得CF 的长;

(3)根据O 与线段DE 有且只有一个交点,可分两类情况讨论:当O 与DE 相切

时,求得DH

BH

的值;当O 过点E ,此时是O 与线段DE 有两个交点的临界点,即可得出

O 与线段DE 有且只有一个交点时

DH

BH

满足的条件. 【详解】

解:(1)∵DE 是ABC 的中位线, ∴,D E 分别是,AC AB 的中点,//DE BC , 又∵点F 是BC 的中点,

∴BD 与AF 的交点H 是ABC 的重心,

:1:2DH BH ∴=,即

1

2

DH BH =;:1:2=HF AH , ∴1

3

=

HF AF , 在ACF 中,D 为AC 中点,//DE BC ,则//DG CF ,

∴DG 为ACF 的中位线,G 为AF 的中点,

1

2

∴=

GF AF ,

111

236

∴=-=

-=GH GF HF AF AF AF , 在Rt ABC 中,90ACB ∠=?,6AC =,10AB =,

22221068BC AB AC ∴=-=-=,

则1

42

=

=CF BC , 222264213AF AC CF ∴=+=+=,

113

21363

∴=?=

GH ; (2)∵四边形DCFH 与四边形BEGH 的面积相等, ∴S 四边形DCFH +DGH S =S 四边形BEGH +DGH

S

即S 梯形DCFG =DEB

S

∵6AC =,8BC =,DE 是ABC 的中位线, ∴3CD =,4DE =,

∵1143622

=

??=??=DEB

S

DE CD , 设2CF a =,∵DG 为ACF 的中位线,

∴1

2

=

=DG CF a , 则S 梯形DCFG ()3

(2)622

+?==+=DG CF CD a a ,

解得:43a =

, 8

23

∴==CF a ;

(3)①证明:如图2,连结、CH OH ,

CF 为O 的直径,O 经过点H ,

90∴∠=?FHC ,

几何练习题精选

几何练习题精选 题型一、相似三角形的判定与性质 1、 如图1、在ABC ?中, 90=∠BAC ,BC 边的垂直平分线EM 与AB 及CA 的延长线分别交于D 、E ,连接AM , 求证:EM DM AM ?=2 2、 如图2,已知梯形ABCD 为圆内接四边形,AD//BC ,过C 作该圆的切线,交AD 的延长线于E ,求证:ABC ?相似于EDC ? 3、 如图3,D B ∠=∠,AE ⊥BC , 90=∠ACD ,且AB=6,AC=4,AD=12,求BE 的长。

4、 如图4,O Θ和O 'Θ相交于A ,B 两点,过A 作两圆的切线分别交两圆于C 、D 两点, 连接DB 并延长交O Θ于点E ,证明:(1)AB AD BD AC ?=?;(2)AC=AE 题型二、截割定理与射影定理的应用 1、 如图5,已知E 是正方形ABCD 的边AB 延长线上一点,DE 交CB 于M ,MN//AE 于 N ,求证:MN=MB 2、 如图6,在ABC Rt ?中, 90=∠BAC ,AD 是斜边BC 上的高,若AB :AC=2:1, 求AD :BC 的值。

3、 如图7,AB 是半圆O 的直径,C 是半圆上异于A 、B 的点,CD ⊥AB ,垂足为D ,已 知AD=2,CB=34,求CD 的长。 4、 如图8,在ABC ?中,DE//BC ,EF//CD ,若BC=3,DE=2,DF=1,求AB 的长。 题型三、圆内接四边形的判定与性质 1、 如图9、AB ,CD 都是圆的弦,且AB//CD ,F 为圆上一点,延长FD ,AB 相交于点E , 求证:BD=AC ;(2)DE AF AC AE ?=?

初三数学几何证明题(经典)

如图;已知:在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O 交AB于点D,过点D作⊙O 的切线DE交BC于点E. 求证:BE=CE 证明:连接CD ∵AC是直径 ∴∠ADC=90° ∵∠ACB=90°,ED是切线 ∴CE=DE ∴∠ECD=∠EDC ∵∠ECD+∠B=90°,∠EDC+∠BDE=90° ∴∠B=∠BDE ∴BE=DE ∴BE=CE 如图,半圆O的直径DE=10cm,△ABC中,∠ABC=90°,∠BCA=30°,BC=10cm,半圆O 以2cm/s的速度从左向右运动,在运动过程中,D、E始终在直线BC上,设运动时间为t(s),当t=0(s)时,半圆O在△ABC的左侧且OB=9cm。(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; (2)当△ABC一边所在直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积。 (1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切; 相切分两种情况,如图, ①左图:当t=0时,原图中OB=9,此时圆移动了OB-OE=9-5=4cm 则:t=4/2=2s; --------------- ②右图:设圆O与边AC的切点为F,此问不用三角函数是无法求出的==>∵∠C=30==>∴OC=OF/sinC=5/sin30=10=BC ==>O与B重合,此时圆移动的长即为OB的长,即9cm ==>t=9/2; =========

(2)如右图:由②得:∠AOE=90 ==>S阴=(90*π*5^2)/360=6.25π 不明之处请指出~~

人教版九年级数学上册圆知识点归纳及练习含答案完整版

人教版九年级数学上册圆知识点归纳及练习含 答案 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

圆 24.1.1圆 知识点一圆的定义 圆的定义:第一种:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫作圆。固定的端点O叫作圆心,线段OA叫作半径。第二种:圆心为O,半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合。 比较圆的两种定义可知:第一种定义是圆的形成进行描述的,第二种是运用集合的观点下的定义,但是都说明确定了定点与定长,也就确定了圆。 知识点二圆的相关概念 (1)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫作直径。 (2)弧:圆上任意两点间的部分叫做圆弧,简称弧。圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆。 (3)等圆:等够重合的两个圆叫做等圆。 (4)等弧:在同圆或等圆中,能够互相重合的弧叫做等弧。 弦是线段,弧是曲线,判断等弧首要的条件是在同圆或等圆中,只有在同圆或等圆中完全重合的弧才是等弧,而不是长度相等的弧。 24.1.2垂直于弦的直径 知识点一圆的对称性 圆是轴对称图形,任何一条直径所在直线都是它的对称轴。 知识点二垂径定理 (1)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧。如图所示,直径为CD,AB是弦,且CD⊥AB, A B AM=BM 垂足为M AC=BC AD=BD D 垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧 如上图所示,直径CD与非直径弦AB相交于点M, CD⊥ABAM=BMAC=BC AD=BD 注意:因为圆的两条直径必须互相平分,所以垂径定理的推论中,被平分的弦必须不是直径,否则结论不成立。 24.1.3弧、弦、圆心角 知识点弦、弧、圆心角的关系(1)弦、弧、圆心角之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。 (2)在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余的各组量也相等。 (3)注意不能忽略同圆或等圆这个前提条件,如果丢掉这个条件,即使圆心角相等,所对的弧、弦也不一定相等,比如两个同心圆中,两个圆心角相同,但此时弧、弦不一定相等。

人教版九年级数学圆和正多边形专题

圆和正多边形 教学目标:了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形。 教学重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、?边长之间的关系。 教学难点:理解四者:正多边形半径、中心角、?弦心距、边长之间的关系. 正多边形是轴对称图形,正n 边形有n 条对称轴;?正2n 边形是中心对称图形,其对称中心是正多边形对角线交点。 知识结构及知识点: 1、正多边形:各边相等,各角也相等的多边形是正多边形。 2、正多边形的外接圆:一个正多边形的各个顶点都在圆上,我们就说这个圆是这个正多边形的外接圆。把一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做这个正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距。 正n 边形每一个内角的度数为:(n-2)*180°/n 正n 边形的一个中心角的度数为:360°/n 正多边形的中心角与外角的大小相等。 3、圆内接四边形的性质:圆内接四边形的对角和相等,都是180°。 4、圆内接正n 边形的性质(n ≥3,且为自然数): (1) 当n 为奇数时,圆内接正n 边形是轴对称图形,有n 条对称轴;但不是中心对称图形。 (2) 当n 为偶数时,圆内接正n 边形即是轴对称图形又是中心对称图形,对称中心是正多边形的中心,即外接圆的圆心。 5、常见圆内接正多边形半径与边心距的关系:(设圆内接正多边形的半径为r ,边心距为d) (1)圆内接正三角形:d=12 r (2)圆内接正四边形:d=22 r (3)圆内接正六边形:2 r 6、常见圆内接正多边形半径r 与边长x 的关系: (1)圆内接正三角形:(2)圆内接正四边形:x= 22r (3)圆内接正六边形:x=r 7、正多边形的画法:画正多边形一般与等分圆正多边形周有关,要做半径为R 的正n 边形,只要把半径为R 的圆n 等分,然后顺次连接各点即可。 (1)用量角器等分圆周。 (2)用尺规等分圆(适用于特殊的正n 边形)。 8、定理1:把圆分成n(n≥3)等份: (1)依次连结各分点所得的多边形是这个圆的内接正n 边形;

立体几何专题训练(附答案)

立体几何 G5 空间中的垂直关系 18.、[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. (1)证明:CF⊥平面ADF; (2)求二面角D- AF- E的余弦值. 图1-4 19.、[2014·湖南卷] 如图1-6所示,四棱柱ABCD-A1B1C1D1的所有棱长都相等,AC∩BD =O,A1C1∩B1D1=O1,四边形ACC1A1和四边形BDD1B1均为矩形. (1)证明:O1O⊥底面ABCD; (2)若∠CBA=60°,求二面角C1-OB1-D的余弦值. 19.解:(1)如图(a),因为四边形ACC1A1为矩形,所以CC1⊥AC.同理DD1⊥BD. 因为CC1∥DD1,所以CC1⊥BD.而AC∩BD=O,因此CC1⊥底面ABCD. 由题设知,O1O∥C1C.故O1O⊥底面ABCD. (2)方法一:如图(a),过O1作O1H⊥OB1于H,连接HC1. 由(1)知,O1O⊥底面ABCD O1O⊥A1C1. 又因为四棱柱ABCD-A1B1C1D1的所有棱长都相等,所以四边形A1B1C1D1是菱形, 因此A1C1⊥B1D1,从而A1C1⊥平面BDD1B1,所以A1C1⊥OB1,于是OB1⊥平面O1HC1. 进而OB1⊥C1H.故∠C1HO1是二面角C1-OB1-D的平面角.

不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,OB 1=7. 在Rt △OO 1B 1中,易知O 1H =OO 1·O 1B 1OB 1=237.而O 1C 1=1,于是C 1H =O 1C 21+O 1H 2 = 1+12 7 = 197 . 故cos ∠C 1HO 1=O 1H C 1H = 23 7197 =25719. 即二面角C 1-OB 1-D 的余弦值为257 19 . 方法二:因为四棱柱ABCD -A 1B 1C 1D 1的所有棱长都相等,所以四边形ABCD 是菱形,因此AC ⊥BD .又O 1O ⊥底面ABCD ,从而OB ,OC ,OO 1两两垂直. 如图(b),以O 为坐标原点,OB ,OC ,OO 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系O -xyz ,不妨设AB =2.因为∠CBA =60°,所以OB =3,OC =1,于是相关各点的坐标为O (0,0,0), B 1(3,0,2), C 1(0,1,2). 易知,n 1=(0,1,0)是平面BDD 1B 1的一个法向量. 设n 2=(x ,y ,z )是平面OB 1C 1的一个法向量,则?????n 2·OB →1=0,n 2·OC →1=0,即???3x +2z =0, y +2z =0. 取z =-3,则x =2,y =23,所以n 2=(2,23,-3). 设二面角C 1-OB 1-D 的大小为θ,易知θ是锐角,于是 cos θ=|cos 〈,〉|=??????n 1·n 2|n 1|·|n 2|=2319=25719. 故二面角C 1-OB 1-D 的余弦值为25719 . 19. 、、[2014·江西卷] 如图1-6,四棱锥P - ABCD 中,ABCD 为矩形,平面PAD ⊥平面ABCD . 图1-6 (1)求证:AB ⊥PD .

九年级圆的几何证明题

九年级圆强化训练 1.两条平行弦所夹的弧相等;两条相交弦被交点分成的线段成比例。 2.弦切角等于弦和切线所加的弧所对的圆周角。 如图直线AB 与⊙O 相切于点C ,其中 弦切角有 ,其中 = ; = 。 3.两圆的连心线垂直且平分两圆的公共弦。两圆的外(内)公切线相等。如图:已知⊙O 1 和⊙O 2相交于点A 、B ,直线MN 和直线PQ 是⊙O 1和⊙O 2的公切线,则 ⊥ 且 即 = ; = 。 1.(2006,益阳)如图所示,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB ,垂足为 D ,O E ⊥AC ,垂足为E ,若DE=3,则BC=________. 2.(2007,贵州贵阳)如图所示,A ,B ,C 是⊙O 上三点,∠ACB=40°,则∠ABO=________. 3.已知:如图,PAB 交圆于A 、B ,PCD 交圆于C 、D ,弧BD 的度数为100°,弧AC 的度数为为40°,求∠P 的度数. A

4.已知:如图, ⊙O,AB、CD为直径,弦BE∥CD,求证:AC =CE 5.已知:如图,⊙O中,半径OC⊥直径AB,弦BE过OC中点D,若⊙O半径为4cm,求BE的长. 6.已知:如图,AB是⊙O直径,AC是⊙O的弦,D是弧AC中点,DE⊥AB于E,交AC于F,DB交AC于G,求证:AF=FG

7.已知:如图,AB是⊙O直径,AC是⊙O的弦,∠DAC=∠BAC,CD切⊙O于C,求证∠D=90°. 8.已知:如图,PA切⊙O于A,PBC为⊙O割线,∠APC的平分线交AB于D,交AC于 E.求证AE=AD. 9.已知:如图, △ABC为⊙O的内接三角形,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,延长AD交⊙O于F,求证:DF=DH. 10. 已知:如图,两同心圆O中,大圆的弦AB、AC切小圆于D、E,过A点作⊙O的切线FG。 求证:FG∥BC.

人教版九年级上册《圆的证明与计算》专题讲解

《圆的证明与计算》专题讲解 圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。 圆的有关证明 一、圆中的重要定理: (1)圆的定义:主要是用来证明四点共圆. (2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等. (3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等. (4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等. (5)切线的性质定理:主要是用来证明——垂直关系. (6)切线的判定定理: 主要是用来证明直线是圆的切线. (7)切线长定理: 线段相等、垂直关系、角相等. 2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到. 二、考题形式分析: 主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。 知识点一:判定切线的方法: (1)若切点明确,则“连半径,证垂直”。 常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直; (2)若切点不明确,则“作垂直,证半径”。 常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线; 总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:

方法一:若直线l过⊙O上某一点A,证明l是⊙O的切线,只需连OA,证明OA⊥l 就行了,简称“连半径,证垂直”,难点在于如何证明两线垂直. 例1如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于D,交AC于E,B 为切点的切线交OD延长线于F. 求证:EF与⊙O相切. 例2 如图,AD是∠BAC的平分线,P为BC延长线上一点,且PA=PD. 求证:PA与⊙O相切. 证明一:作直径AE,连结EC. ∵AD是∠BAC的平分线, ∴∠DAB=∠DAC. ∵PA=PD, ∴∠2=∠1+∠DAC. ∵∠2=∠B+∠DAB, ∴∠1=∠B. 又∵∠B=∠E,

初二几何专题训练整理

初中几何综合测试题 一.填空题 1.一个三角形的两条边长分别为9和2,第三边长为奇数,则第三边长为_______. 2.△ABC三边长分别为3、4、5,与其相似的△A′B′C′的最大边长是 10,则△A′B′C′的面积是_________. 4.点O是平行四边形ABCD对角线的交点,若平行四边行ABCD的面 积为8cm,则△AOB的面积为________. 5.直角三角形两直角边的长分别为5cm和12cm,则斜边上的中线长为 . 6.梯形上底长为2,中位线长为5,则梯形的下底长为________. 7.如图,分别延长四边形ABCD两组对边交于E、F,若DF=2DA, 8.在Rt△ABC中,AD是斜边BC上的高,如果BC=a,∠B=30°, 那么AD等于_________. 二.选择题 1.一个角的余角和它的补角互为补角,则这个角是 [ ] A.30° B.45° C.60° D.75° 2.依次连结等腰梯形的各边中点所得的四边形是 [ ] A.矩形 B.正方形 C.菱形 D.梯形 3.如图,DF∥EG∥BC,AD=DE=EB,△ABC被分成三部分的 面积之比为 [ ]

A.1∶2∶3 B.1∶1∶1 C.1∶4∶9 D.1∶3∶5 4.已知:AB∥CD,EF∥CD,且∠ABC=20°,∠CFE=30°, 则∠BCF的度数是 [ ] A.160° B.150° C.70° D.50° 5.如图OA=OB,点C在OA上,点D在OB上,OC=OD,AD和 BC相交于E,图中全等三角形共有 [ ] A.2对 B.3对 C.4对 D.5对 6.既是轴对称,又是中心对称的图形是 [ ] A.等腰三角形 B.等腰梯形 C.平行四边形 D.线段 三.解答题

九年级圆 几何综合单元测试题(Word版 含解析)

九年级圆 几何综合单元测试题(Word 版 含解析) 一、初三数学 圆易错题压轴题(难) 1.已知:如图,梯形ABCD 中,AD//BC ,AD 2=,AB BC CD 6===,动点P 在 射线BA 上,以BP 为半径的 P 交边BC 于点E (点E 与点C 不重合),联结PE 、 PC ,设x BP =,PC y =. (1)求证:PE //DC ; (2)求y 关于x 的函数解析式,并写出定义域; (3)联结PD ,当PDC B ∠=∠时,以D 为圆心半径为R 的D 与P 相交,求R 的取 值范围. 【答案】(1)证明见解析;(2)2436(09)y x x x =-+<<;(3)3605 R << 【解析】 【分析】 ()1根据梯形的性质得到B DCB ∠=∠,根据等腰三角形的性质得到B PEB ∠∠=,根据 平行线的判定定理即可得到结论; ()2分别过P 、A 、D 作BC 的垂线,垂足分别为点H 、F 、.G 推出四边形ADGF 是矩形, //PH AF ,求得2BF FG GC ===,根据勾股定理得到 22226242AF AB BF =-=-=,根据平行线分线段成比例定理得到 223PH x = ,13BH x =,求得1 63 CH x =-,根据勾股定理即可得到结论; ()3作//EM PD 交DC 于.M 推出四边形PDME 是平行四边形.得到PE DM x ==,即 6MC x =-,根据相似三角形的性质得到1218 655 PD EC ==-=,根据相切两圆的性质即可得到结论. 【详解】 () 1证明:梯形ABCD ,AB CD =, B DCB ∠∠∴=, PB PE =, B PEB ∠∠∴=, DCB PEB ∠∠∴=,

人教版九年级中考复习圆的专题教程文件

人教版九年级中考复习圆的专题

1.(十校联考二)如图,AH是⊙O的直径,矩形ABCD交⊙O于点E,连接AE,将矩形ABCD沿AE折叠,点B落在CD边上的点F处,画直线EF. (1)求证:直线EF是⊙O的切线。 (2)若CD=10,EB=5,求⊙O的直径。 2.(重组卷四)如图,已知△ABC内接于⊙O,AC是⊙O的直径,D是⌒AB的中点,过点D作直线BC的垂线,分别交CB、CA的延长线于E、F. (1)求证:EF是⊙O的切线; (2)若EF=8,EC=6,求⊙O的半径.

3(重组卷五).如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE. (1)判断直线DE与⊙O的位置关系,并说明理 由; (2)若AC=6,BC=8,OA=2,求线段DE的长. 4.(2017江西中考)如图①,⊙O的直径AB=12,P是弦BC上一动点(与点B,C 不重合),∠ABC=30°,过点P作PD⊥OP交O于点D. (1)如图②,当PD∥AB时,求PD的长; (2)如图③,当弧DC=弧AC时,延长AB至点E,使BE=12AB,连接DE. ①求证:DE是⊙O的切线; ②求PC的长.

5.(2016江西中考).如图,AB是⊙O的直径,点P是弦AC上一动点(不与点A,C重合),过点P作PE⊥AB,垂足为点E,射线EP交弧AC于点F,交过点C的切线于点D. (1)求证:DC=DP; (2)若∠CAB=30°,当点F是弧AC的中点时,判断 以点A,O,C,F为顶点的四边形是什么特殊四边形? 说明理由. 6.(2014江西中考)如图1,AB是⊙O的直径,点C在AB的延长线上,AB=4,BC=2,P是⊙O上半部分的一个动点,连接OP,CP. (1)求△OPC的最大面积; (2)求∠OCP的最大度数; (3)如图2,延长PO交⊙O于点D,连接DB,当CP=DB时,求证:CP是⊙O的切线。

小学奥数几何专题训练附答案

学习奥数的重要性 1. 学习奥数是一种很好的思维训练。奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。 2. 学习奥数能提高逻辑思维能力。奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助 3. 为中学学好数理化打下基础。等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。 4. 学习奥数对孩子的意志品质是一种锻炼。大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。 六年级几何专题复习 如图,已知AB =40cm,图中的曲线是由半径不同的三种半圆弧平滑连接 而成,那么阴影部分的面积是_____cm2。(π取3.14)(几何) 有7根直径都是5分米的圆柱形木头,现用绳子分别在两处把它们捆在一起,则至少需要绳子_____分米。(结头处绳长不计,π取3.14) 图中的阴影部分的面积是________平方厘米。(π取3)

九年级数学几何图形圆的精选练习题

九年级数学几何图形圆 的精选练习题 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

圆练习题 姓名: 一、精心选一选(本大题共10小题,每小题3分,共计30分) 1、下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心在三角形的一条边上的三角形是直角三角形,其中真命题共有() A.0个B.1个 C.2个D.3个 2、同一平面内两圆的半径是R和r,圆心距是d,若以R、r、d为边长,能围成一个三角形,则这两个圆的位置关系是() A.外离B.相切C.相交D.内含 3、如图1,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( ) A.35° ° C.110° ° 4、如图2,⊙O的直径为10,弦AB的长为8,M是弦AB上的动点,则OM 的长的取值 范围() A.3≤OM≤5 B.4≤OM≤5 C.3<OM<5 D.4<OM<5 5、如图3,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB, ∠ AOC=84°,则∠E等于() A.42 °B.28°C.21°D.20°A B C D

A A A B C C B 图6 l 图1 图 2 图3 6、如图4,△ABC 内接于⊙O ,AD ⊥BC 于点D ,AD=2cm ,AB=4cm ,AC=3cm ,则⊙O 的直径是( ) A 、2cm B 、4cm C 、6cm D 、8cm 7、如图5,圆心角都是90°的扇形OAB 与扇形OCD 叠放在一起,OA =3,OC =1,分别连结AC 、BD ,则图中阴影部分的面积为( ) A. 1 2π B. π C. 2π D. 4π 8、已知⊙O 1与⊙O 2外切于点A ,⊙O 1的半径R =2,⊙O 2的半径r =1, 若半径为4的⊙C 与⊙O 1、⊙O 2都相切,则满足条件的⊙C 有( ) A 、2个 B 、4个 C 、5个 D 、6个 9、设⊙O 的半径为2,圆心O 到直线l 的距离OP =m ,且m 使得关于x 的方程 012222=-+-m x x 有实数根,则直线l 与⊙O 的位置关系为( ) A 、相离或相切 B 、相切或相交 C 、相离或相交 D 、无法确定 10、如图6,把直角△ABC 的斜边AC 放在定直线l 上,按 顺时针的方向 在直线l 上转动两次,使它转到△A 2B 2C 2 的 位置,设AB=3,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( ) A 、(12 25 +23 )π B 、( 34 +23 )π B A M O · 图

新人教版九年级圆测试题及复习资料全

九年级圆测试题 一、选择题(每题3分,共30分) 1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( ) A 2π-3 B 4π-43 C 5π-4 D 2π-23 2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶1 3.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定 4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90° 5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶12 6.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216° 7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352 =+-x x 的两根,则两圆的位置 O O' A B 第4题图

关系是() A 相交 B 相离 C 相切 D 内含 8.四边形中,有内切圆的是() A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D,连结AD,那么() A ∠BAD +∠CAD= 90° B ∠BAD>∠CAD C ∠BA D =∠CAD D ∠BAD <∠CAD B C A . 10.下面命题中,是真命题的有()①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③ 圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。 A 1个 B 2个 C 3个 D 4个 二、填空题(每题3分,共24分) 11.一个正多边形的内角和是720°,则这个多边形是正边形; 12.现用总长为m 80的建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛的面积最大; 13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形,菱形的边长 是 1 cm ,那么徽章的直径是; 14.如图,弦AB的长等于⊙O的半径,如果C是? AmC上任意一点,则sinC = ;

中考数学几何专题训练

专题八圆

8.正多边形的有关计算: (1)中心角n ,半径R N ,边心距r n ,边长a n ,内角n ,边数n;公式举例: (1) n = n 360 ;

(2)有关计算在Rt ΔAOC 中进行. (2) n 1802n ? = α 二 定理: 1.不在一直线上的三个点确定一个圆. 2.任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆. 3.正n 边形的半径和边心距把正n 边形分为2n 个全等的直角三角 三 公式: 1.有关的计算: (1)圆的周长C=2πR ;(2)弧长L= 180 R n π;(3)圆的面积S=πR 2 . (4)扇形面积S 扇形 =LR 2 1 360R n 2=π; (5)弓形面积S 弓形 =扇形面积S AOB ±ΔAOB 的面积.(如图) 圆柱侧(2)圆锥的侧面积:S 圆锥侧 =LR 21 =πrR. (L=2πr ,R 是圆锥母线长;r 是底面半径) 四 常识: 1. 圆是轴对称和中心对称图形.2. 圆心角的度数等于它所对弧的度数. 3. 三角形的外心 两边中垂线的交点 三角形的外接圆的圆心; 三角形的内心 两内角平分线的交点 三角形的内切圆的圆心.

A B C 第5 A B C 第6 O E 4. 直线与圆的位置关系:(其中d 表示圆心到直线的距离;其中r 表示圆的半径) 直线与圆相交 d <r ; 直线与圆相切 d=r ; 直线与圆相离 d >r. 5. 圆与圆的位置关系:(其中d 表示圆心到圆心的距离,其中R 、r 表示两个圆的半径且R ≥r ) 两圆外离 d >R+r ; 两圆外切 d=R+r ; 两圆相交 R-r <d <R+r ; 两圆内切 d=R-r ; 两圆内含 d <R-r. 6.证直线与圆相切,常利用:“已知交点连半径证垂直”和“不知交点作垂直证半径” 的方法加辅助线. 圆中考专题练习 一:选择题。 1. (2010红河自治州)如图2,已知BD 是⊙O 的直径,⊙O 的弦AC ⊥BD 于点E ,若∠AOD=60°,则∠DBC 的 度数为( ) ° ° ° ° 2、(11哈尔滨).如上图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ). (A )22 (B )32 (C )5 (D )53 3、(2011陕西省)9.如图,点A 、B 、P 在⊙O 上,点P 为动点,要是△ABP 为等腰三角形,则所有符合条件的点P 有( ) A 1个 B 2个 C 3个 D 4个 4、(2011),安徽芜湖)如图所示,在圆O 内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC 的长为( ) A .19 B .16 C .18 D .20 5、(11·浙江湖州)如图,已知在Rt △ABC 中,∠ BAC =90°,AB =3, BC =5,若把Rt △ABC 绕直线AC 旋转一周,则所 得圆锥的侧面积等于 ( )

数学九年级上册 圆 几何综合中考真题汇编[解析版]

数学九年级上册 圆 几何综合中考真题汇编[解析版] 一、初三数学 圆易错题压轴题(难) 1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C . (1)分别求点E 、C 的坐标; (2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由. 【答案】(1)点C 的坐标为(-3,0)(2)2343333 y x x =++3)⊙M 与⊙A 外切 【解析】 试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标; (2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式; (3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么 ∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切. 试题解析:(1)在Rt△EOB 中,3 cot60232EO OB =??==, ∴点E 的坐标为(-2,0). 在Rt△COA 中,tan tan60333OC OA CAO OA =?∠=??==, ∴点C 的坐标为(-3,0). (2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得 ()()30103a =++,

人教版九年级数学上册教案《圆》

《圆》 圆是常见的几何图形, 是平面几何中基本的图形之一,它具有独特的性质。本章是在学生在小学学过的圆的知识的基础上,系统研究圆的概念和性质,点与圆、 直线与圆的位置关系、正多边形和圆的关系,以及圆的弧长与面积的计算等问题。 本小节是圆这一章的第一节课,主要是研究圆的概念及其相关概念,本节内容是继续研究圆的性质的基础。教材一开始是让学生观察生活中有关圆的形象的物体,结合小学学过的有关圆的知识,通过用圆规画圆的方法导入圆的定义的。圆的定义方法有两种,一种是描述性定义,一种是集合性定义。圆的描述性定义,要让学生用自己的语言尝试表述,教师可以引导学生通过观察画加深理解;圆的集合定义,应通过观察、体会画圆的过程,引导学生从圆和点两个方面去思考得出圆的集合定义。得出圆的定义后,接着介绍圆心、半径、弦、直径、弧、半圆、等圆、等弧等相关性质。教材中的例1是证明四点共圆,只要证明矩形的四个顶点到对角线的交点距离相等即可,进一步让学生体会圆的集合定义的应用。 【知识与能力目标】 1.理解圆、弧、弦、圆心角、圆周角的概念; 2.了解等圆、等弧的概念。

【过程与方法目标】 从感受圆在生活中大量存在到圆的概念的形成过程中,让学生体会圆的不同定义方法,感受圆和实际生活的联系。 【情感态度价值观目标】 在探索圆的概念的过程中让学生体会数学知识无处不在,感受生活中处处有数学。 【教学重点】 对圆的两种定义的理解。 【教学难点】 对圆的集合定义的理解。 多媒体课件、教具等。 一、创设情境,引入新课 问题1 观察下列图形,你能从中找出它们的共同特征吗? 追问:你能再举出一些生活中类似的实例吗? 设计意图:让学生观察图形,感受圆和实际生活的密切联系,为学习圆的相关概念打下基础,同时还可以激发学生的学习热情。 二、探索新知,形成概念 问题2 观察下列画圆的过程,你能由此说出圆的形成过程吗?

人教版数学九年级上册:24《圆》专题练习(附答案)

word版初中数学 第二十四章《圆》专题练习 目录 专题1 与圆周角有关的辅助线作法 (1) 专题2圆周角定理 (3) 专题3 证明切线的两种常用方法 (4) 专题4与切线长有关的教材变式 (5) 专题5与圆的切线有关的计算与证明 (6) 专题6 求阴影部分的面积 (8)

专题1 与圆周角有关的辅助线作法 类型1 构造同弧或等弧所对的圆周角或圆心角 1.如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,点B 是AC ︵ 的中点,则∠D 的度数是( ) A .70° B .55° C .35.5° D .35° 2.如图,点A ,B ,C ,D 分别是⊙O 上的四点,∠BAC =50°,BD 是直径,则∠DBC 的度数是( ) A .40° B .50° C .20° D .35° 3.如图,A ,B ,C ,D 四个点均在⊙O 上,∠AOD =50°,AO ∥DC ,则∠B 的度数为( ) A .50° B .55° C .60° D .65°

4.如图,A ,B ,C 在⊙O 上,∠ACB =40°,点D 在ACB ︵ 上,M 为半径OD 上一点,则∠AMB 的度数不可能为( ) A .45° B .60° C .75° D .85° 类型2 利用直径构造直角三角形 5.如图,在⊙O 中,∠OAB =20°,则∠C 的度数为 . 6.如图,在⊙O 中,AB 为直径,∠ACB 的平分线交⊙O 于点D ,AB =6,则BD = . 7.如图,⊙A 过点O ,C ,D ,点C 的坐标为(3,0),点B 是x 轴下方⊙A 上的一点,连接BO ,BD ,已知∠OBD =30°,则⊙A 的半径等于 . 8.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于点D ,AC =5,DC =3,AB =42,则⊙O 的半径为 .

初二上几何证明题100题专题训练

C A B C D E P 图 ⑴八年级上册几何题专题训练100题 1、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,在BC 上任取一点P ,作PQ ∥AB 交AC 于Q ,作PR ∥CA 交BA 于R ,D 是BC 的中点,求证:⊿RDQ 是等腰直角三角形。 C B 2、 已知:在⊿ABC 中,∠A=900 ,AB=AC ,D 是AC 的中点,AE ⊥BD ,AE 延长线交BC 于F ,求证:∠ADB=∠FDC 。 3、 已知:在⊿ABC 中BD 、CE 是高,在BD 、CE 或其延长线上分别截取BM=AC 、CN=AB ,求证:MA ⊥NA 。 4、已知:如图(1),在△ABC 中,BP 、CP 分别平分∠ABC 和∠ACB ,DE 过点P 交AB 于D ,交AC 于E ,且DE ∥BC .求证:DE -DB=EC .

5、在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。 (1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。 6、如图,△ABC为等边三角形,延长BC到D,延长BA到E,AE=BD, 连结EC、ED,求证:CE=DE 7、如图,等腰三角形ABC中,AB=AC,∠A=90°,BD平分∠ABC,DE⊥BC且BC=10,求△DCE的周长。 8. 如图,已知△EAB≌△DCE,AB,EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数. A B C O M N

初三圆的证明专题训练(答案)

下载试卷文档前说明文档: 1.试题左侧二维码为该题目对应解析; 2.请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查 看解析,杜绝抄袭; 3.只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师 讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。 4.自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏 ->我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点。 5.在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优 网的支持。

2015年04月19日九年级数学组的初中数学组卷 (扫描二维码可查看试题解析) 一.解答题(共17小题) 1.(2014?辽阳)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠CAB. (1)求证:直线BF是⊙O的切线; (2)若AB=5,sin∠CBF=,求BC和BF的长. 2.(2014?吉林)如图,四边形OABC是平行四边形,以O为圆心,OA为半径的圆 交AB于点D,延长AO交⊙O于点E,连接CD,CE,若CE是⊙O的切线,解答下列问题:(1)求证:CD是⊙O的切线; (2)若BC=3,CD=4,求平行四边形OABC的面积. 3.(2014?天水)如图,点D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)判断直线CD和⊙O的位置关系,并说明理由. (2)过点B作⊙O的切线BE交直线CD于点E,若AC=2,⊙O的半径是3,求BE的长.

人教版九年级圆的性质知识点

学生姓名: 就读年级: 九年级 任课教师: 教导处签名: 日期: 2017 年 10月 21 日 圆的有关性质

课题圆的有关性质 教学目标1、在探索的过程中,能从两种不同的角度理解圆的概念 2、了解弦、弧、半圆、优弧、劣弧、等圆、等弧等于圆有关的概念,理解概念之间的区别与联系。 3、能够通过图形直观地认识弦、弧等概念,能够从具体图形中识别出与圆有关的一些元素。 知识要点及重难点重点:圆的概念的解析与应用难点:圆的有关概念的解析 作业评价 ○好○很好○一般○差备注: 作业布置 学生课后评价(学生填 写)学生对本次课的评价: 1、学习心情:□愉悦□紧张□沉闷 2、学习收获:□很大□一般□没有 3、教学流程:□清晰□一般□混乱 4、其它: 。 家长反馈 签名:日期:年月日一、课前复习

1、旋转 2、中心对称 3、中心对称图形 4、求关于原点对称的点的坐标 二、新课导入 初中阶段我们有几种几何是必须掌握的:三角形,四边形,圆。关于前两个已经在前期的学习中接触过了,那么本章我们将重点学习圆的相关性质以及相关的知识点,本章也是中考内容中的重点部分,所以需要打起精神,认真将知识点掌握并灵活应用起来。 三、新课讲授 圆的有关性质 知识点1圆的定义以及表示方法(重点;理解) 1、描述性定义 在一个平面内,线段OA绕它固定一个端点O旋转一周,另一个端点A所形成的图形叫做圆,其中固定的端点O 叫做圆心,线段OA叫做半径。 2、集合性定义 圆可以看作是到定点的距离等于定长的点的集合; 3、圆的表示方法 以点O为圆心的圆,记作“⊙O”,读作“圆O” 命题1圆的定义的理解 例1:下列条件中,能确定圆的是() A. 以已知点O为圆心 B. 以1cm长为半径 C. 经过已知点A,且半径为2cm D. 以点O为圆心,1cm为半径 针对练习: 1、与已知点A的距离为3cm的点所组成的平面图形是______. 命题点2判断四点共圆的问题 例2:矩形的四个顶点能否在同一个圆上?如果不在,说明理由;如果在,指出这个圆的圆心和半径.

相关文档
最新文档