高一文科数学期中试题
2023-2024学年高一(上)期中数学试卷(带解析)

2023-2024学年高一(上)期中数学试卷一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3} 2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥04.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.37.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.368.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为.14.(5分)已知函数f(x)满足,则函数f(x)的解析式为.15.(5分)已知函数,则f(﹣26)+f(﹣25)+⋯+f(﹣1)+f (1)+⋯+f(26)+f(27)的值为.16.(5分)已知x,y>0且满足x+y=1,若不等式恒成立,记的最小值为n,则m+n的最小值为.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.21.(12分)已知a,b,c是实数,且满足a+b+c=0,证明下列命题:(1)“a=b=c=0”是“ab+bc+ac=0”的充要条件;(2)“abc=1,a≥b≥c”是“”的充分条件.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.2023-2024学年高一(上)期中数学试卷参考答案与试题解析一、选择题:共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.(5分)已知集合A={1,2,3},集合B={x||x﹣1|<1},则A∩B=()A.∅B.{1}C.{1,2}D.{1,2,3}【分析】结合交集的定义,即可求解.【解答】解:集合A={1,2,3},集合B={x||x﹣1|<1}={x|0<x<2},故A∩B={1}.故选:B.【点评】本题主要考查交集及其运算,属于基础题.2.(5分)已知x∈R,p:|x﹣2|<1,q:1<x<5,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据题意,解绝对值不等式得1<x<3,结合充要条件的定义加以判断,即可得到本题的答案.【解答】解:根据题意,|x﹣2|<1⇒﹣1<x﹣2<1⇒1<x<3,由|x﹣2|<1可以推出1<x<5,且由1<x<5不能推出|x﹣2|<1.因此,若p:|x﹣2|<1,q:1<x<5,则p是q的充分不必要条件.故选:A.【点评】本题主要考查不等式的性质、充要条件的判断等知识,考查了计算能力、逻辑推理能力,属于基础题.3.(5分)命题“∃x∈(1,+∞),x2+2<0”的否定是()A.∃x∈(﹣∞,1],x2+2<0B.∃x∈(1,+∞),x2+2≥0C.∀x∈(1,+∞),x2+2>0D.∀x∈(1,+∞),x2+2≥0【分析】根据命题的否定的定义,即可求解.【解答】解:命题“∃x∈(1,+∞),x2+2<0”的否定是:∀x∈(1,+∞),x2+2≥0.故选:D.【点评】本题主要考查特称命题的否定,属于基础题.4.(5分)下列函数中,f(x)和g(x)表示同一个函数的是()A.B.f(x)=1,g(x)=x0C.D.f(x)=|x+2|,【分析】观察函数三要素,逐项判断是否同一函数.【解答】解:由题意得:选项A定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项B定义域不同,f(x)的定义域为R,g(x)中,x≠0;选项C对应法则不同,g(x)=|x|;D项,三要素相同,为同一函数.故选:D.【点评】本题考查同一函数的判断,属于基础题.5.(5分)已知不等式ax2+bx+c>0的解集为{x|x1<x<x2}且x1>0,则不等式cx2+bx+a>0的解集为()A.{x|x1<x<x2}B.{x|x>x2或x<x1}C.D.或【分析】由题意可知,a<0,方程ax2+bx+c=0的两个根分别为x1,x2,再结合韦达定理求解即可.【解答】解:根据题意:a<0,方程ax2+bx+c=0的两个根分别为x1,x2,所以,,,,解得,即不等式的解集为{x|}.故选:C.【点评】本题主要考查了韦达定理的应用,考查了一元二次不等式的解法,属于基础题.6.(5分)已知函数,若函数f(x)=max{﹣x+1,x2﹣3x+2,x﹣1},则函数f(x)的最小值为()A.0B.1C.2D.3【分析】根据函数f(x)的定义可知,在一个坐标系中画出y=﹣x+1,y=x2﹣3x+2,y =x﹣1的图象,取最上面的部分作为函数f(x)的图象,由图象即可求出函数的最小值.【解答】解:根据题意,在同一个直角坐标系中,由﹣x+1=x2﹣3x+2,得x2﹣2x+1=0,解得x=1;由x2﹣3x+2=x﹣1,得x2﹣4x+3=0,解得x=3或x=1,所以f(x)=,同时画出函数y=﹣x+1,y=x2﹣3x+2,y=x﹣1,如图分析:所以函数f(x)的最小值为0.故选:A.【点评】本题考查利用函数的图象求函数的最值,属中档题.7.(5分)已知正实数x,y满足2x+y+6=xy,记xy的最小值为a;若m,n>0且满足m+n=1,记的最小值为b.则a+b的值为()A.30B.32C.34D.36【分析】由已知结合基本不等式先求出xy的范围,即可求a,然后利用乘1法,结合基本不等式可求b,进而可求a+b.【解答】解:∵xy=2x+y+6+6,当且仅当2x=y,即x=3,y=6时取等号,∴a=18.∵m+n=1,m>0,n>0.则=6,当且仅当n=3m且m+n=1,即m=,n=时取等号,∴,∴b=16;∴a+b=34.故选:C.【点评】本题主要考查了基本不等式在最值求解中的应用,属于基础题.8.(5分)已知函数f(x)满足f(x)+f(4﹣x)=4,f(x+2)﹣f(﹣x)=0,且f(1)=a,则f(1)+f(2)+f(3)+⋯+f(51)的值为()A.96B.98+a C.102D.104﹣a【分析】由已知结合函数的对称性先求出函数的周期,然后结合对称性及周期性即可求解.【解答】解:根据题意:函数f(x)满足f(x)+f(4﹣x)=4,可得函数f(x)关于点(2,2)成中心对称,函数f(x)满足f(x+2)﹣f(﹣x)=0,所以函数f(x)关于x=1对称,所以函数f(x)既关于x=1成轴对称,同时关于点(2,2)成中心对称,所以f(2)=2,T=4,又因为f(1)=a,所以f(3)=4﹣a,f(4)=f(﹣2)=f(﹣2+4)=f(2)=2,所以f(1)+f(2)+f(3)+f(4)=a+2+4﹣a+2=8,所以f(1)+f(2)+f(3)+⋯+f(51)=12[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)+f(3)=12×8+a+2+4﹣a=102.故选:C.【点评】本题主要考查了函数的奇偶性,对称性及周期性在函数求值中的应用,属于中档题.二、选择题(共4小题,每小题5分,满分20分)(多选)9.(5分)下列不等关系一定成立的是()A.若a>b,则B.若,则ab>0C.若,则a>0>bD.若a>b,a2>b2,则a>b>0【分析】由已知举出反例检验选项A,D;结合不等式的性质检验B,C即可判断.【解答】解:当a=1,b=﹣1时,A显然错误;若,则=<0,所以ab>0,B正确;若,即b﹣a<0,则=>0,所以ab<0,所以b<0<a,C正确;当a=2,b=﹣1时,D显然错误.故选:BC.【点评】本题主要考查了不等式的性质在不等式大小比较中的应用,属于基础题.(多选)10.(5分)已知x∈(1,+∞),下列最小值为4的函数是()A.y=x2﹣4x+8B.C.D.【分析】根据二次函数的性质检验选项A,结合基本不等式检验选项BCD即可判断.【解答】解:根据题意:选项A,y=x2﹣4x+8,根据二次函数的性质可知,x=2时取最小值4,故选A;,当且仅当时取最小值,不在x∈(1,+∞)范围内,故选项B错误;选项C,=,当且仅当,即x=3时成立,故选项C正确;选项D,,令,原式为,当且仅当t=,即t=2时等式成立,不在范围内,故选项D错误.故选:AC.【点评】本题主要考查了基本不等式及二次函数性质在最值求解中的应用,属于中档题.(多选)11.(5分)下列说法正确的是()A.“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件B.“0<a<4”是“ax2+ax+1>0在R上恒成立”的充要条件C.“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的必要不充分条件D.已知a,b∈R,则“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件【分析】根据充分必要条件的定义,对各个选项中的两个条件进行正反推理论证,即可得到本题的答案.【解答】解:对于选项A,a>1,b>1⇒a﹣1>0,b﹣1>0⇒(a﹣1)(b﹣1)>0,反之,若(a﹣1)(b﹣1)>0,则可能a=b=0,不能得出a>1,b>1.故“a>1,b>1”是“(a﹣1)(b﹣1)>0”的充分不必要条件,A正确;对于选项B,ax2+ax+1>0在R上恒成立,当a=0时,可得1>0恒成立,而区间(0,4)上没有0,故“0<a<4”不是“ax2+ax+1>0在R上恒成立”的充要条件,B不正确;对于选项C,f(x)=x2﹣ax在(1,+∞)上单调递增,可以推出是a⩽2的子集,故“a<1”是“f(x)=x2﹣ax在(1,+∞)上单调递增”的充分不必要条件,C不正确;对于选项D,a3+a2b﹣a2﹣ab+a+b=a2(a+b)﹣a(a+b)+(a+b)=(a+b)(a2﹣a+1),,ab>0⇎(a+b)>0,因此,“ab>0”是“a3+a2b﹣a2﹣ab+a+b>0”的既不充分也不必要条件,D正确.故选:AD.【点评】本题主要考查了充分条件与必要条件的判断、不等式的性质、二次函数的单调性等知识,属于基础题.(多选)12.(5分)已知x,y>0且满足x2+y2+1=(xy﹣1)2,则下列结论正确的是()A.xy≥2B.x+y≥4C.x2+y2≥8D.x+4y≥9【分析】将所给等式化简整理,得到(x+y)2=x2y2,结合x,y>0可得x+y=xy,.由此出发对各个选项逐一加以验证,即可得到本题的答案.【解答】解:根据题意,x2+y2+1=(xy﹣1)2,即x2+y2=x2y2﹣2xy,整理得x2+y2+2xy =x2y2,所以x2+y2+2xy=x2y2,即(x+y)2=x2y2,而x、y均为正数,故x+y=xy,可得.对于A,,两边平方得x2y2≥4xy,可得xy≥4,故A错误;对于B,由A的计算可知x+y=xy≥4,当且仅当x=y=2时取到等号,故B正确;对于C,x2+y2=x2y2﹣2xy=(xy﹣1)2+1≥32﹣1=8,当且仅当x=y=2时取到等号,故C正确;对于D,,当且仅当x=2y,即时取到等号,故D正确.故选:BCD.【点评】本题主要考查了不等式的性质、基本不等式及其应用等知识,考查了计算能力、逻辑推理能力,属于中档题.三、填空题(共4小题,每小题5分,满分20分)13.(5分)已知函数,则函数f(x)的定义域为[﹣2,1].【分析】根据函数的解析式,列出使函数解析式有意义的不等式组,求出解集即可.【解答】解:函数∴﹣x2﹣x+2⩾0,解得﹣2⩽x⩽1.∴函数的定义域为[﹣2,1].故答案为:[﹣2,1].【点评】本题主要考查函数定义域的求解,属于基础题.14.(5分)已知函数f (x )满足,则函数f (x )的解析式为.【分析】利用解方程组的方法求函数解析式即可.【解答】解:根据题意:①,令代替x ,可得②,①﹣②×2得:,∴函数f (x )的解析式为.故答案为:.【点评】本题考查求函数解析式,属于基础题.15.(5分)已知函数,则f (﹣26)+f (﹣25)+⋯+f (﹣1)+f(1)+⋯+f (26)+f (27)的值为.【分析】根据已知条件,结合偶函数的性质,即可求解.【解答】解:令函数,可得函数f (x )=g (x )+2,∵函数为奇函数,∴g (﹣x )=﹣g (x )⇒g (﹣x )+g (x )=0,f (﹣26)+f (﹣25)+⋯+f (﹣1)+f (1)+⋯+f (26)+f (27)=g (﹣26)+g (﹣25)+⋯+g (﹣1)+g (1)+⋯+g (26)+g (27)+2×53=g (27)+2×53=.故答案为:.【点评】本题主要考查函数值的求解,属于基础题.16.(5分)已知x ,y >0且满足x +y =1,若不等式恒成立,记的最小值为n ,则m +n 的最小值为.【分析】由恒成立,可知左边的最小值大于等于9,因此求的最小值,结合基本不等式求出m+n的最小值.【解答】解:∵实数x,y>0满足x+y=1,∴x+y+1=2,而=,当时,等号成立,所以,解得m⩾8.而=,令,则原式,当时,等号成立,∴实数n的值为,可得实数m+n的最小值为.故答案为:.【点评】本题主要考查基本不等式及其应用,考查了计算能力、逻辑推理能力,属于基础题.四、解答题:共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知集合A={x|x2﹣2x﹣3≤0},集合B={x|m﹣1<x<2m+1}.(1)当m=3时,求A∪B;(2)若“x∈A”是“x∈B”的必要不充分条件,求实数m的取值范围.【分析】(1)把m=3代入求得B,再由并集运算求解;(2)“x∈A”是“x∈B”的必要不充分条件,得B⫋A,然后分B=∅和B≠∅分别求解m 的范围,取并集得答案.【解答】解:(1)∵集合A={x|x2﹣2x﹣3⩽0},由x2﹣2x﹣3⩽0,即(x+1)(x﹣3)⩽0,解得﹣1⩽x⩽3,∵集合B={x|m﹣1<x<2m+1},当m=3时,即B={x|2<x<7},∴A∪B={x|﹣1⩽x<7}.(2)“x∈A”足“x∈B”的必要不充分条件,可得集合B是集合A的真子集,当m﹣1⩾2m+1⇒m⩽﹣2时,集合B为空集,满足题意;当m﹣1<2m+1⇒m>﹣2时,集合B是集合A的真子集,可得,∴实数m的取值范围为{m|m⩽﹣2或0⩽m⩽1}.【点评】本题考查并集的运算,考查分类讨论思想,是中档题.18.(12分)已知函数f(x)=(2m2﹣m)x2m+3是幂函数,且函数f(x)的图象关于y轴对称.(1)求实数m的值;(2)若不等式(a﹣1)m<(2a﹣3)m成立,求实数a的取值范围.【分析】(1)结合幂函数的性质,以及偶函数的性质,即可求解;(2)结合函数的性质,即可求解.【解答】解:(1)由题意可知,2m2﹣m=1,解得m=或1,又∵函数f(x)关于y轴对称,当,满足题意;当m=1⇒f(x)=x5,此时函数f(x)为奇函数,不满足题意,∴实数m的值为;(2)函数,分析可得该函数在(0,+∞)单调递减,∴由(a﹣1)m<(2a﹣3)m可得:.∴实数a的取值范围为.【点评】本题主要考查函数的性质,是基础题.19.(12分)已知函数为定义在R上的奇函数.(1)求实数a,b的值;(2)求不等式|f(x)|≥3的解集.【分析】(1)当x<0时,﹣x>0,代入已知函数解析式,对比函数解析式即可求解a,b;(2)结合奇函数的对称性及二次不等式的求法即可求解.【解答】解:(1)根据题意:当x<0时,﹣x>0,则f(x)=﹣f(﹣x)=﹣[(﹣x)2+2(﹣x)]=﹣x2+2x,故a=﹣1,b=2;(2)当x⩾0时,|f(x)|⩾3可得f(x)⩾3,即x2+2x⩾3⇒x2+2x﹣3⩾0,解得x⩾1,根据奇函数可得:|f(x)|⩾3的解集为{x|x⩾1或x⩽﹣1}.【点评】本题主要考查了奇函数的定义在函数解析式求解中的应用,还考查了奇函数的对称性在不等式求解中的应用,属于中档题.20.(12分)某高科技产品投入市场,已知该产品的成本为每件1000元,现通过灵活售价的方式了解市场,通过多日的市场销售数据统计可得,某店单日的销售额与日产量x(件)有关.当1≤x≤3时,单日销售额为(千元);当3≤x≤6时,单日销售额为(千元);当x>6时,单日销售额为21(千元).(1)求m的值,并求该产品日销售利润P(千元)关于日产量x(件)的函数解析式;(销售利润=销售额﹣成本)(2)当日产量x为何值时,日销售利润最大?并求出这个最大值.【分析】(1)根据单日销售额函数,列方程求出m的值,再利用利润=销售额﹣成本,即可得出日销售利润函数的解析式.(2)利用分段函数求出每个区间上的最大值,比较即可得出结论.【解答】解:(1)根据题意知,单日销售额为f(x)=,因为f(3)=+6+3=+9,解得m=,因为利润=销售额﹣成本,所以日销售利润为P(x)=,化简为P (x )=.(2)根据题意分析:①日销售利润P (x )=+x +3=+(x +1)+2,令t =x +1=2,3,4,所以函数为,分析可得当t =2时,取最大值,其最大值为;②日销售利润P (x )=+2x =+2x =﹣+2x ,该函数单调递增,所以当x =6时,P (x )取最大值,此最大值为15;③日销售利润P (x )=21﹣x ,该函数单调递减,所以当x =7时,P (x )取最大值,此最大值为14;综上知,当x =6时,日销售利润最大,最大值为15千元.【点评】本题考查了分段函数模型应用问题,也考查了运算求解能力,是中档题.21.(12分)已知a ,b ,c 是实数,且满足a +b +c =0,证明下列命题:(1)“a =b =c =0”是“ab +bc +ac =0”的充要条件;(2)“abc =1,a ≥b ≥c ”是“”的充分条件.【分析】(1)根据完全平方公式,等价变形,可证出结论;(2)利用基本不等式,结合不等式的性质加以证明,即可得到本题的答案.【解答】证明:(1)∵(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,充分性:若a =b =c =0,则ab +bc +ac =0,充分性成立;必要性:若ab +bc +ac =0,由a +b +c =0,得(a +b +c )2=a 2+b 2+c 2+2ab +2bc +2ac ,所以a 2+b 2+c 2=0,可得a =b =c =0,必要性成立.综上所述,a =b =c =0是ab +bc +ac =0的充要条件;(2)由a ⩾b ⩾c ,且abc =1>0,可知a >0,b <0,c <0,由a +b +c =0,得,当且仅当b =c 时等号成立,由,得,a 3⩾4,可知≤a =﹣b ﹣c ≤﹣2c ,解得,因此,abc=1且a⩾b⩾c是的充分条件.【点评】本题主要考查等式的恒等变形、不等式的性质与基本不等式等知识,考查了计算能力、逻辑推理能力,属于基础题.22.(12分)已知函数f(x)=ax2+bx+c(a≠0),满足f(0)=1,f(1)=3.(1)若函数f(x)有最小值,且此最小值为,求函数f(x)的解析式;(2)记g(a)为函数f(x)在区间[1,2]上的最大值,求g(a)的表达式.【分析】(1)根据题意,由f(0)=1,f(1)=3分析可得f(x)=ax2+(2﹣a)x+1,由二次函数的最小值求出a的值,进而计算可得答案;(2)根据题意,由二次函数的性质分a>0与a<0两种情况讨论,分析g(a)的解析式,综合可得答案.【解答】解:(1)根据题意,函数f(x)=ax2+bx+c满足f(0)=1,f(1)=3,则有f(0)=c=1,f(1)=a+b+c=3,变形可得b=2﹣a,函数f(x)=ax2+(2﹣a)x+1,∵函数f(x)有最小值,∴a>0,函数f(x)的最小值为=,解可得:a=4或1,∴当a=4时,b=﹣2,函数f(x)的解析式为f(x)=4x2﹣2x+1;当a=1时,b=1,函数f(x)的解析式为f(x)=x2+x+1.(2)根据题意,由(1)的结论,f(x)=ax2+(2﹣a)x+1,是二次函数,分2种情况讨论:①当a>0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5,ii.当对称轴时,与a>0矛盾,故当a>0时,函数f(x)在区间[1,2]上的最大值g(a)=2a+5;②当a<0时,i.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(1)=3,ii.当对称轴时,函数f(x)在区间[1,2]上的最大值,iii.当对称轴时,函数f(x)在区间[1,2]上的最大值g(a)=f(2)=2a+5.综上所述,【点评】本题考查函数的最值,涉及二次函数的性质,属于中档题.。
2023-2024学年河南省南阳市高一(上)期中数学试卷【答案版】

2023-2024学年河南省南阳市高一(上)期中数学试卷一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|1<x<3},B={y|y=2x﹣1,x∈A},则A∩B=()A.∅B.A C.B D.A∪B2.命题“方程x2﹣8x+15=0有一个根是偶数”的否定是()A.方程x2﹣8x+15=0有一个根不是偶数B.方程x2﹣8x+15=0至少有一个根不是偶数C.方程x2﹣8x+15=0至多有一个根不是偶数D.方程x2﹣8x+15=0的每一个根都不是偶数3.若函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=1e x+e−x B.f(x)=1e x−e−xC.f(x)=e x−e−xe x+e−x D.f(x)=ex+e−xe x−e−x4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得ln2≈0.693,ln54≈0.223,由此可知ln5的近似值为()A.1.519B.1.726C.1.609D.1.3165.已知a=243,b=425,c=2013,则()A.b<a<c B.b<c<a C.c<b<a D.a<c<b6.通过北师大版必修一教材57页的详细介绍,我们把y=[x]称为取整函数.那么“[x]=[y]”是“|x﹣y|<1”的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要7.若关于x的不等式1x−a >1x−b的解集是{x|1<x<3},则下列式子中错误的是()A.a﹣b<0B.a+b=4C.a=1,b=3D.a=3,b=18.已知函数f(x)={−2x 2+4x ,x ≤2,x−2x+1,x >2,若存在三个不相等的实数x 1,x 2,x 3使得f (x 1)=f (x 2)=f (x 3),则f (x 1+x 2+x 3)的取值范围是( ) A .(25,1)B .(25,+∞)C .(25,2)D .(2,+∞)二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.满足函数f (x )=x 2﹣ax +1在区间[1,3]上不单调的实数a 的值可能是( ) A .3B .4C .5D .610.下列函数中,具备奇偶性的函数是( ) A .f(x)=(√x)2B .f(x)=1+22x−1C .f(x)={−x ,x <−11,−1<x <1,x ,x >1.D .f(x)=√4−x 22−|x−2|11.已知二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ),且对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的有( )A .f (1.2)>f (1.5)B .2a +b =0C .f(−√2)<f(√3)D .abc <012.已知a >0,b >0,a +b =1,则下列结论成立的是( ) A .1a +1b的最小值为4B .1a +ab 的最小值为3C .11−a+12−b的最小值为2D .a +1b的最小值为1三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4),则a +b = . 14.若函数f (x )的定义域是[2,5],则函数y =f(2x−3)√x 2−2x−3的定义域是 .15.已知f (x )=x 2+|x |+2;则不等式f (x +1)<8的解集是 .16.如图,已知等腰三角形中一腰上的中线长为√6,则该等腰三角形的面积最大值为 .四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(1)已知x+x﹣1=3,求是x 12+x−12值;(2)计算:2−12+2+(1−√2)−1−823+2lg5lg20+(lg2)2.18.(12分)已知函数f(x)=x+1x.(1)判断函数f(x)在[1+∞)上的单调性,并用单调性的定义证明;(2)求函数g(x)=√x2+4x2+5的值域.19.(12分)已知集合A={x|x2+ax﹣a﹣1<0,a∈R},B={x|2<x<3}.(1)若0∈A且2∉A,求实数a的取值范围;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.20.(12分)为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.大学毕业生袁阳按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件20元,出厂价为每件24元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:y=﹣10x+600.(1)设袁阳每月获得的利润为ω(单位:元),写出每月获得的利润ω与销售单价x的函数关系;(2)物价部门规定,这种节能灯的销售单价不得高于40元.如果袁阳想要每月获得的利润不小于3000元,那么政府每个月为他承担的总差价的取值范围是多少元?21.(12分)已知log a b+log b a=52,a b=b a,其中a>b>1.(1)求实数a,b的值;(2)若函数f(x)=m•a x+b x+1在定义域[1,2]上为增函数,求实数m的取值范围.22.(12分)已知函数f(x)的定义域为R.当x>0时,f(x)=2x+a,a∈R.(1)若函数f(x)为奇函数,求函数f(x)的表达式;(2)若函数f(x)是奇函数且在R上单调,求实数a的取值范围;(3)在(1)的条件下,若关于x的方程((f(x)+2+a)(f(x)﹣a)=0有三个不等的实数根,求实数a的取值范围.2023-2024学年河南省南阳市高一(上)期中数学试卷参考答案与试题解析一、选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A={x|1<x<3},B={y|y=2x﹣1,x∈A},则A∩B=()A.∅B.A C.B D.A∪B解:集合A={x|1<x<3},则B={y|y=2x﹣1,x∈A}={y|1<y<5},故A∩B=A.故选:B.2.命题“方程x2﹣8x+15=0有一个根是偶数”的否定是()A.方程x2﹣8x+15=0有一个根不是偶数B.方程x2﹣8x+15=0至少有一个根不是偶数C.方程x2﹣8x+15=0至多有一个根不是偶数D.方程x2﹣8x+15=0的每一个根都不是偶数解:“方程x2﹣8x+15=0有一个根是偶数”的否定是:方程x2﹣8x+15=0的每一个根都不是偶数.故选:D.3.若函数f(x)的图象如图所示,则f(x)的解析式可能是()A.f(x)=1e x+e−x B.f(x)=1e x−e−xC.f(x)=e x−e−xe x+e−x D.f(x)=ex+e−xe x−e−x解:对于A,f(0)=12,与图象不相符,故A错误;对于B,f(0)无意义,与图象不相符,故B错误;对于C,函数定义域为R,f(0)=0,f(−x)=e−x−e xe−x+e x=−f(x),函数为奇函数,符合图象,故C正确;对于D,f(0)无意义,与图象不相符,故D错误.故选:C.4.我国古代数学家李善兰在《对数探源》中利用尖锥术理论来制作对数表,他通过“对数积”求得ln2≈0.693,ln 54≈0.223,由此可知ln 5的近似值为( )A .1.519B .1.726C .1.609D .1.316解:因为ln 2≈0.693,ln 54≈0.223=ln 5﹣2ln 2=ln 5﹣1.386,由此可知ln 5≈1.609.故选:C . 5.已知a =243,b=425,c=2013,则( )A .b <a <cB .b <c <aC .c <b <aD .a <c <b解:∵a =243=√163,b =425=√165,c =2013=√203,y =x 13=√x 3是R 上的增函数,20>16,∴√203>√163,即c >a .再根据√163>√165,可得a >b . 综上可得,c >a >b . 故选:A .6.通过北师大版必修一教材57页的详细介绍,我们把y =[x ]称为取整函数.那么“[x ]=[y ]”是“|x ﹣y |<1”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要解:若[x ]=[y ],设[x ]=[y ]=m ,则x =m +a (0≤a <1),y =m +b (0≤b <1), ∴x ﹣y =a ﹣b ∈(﹣1,1),∴|x ﹣y |<1,反之,令x =1.1,y =0.9,则满足|x ﹣y |=0.2<1,但[x ]=1,[y ]=0,[x ]≠[y ], ∴[x ]=[y ]是|x ﹣y |<1的充分不必要条件. 故选:A . 7.若关于x 的不等式1x−a>1x−b的解集是{x |1<x <3},则下列式子中错误的是( )A .a ﹣b <0B .a +b =4C .a =1,b =3D .a =3,b =1解:由1x−a>1x−b,得1x−a−1x−b>0,化简得,a−b(x−a)(x−b)>0,即(a ﹣b )(x ﹣a )(x ﹣b )>0,∵不等式1x >a>1x−b的解集是{x |1<x <3},∴a ﹣b <0,且1和3是方程(x ﹣a )(x ﹣b )=0的两个根, ∴a =1,b =3,∴a +b =4,故A 正确,B 正确,C 正确,D 错误. 故选:D .8.已知函数f(x)={−2x 2+4x ,x ≤2,x−2x+1,x >2,若存在三个不相等的实数x 1,x 2,x 3使得f (x 1)=f (x 2)=f (x 3),则f (x 1+x 2+x 3)的取值范围是( ) A .(25,1)B .(25,+∞)C .(25,2)D .(2,+∞)解:函数f (x )={−2x 2+4x ,x ≤2x−2x+1,x >2的图象如图所示:由f (x )在(﹣∞,2]上关于x =1对称,且f max (x )=2, 当x ∈(2,+∞)时,f (x )=x−2x+1=1−3x+1是增函数, 且f (x )=x−2x+1=1−3x+1∈(0,1), 所以x 1+x 2=2,x 3∈(2,+∞), 所以x 1+x 2+x 3∈(4,+∞),又f (4)=4−24+1=25, 故f (x 1+x 2+x 3)∈(25,1).故选:A .二、选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.满足函数f (x )=x 2﹣ax +1在区间[1,3]上不单调的实数a 的值可能是( ) A .3B .4C .5D .6解:因为函数f (x )=x 2﹣ax +1在区间[1,3]上不单调,所以1<12a <3,即2<a <6.故选:ABC .10.下列函数中,具备奇偶性的函数是( ) A .f(x)=(√x)2B .f(x)=1+22x−1C .f(x)={−x ,x <−11,−1<x <1,x ,x >1.D .f(x)=√4−x 22−|x−2|解:根据题意,依次分析选项:对于A ,f (x )=(√x )2,其定义域为[0,+∞),不关于原点对称, 则该函数为非奇非偶函数,不符合题意; 对于B ,f (x )=1+22x−1,其定义域为R , 有f (﹣x )+f (x )=1+22−x −1+1+22x −1=2+2⋅2x1−2x +22x−1=0,即f (﹣x )=﹣f (x ), 则该函数为奇函数,符合题意;对于C ,f(x)={−x ,x <−11,−1<x <1,x ,x >1.其定义域为{x |x ≠±1},当x <﹣1时,﹣x >1,有f (﹣x )=f (x )=﹣x , 当﹣1<x <1时,﹣1<﹣x <1,有f (﹣x )=f (x )=1, 当x >1时,﹣x <﹣1,有f (﹣x )=f (x )=x ,综合可得:∀x ∈{x |x ≠±1},都有f (x )=f (﹣x ),则f (x )为偶函数,符合题意;对于D ,f (x )=√4−x 22−|x−2|,则有{4−x 2≥02−|x −2|≠0,解可得﹣2≤x ≤2且x ≠0,即函数的定义域为{x |﹣2≤x ≤2且x ≠0}, 则f (x )=√4−x 2x,则有f (﹣x )=−√4−x 2x=−f (x ),则f (x )为奇函数.故选:BCD .11.已知二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ),且对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,则下列结论正确的有( )A .f (1.2)>f (1.5)B .2a +b =0C .f(−√2)<f(√3)D .abc <0解:因为二次函数f (x )=ax 2+bx +c 满足f (1+x )=f (1﹣x ), 即函数的图象关于x =1对称,故−b2a=1,所以b +2a =0,B 正确; 对∀x 1,x 2∈(﹣∞,1),都有f(x 1)−f(x 2)x 1−x 2>0,所以f (x )在(﹣∞,1)上单调递增,所以a <0,b =﹣2a >0,但c 的正负无法确定,D 错误;根据函数的对称性可知,f (x )在(1,+∞)上单调递减,则f (1.2)>f (1.5),A 正确, 又f (−√2)=f (2+√2)<f (√3),C 正确. 故选:ABC .12.已知a >0,b >0,a +b =1,则下列结论成立的是( )A .1a +1b的最小值为4B .1a +ab 的最小值为3C .11−a+12−b的最小值为2D .a +1b的最小值为1解:对于A ,1a +1b =(a +b)(1a +1b )=2+b a +a b ≥2+2√b a ⋅a b=4,当且仅当a =b =12时,取等号,故A 正确;对于B ,1a =a+b a =1+b a ,故1a +a b =1+b a +a b ≥1+2√b a ⋅a b=3,当且仅当a =b =12时,取等号,故B 正确;对于C ,由a >0,b >0,a +b =1,可知(1﹣a )+(2﹣b )=3﹣(a +b )=2,且1﹣a >0,2﹣b >0, 11−a+12−b=12[(1−a)+(2−b)](11−a+12−b)=12(2+2−b 1−a+1−a 2−b)≥12(2+√2−b 1−a ⋅1−a 2−b)=2, 不等式取等号的条件是1﹣a =2﹣b =1,即a =0,b =1,与题设a +b =1矛盾,故11−a+12−b的最小值大于2,C 不正确;对于D ,a +1b −1=1b −b =1−b 2b =(1+b)(1−b)b >0,故a +1b>1,最小值大于1,故D 不正确.故选:AB .三、填空题(本题共4小题,每小题5分,共20分.)13.幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4),则a +b = 3 . 解:幂函数f (x )=(a 2﹣2a +2)x b (a >0)的图像经过点(2,4), ∴{a 2−2a +2=1f(2)=2b =4,解得a =1,b =2,则a +b =1+2=3. 故答案为:3.14.若函数f (x )的定义域是[2,5],则函数y =f(2x−3)√x 2−2x−3的定义域是 (3,4] .解:由题意得,{2≤2x −3≤5x 2−2x −3>0,解得3<x ≤4.故答案为:(3,4].15.已知f (x )=x 2+|x |+2;则不等式f (x +1)<8的解集是 (﹣3,1) .解:对于f (x )=x 2+|x |+2,当x ≥0时,f (x )=x 2+x +2,当x <0时,f (x )=x 2﹣x +2, 所以f(x)={x 2+x +2,x ≥0x 2−x +2,x <0,当x +1≥0时,即x ≥﹣1时,不等式f (x +1)<8可化为(x +1)2+(x +1)+2<8,即x2+3x﹣4<0,解得﹣4<x<1,所以﹣1≤x<1;当x+1<0时,即x<﹣1时,不等式f(x+1)<8可化为(x+1)2﹣(x+1)+2<8,即x2+x﹣6<0,解得﹣3<x<2,所以﹣3<x<﹣1;综上,不等式f(x+1)<8的解集为(﹣3,1).故答案为:(﹣3,1).16.如图,已知等腰三角形中一腰上的中线长为√6,则该等腰三角形的面积最大值为4.解:如图所示:作CE⊥AB于E,DF⊥AB于F,则AE=EB,EF=FB,设DF=h,FB=b,故AF=3b,在△ADF中:6=9b2+h2≥2√9b2×ℎ2=6bh,即bh≤1,当且仅当9b2=h2,即h=√3,b=√33时等号成立,S△ABC=2S△ABD=4bh≤4.故答案为:4.四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)(1)已知x+x﹣1=3,求是x 12+x−12值;(2)计算:2−12+40√2+(1−√2)−1−823+2lg5lg20+(lg2)2.解:(1)由于(x 12+x12)2=x+x−1+2=5,又x 12+x−12>0,故x12+x12=√5;(2)原式=√222−(√2+1)﹣4+2=﹣3.18.(12分)已知函数f(x)=x+1x.(1)判断函数f(x)在[1+∞)上的单调性,并用单调性的定义证明;(2)求函数g(x)=√x2+4x2+5的值域.解:(1)函数f(x)在[1+∞)上单调递增,证明如下:任取x1,x2∈[1,+∞),且x1<x2,则x2﹣x1>0,x2x1>1,则f(x2)−f(x1)=(x2+1x2)−(x1+1x1)=x2−x1+1x1=(x2−x1)(x2x1−1)x2x1>0,∴f(x2)﹣f(x1)>0,即f(x1)<f(x2),∴函数f(x)是[1,+∞)上的增函数.(2)令t=√x2+4(t≥2),则t2﹣4=x2,于是g(x)的值域即为求ℎ(t)=tt2+1=1t+1t的值域,由(1)知函数y=t+1t(t≥2)在[2,+∞)是单调递增的,所以当t=2时,即√x2+4=2,即x=0处y取最小值y min=2+12=52,所以0<1t+1t≤25,所以函数g(x)=√x2+4x2+5的值域为(0,25].19.(12分)已知集合A={x|x2+ax﹣a﹣1<0,a∈R},B={x|2<x<3}.(1)若0∈A且2∉A,求实数a的取值范围;(2)设p:x∈A,q:x∈B,若p是q的必要不充分条件,求实数a的取值范围.解:(1)由0∈A且2∉A,得{−a−1<0a+3≥0,∴a>﹣1,∴a的取值范围为(﹣1,+∞);(2)由p是q的必要不充分条件,∴B⫋A,∵x2+ax﹣a﹣1=(x﹣1)(x+a+1)<0,且B={x|2<x<3},故A={x|1<x<﹣a﹣1},∴{1<−a−1−a−1≥3,∴a≤﹣4,∴a的取值范围为(﹣∞,﹣4].20.(12分)为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.大学毕业生袁阳按照相关政策投资销售本市生产的一种新型节能灯,已知这种节能灯的成本价为每件20元,出厂价为每件24元,每月的销售量y(单位:件)与销售单价x(单位:元)之间的关系近似满足一次函数:y=﹣10x+600.(1)设袁阳每月获得的利润为ω(单位:元),写出每月获得的利润ω与销售单价x 的函数关系;(2)物价部门规定,这种节能灯的销售单价不得高于40元.如果袁阳想要每月获得的利润不小于3000元,那么政府每个月为他承担的总差价的取值范围是多少元?解:(1)依题意可知每件的销售利润为(x ﹣20)元,每月的销售量为(﹣10x +600)件,所以每月获得的利润ω与销售单价x 的函数关系为ω=(x ﹣20)(﹣10x +600)(20≤x ≤60);(2)由每月获得的利润不小于3000元,即(x ﹣20)(﹣10x +600)≥3000,即x 2﹣80x +1500≤0,即(x ﹣30)(x ﹣50)≤0,解得30≤x ≤50,又因为这种节能灯的销售单价不得高于40元,所以30≤x ≤40,设政府每个月为他承担的总差价为p 元,则p =(24﹣20)(﹣10x +600)=﹣40x +2400,由30≤x ≤40,得800≤p ≤1200,故政府每个月为他承担的总差价的取值范围为[800,1200]元.21.(12分)已知log a b +log b a =52,a b =b a ,其中a >b >1. (1)求实数a ,b 的值;(2)若函数f (x )=m •a x +b x +1在定义域[1,2]上为增函数,求实数m 的取值范围.解:(1)设log b a =k ,则k >1,因为log a b +log b a =52, 可得k +1k =52,所以k =2,则a =b 2. 又a b =b a ,所以b 2b =b b 2,即2b =b 2,又a >b >1,解得b =2,a =4.(2)由(1)以及函数f (x )=m •a x +b x +1,得f (x )=m •4x +2x +1,令t =2x ,x ∈[1,2],则y =mt 2+t +1,t ∈[2,4].为使f (x )在[1,2]上为增函数,则m =0或{m >0−12m <2或{m <0−12m≥4,解得m =0或m >0或−18≤m <0. 综上,m 的取值范围为[−18,+∞). 22.(12分)已知函数f (x )的定义域为R .当x >0时,f (x )=2x +a ,a ∈R .(1)若函数f (x )为奇函数,求函数f (x )的表达式;(2)若函数f (x )是奇函数且在R 上单调,求实数a 的取值范围;(3)在(1)的条件下,若关于x 的方程((f (x )+2+a )(f (x )﹣a )=0有三个不等的实数根,求实数a 的取值范围.解:(1)当x =0时,f (0)=0;当x <0时,f (x )=﹣f (﹣x )=﹣(2﹣x +a )=﹣2﹣x ﹣a ;故f(x)={2x +a ,x >00,x =0−2−x −a ,x <0.(2)因为当x >0时,f (x )=2x +a 是单调增函数,所以若f (x )在R 上单调,则f (x )必为R 上的单调增函数,只须满足﹣20﹣a ≤0≤20+a ,得a ≥﹣1,实数a 的取值范围是[﹣1,+∞);(3)由方程(f (x )+2+a )(f (x )﹣a )=0⋯(*),可得f (x )=﹣2﹣a 或f (x )=a ,由题意可知,f (x )不可能是单调函数,故a <﹣1,又因为方程(*)有三个不等的实数根,且a <1+a ,所以只须1+a <﹣2﹣a <﹣1﹣a 且﹣2﹣a ≠0,解得a <−32且a ≠﹣2, 综上所述,a 的取值范围为(−∞,−2)∪(−2,−32).。
高一数学期中试题及答案

高一数学期中试题及答案一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-4x+m的图象与x轴有两个交点,则m的取值范围是()。
A. m>4B. m<4C. m≥4D. m≤42. 已知函数f(x)=3x-2,g(x)=2x+1,若f[g(x)]=7x-1,则x的值为()。
A. 1B. 2C. 3D. 43. 已知集合A={x|x^2-5x+6=0},B={x|x^2-2x-3=0},则A∩B=()。
A. {1}B. {2}C. {1,2}D. {3}4. 若函数f(x)=x^3-3x+1,则f'(x)=()。
A. 3x^2-3B. x^2-3xC. 3x^2-9x+3D. x^3-35. 已知等差数列{an}的前n项和为Sn,若a1=1,a4=7,则S5=()。
A. 25B. 26C. 27D. 286. 若函数f(x)=x^2-6x+8,g(x)=2x+3,则f[g(x)]的表达式为()。
A. 4x^2-9x+14B. 4x^2-12x+17C. 4x^2-15x+19D. 4x^2-18x+227. 已知函数f(x)=x^2-4x+3,若f(x)>0,则x的取值范围是()。
A. x<1或x>3B. x<3或x>1C. x<1或x>3D. x<-1或x>38. 已知等比数列{bn}的前n项和为Tn,若b1=2,q=2,则T4=()。
A. 30B. 32C. 34D. 369. 若函数f(x)=x^3-3x+1,则f(-x)=()。
A. -x^3+3x-1B. -x^3+3x+1C. -x^3-3x-1D. -x^3-3x+110. 已知函数f(x)=x^2-6x+8,若f(x)=0,则x的值为()。
A. 2B. 4C. 2或4D. 无解二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,若f(x)=0,则x的值为_________。
河南省濮阳市第一高级中学2021-2022学年高一下学期期中质量检测文科数学试题(B卷)

濮阳市一高2021级高一下学期期中质量检测文科数学试题一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设命题2:,2n P n N n ∃∈>,则P ⌝为A .2,2n n N n ∀∈>B .2,2n n N n ∃∈≤C .2,2nn N n ∀∈≤D .2,2nn N n ∃∈=2.设集合(){}2log 12A x x =-<,{}5B x x =<,则()A .A B=B .B A⊆C .A B⊆D .A B ⋂=∅3.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3:5:7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n=()A .45B .54C .90D .1264.已知正数,x y 满足811x y+=,则2x y +的最小值是A .18B .16C .8D .105.设α,β是两个不同的平面,m 是直线且m α⊂.“m β ”是“αβ ”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件6.已知i 为虚数单位,则232019i i i i ++++ 等于A .i B .1C .i-D .1-7.如图,长方体1111ABCD A B C D -中,145AD D ∠=︒,130CDC ∠=︒,那么异面直线1AD 与1DC 所成角的余弦值是()A B C D 8.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为()A .a b c<<B .b a c<<C .b<c<aD .c<a<b9.设,αβ是两个不同的平面,l 是一条直线,以下命题正确的是A .若,l ααβ⊥⊥,则l β⊂B .若//,//l ααβ,则l β⊂C .若,//l ααβ⊥,则l β⊥D .若//,l ααβ⊥,则l β⊥10.已知平面向量a ,b ,c满足20a b c +-= ,3a b == ,c = 则b 与c的夹角为()A .6πB .3πC .2πD .23π11.ABC 中,a 、b 、c 分别是内角A 、B 、C 的对边,若2224ABCa b c S +-=且()0||||AB AC BC AB AC +⋅=,则ABC 的形状是()A .有一个角是6π的等腰三角形B .等边三角形C .三边均不相等的直角三角形D .等腰直角三角形12.已知定义域为(0,)+∞的函数()2log 1,0434x x f xx ⎧-<<⎪=⎨≥⎪⎩,若,,a b c 是三个互不相同的正数,且()()()f a f b f c ==,则abc 的范围是()A .(4,9)B .(16,36)C .(2,9)D .(4,36)二、填空题:本大题共4小题,每小题5分,共20分.13.若函数y =R ,则实数k 的取值范围是______.14.在山顶铁塔上B 处测得地面上一点A 的俯角60α=︒,在塔底C 处测得点A 的俯角45β=︒,已知铁塔BC 部分高32米,山高CD =_______.15.已知()2,1a =--,(),1b λ= ,若a 与b 的夹角α为钝角,则实数λ的取值范围为______.16.在平行四边形ABCD中,AB =3BC =,且cos 3A =,以BD 为折痕,将BDC 折起,使点C 到达点E 处,且满足AE AD =,则三棱锥E ABD -的外接球的表面积为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知复数z 1满足:|z 1|=1+3i ﹣z 1.(1)求z 1(2)若复数z 2的虚部为2,且21z z 是实数,求2z .18.已知()22sin ,cos a x x =,,2)b x = ,()f x a b =⋅ .(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.19.在ABC 中,内角,,A B C 所对的边分别为,,a b ccos sin B b C =.(1)求角B 的大小;(2)若b =,ABC的面积为ABC 的周长.20.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?21.三棱锥V ABC -中,平面VAB ⊥平面ABC ,VAB ∆为等边三角形,AC BC ⊥且AC BC ==O 、M 分别为AB 、VA 的中点.(1)求证://VB 平面MOC ;(2)求证:平面MOC ⊥平面VAB ;(3)求三棱锥V ABC -的体积.22.如图,M 为△ABC 的中线AD 上一点,2AM MD =,过点M 的直线分别与边AB ,AC交于点P 、Q (均异于点A ),设AP x AB =,AQ y AC = ,记x 的关系式为()y f x =.(1)求函数()y f x =的解析式和定义域;(2)设APQ △的面积为S 1,ΔABC 的面积为S 2,且12S kS =,求实数k 的取值范围.1.C 【详解】特称命题的否定为全称命题,所以命题的否命题应该为2,2n n N n ∀∈≤,即本题的正确选项为C.2.C 【分析】先由对数函数的单调性化简集合,再由集合知识判断即可.【详解】(){}(){}{}222log 12log 1log 415A x x x x x x =-<=-<=<< ∴A 错误,B 错误,C 正确,D 错误.故选:C 3.C 【分析】由分层抽样的特点,用A 种型号产品的样本数除以A 种型号产品所占的比例,即得样本的容量n .【详解】解:A 种型号产品所占的比例为313575=++,118905÷=,故样本容量n=90.故选C .【点睛】本题考查分层抽样的定义和方法,各层的个体数之比等于各层对应的样本数之比,属于基础题.4.A 【分析】()8122x y x y x y ⎛⎫+=++ ⎪⎝⎭然后运用基本不等式求出最小值【详解】811x y+=()811622101018y x x y x y x y x y ⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当16y xx y=,即12x =,3y =时,2x y +取得最小值18故选A 【点睛】本题主要考查了基本不等式在最值问题中的应用,本题运用了均值不等式,属于基础题5.B 【详解】试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.6.D 【分析】利用)ni n N *∈(的周期求解.【详解】由于234110i i i i i i +++=--+=,且)ni n N *∈(的周期为4,2019=4504+3⋅,所以原式=2311i i i i i ++=--=-.故选D 【点睛】本题主要考查复数的计算和)ni n N *∈(的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.7.C 【分析】由边角关系得出长方体的长宽高,连接1,BC BD ,由11//AD BC 得出异面直线1AD 与1DC 所成角为1BC D ∠,最后由余弦定理得出答案.【详解】设11DD =,则111,1,2,AD CC DC DC ====连接1,BC BD ,因为11//AD BC ,所以异面直线1AD 与1DC 所成角为1BC D ∠或其补角又112,cosBD BC BC D =∴∠故选:C8.D 【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系.【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<.故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:x y a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等.9.C 【详解】对于A 、B 、D 均可能出现l //β,而对于C 是正确的.10.A【分析】根据20a b c +-= 可得2a c b =-,两边平方即可根据向量数量积运算方法求出b 与c 的夹角的余弦,从而求出b 与c的夹角.【详解】2222024cos ,4a b c a c b a c b c b c b+-=⇒=-⇒=-⋅+ cos ,c ⇒=222|4|||24c b a b c +-==,[],0,b c π∈ ,,6b c π∴= .故选:A .11.D 【分析】由()0||||AB AC BC AB AC +⋅=推导可得BAC ∠的平分线垂直于边BC ,进而可得b c =,再由给定面积导出90BAC ∠= 得解.【详解】如图所示,在边AB 、AC 上分别取点D 、E ,使||AB AD AB = 、||ACAE AC =,以AD 、AE 为邻边作平行四边形ADFE ,则AF AD AE =+,显然||||1AD AE == ,因此平行四边形ADFE 为菱形,AF 平分BAC ∠,而()0||||AB AC BC AB AC +⋅=,则有0AF BC ⋅= ,即AF BC ⊥,于是得ABC 是等腰三角形,即b c =,令直线AF 交BC 于点O ,则O 是BC 边的中点,12ABC S a AO =⋅ ,而2222144ABCa b c S a +-== ,因此有1122AO a BC ==,从而得90BAC ∠= ,所以ABC 是等腰直角三角形.故选:D 12.B 【分析】利用函数的图象可得1249a b c <<<<<<,然后利用对数函数的性质可得4ab =,即得.【详解】作出函数()y f x =的图象,不妨设a b c <<,则1249a b c <<<<<<,∴22log 1log 1a b -=-,∴()22log 1log 1a b --=-,即()222log log log 2a b ab +==,∴4ab =,∴()416,36abc c =∈.故选:B.13.[)1,+∞【分析】把函数y =R 转化为2210kx x -+≥对任意x R ∈恒成立,然后对k 分类讨论得答案.【详解】∵函数y =R ,∴2210kx x -+≥对任意x R ∈恒成立,当0k =时,不等式化为210x -+≥不成立;当0k ≠时,则0440k k >⎧⎨=-≤⎩,解得1k ≥,综上,实数k 的取值范围是[)1,+∞.故答案为[)1,+∞.【点睛】本题考查函数的定义域及其求法,考查数学转化思想方法及分类讨论的数学思想方法,是中档题.14.1)米【分析】设AD x =米,在直角三角形中表示出,CD CB ,利用CB 的长求得x ,从而得CD .【详解】由60α=︒,45β=︒易得60BAD ∠=︒,45CAD ∠=︒,设AD x =,则tan tan 45CD AD CAD AD x =⋅∠=⋅︒=,tan tan 60BD AD BAD AD =⋅∠=⋅︒=,32BC BD CD x ∴=-=-=,1)x ∴==+.15.()1,22,2⎛⎫-⋃+∞ ⎪⎝⎭【分析】由题意得出0a b ⋅< 且a 与b 不共线,利用向量的坐标运算可求出实数λ的取值范围.【详解】由于a 与b 的夹角α为钝角,则0a b ⋅< 且a 与b 不共线,()2,1a =--r Q ,(),1b λ= ,2102λλ--<⎧∴⎨-≠-⎩,解得12λ>-且2λ≠,因此,实数λ的取值范围是()1,22,2⎛⎫-⋃+∞ ⎪⎝⎭,故答案为:()1,22,2⎛⎫-⋃+∞ ⎪⎝⎭.【点睛】本题考查利用向量的夹角求参数,解题时要找到其转化条件,设两个非零向量a 与b 的夹角为θ,θ为锐角0a b a b ⎧⋅>⇔⎨⎩ 与不共线,θ为钝角0a b a b ⎧⋅<⇔⎨⎩与不共线.16.13π【解析】先由余弦定理求得3BD =,在四面体ABED 中,根据棱长关系可知,将四面体ABED 放在长方体中,则三棱锥E ABD -的外接球转化为长方体的外接球,根据棱长关系求出长方体的长、宽、高,利用长方体的体对角线等于外接球的直径,求出外接球半径,从而可求得外接球的表面积.【详解】解:在ABD △中,AB =3BC =,且cos A =由余弦定理,得2222cos BD AB AD AB AD A =+-⋅,即:(22232393BD =+-⨯⨯=,解得:3BD =,在四面体ABED 中,3AE BD ==,3AD BE ==,AB ED ==,三组对棱长相等,可将四面体ABED 放在长方体中,设长方体的相邻三棱长分别为x ,y ,z ,设外接球半径为R ,则229x y +=,229y z +=,228z x +=,则22213x y z ++=,即2R =R =所以,四面体E ABD -外接球的表面积为:2134413π4R ππ=⨯=.故答案为:13π.【点睛】本题考查外接球的表面积,涉及长方体的外接球的性质,考查转化思想和计算能力.17.(1)z 1=-4+3i ;(2)2823z i =--.【分析】(1)设z 1=x +yi (x ,y ∈R ),代入|z 1|=1+3i ﹣z 1,整理后利用复数相等的条件列式求得x ,y 的值,则z 1可求;(2)令z 2=a +2i ,a ∈R ,由(1)知,z 1=-4+3i ,代入21z z ,利用复数代数形式的乘除运算化简,再由虚部为0求得a 值,则答案可求.【详解】解:(1)设z 1=x +yi (x ,y ∈R ),13()(1)(3)i x yi x y i =+-+=-+-,故1x y-=-⎪⎩,解得43x y =-⎧⎨=⎩,∴z 1=﹣4+3i ;(2)令z 2=a +2i ,a ∈R ,由(1)知,z 1=-4+3i ,则212(2)(43)43(43)(43)z a i a i i z i i i ++--==-+-+--=46382525a a i -++-,∵21z z 是实数,∴3a +8=0,即a =83-∴2823z i =-+,则2823z i =--.18.(1)最小正周期为π,单调减区间为2,,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(2)最大值为3,最小值为0.【分析】(1)利用向量的坐标运算化简,再利用整体的思想.(2)根据(1)的结果及x 的范围求出26x π+的范围,从而计算出函数的最值.【详解】解:2(1)(2sin ,cos )a x x =,,2)b x = ,由2()sin cos 2cos f x a b x x x=⋅=+2cos 212sin(2)16x x x π=++=++,()f x \的最小正周期22T ππ==,由3222,262k x k k Z πππππ+≤+≤+∈,得:2,63k x k k ππ+π≤≤+π∈Z ,()f x \的单调递减区间为2,63k k ππππ⎡⎤++⎢⎥⎣⎦,Z k ∈;()2由0,2x π⎡⎤∈⎢⎥⎣⎦可得:72,,666x πππ⎡⎤+∈⎢⎥⎣⎦当7266x ππ+=时,函数()f x 取得最小值为7210,6sin π+=当262x ππ+=时,函数()f x 取得最大值为213,2sin π+=故得函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为0.19.(1)3π;(2)10+【分析】(1cos sin B b C =统一成角,化简可得tan B =B 的大小;(2)由ABC的面积为24ac =,再利用余弦定理可得22=52a c +,从而可求出10a c +=,进面可求出ABC 的周长【详解】(1)由正弦定理sin sin b c B C=,得cos sin sin C B B C =,在ABC 中,因为sin 0C ≠sin B B=故tan B =又因为0<B <π,所以3B π=,(2)由已知,得1sin 2ac B =.又3B π=,所以24ac =.由已知及余弦定理,得222cos 28a c ac B +-=,所以22=52a c +,从而()2100a c +=.即10a c +=又b =,所以ABC的周长为10+【点睛】此题考查正弦定理和余弦定理的应用,考查三角形的面积公式的应用,考查计算能力,属于基础题20.(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.21.(1)证明见解析;(2)证明见解析;(3.【分析】(1)由三角形中位线定理可得//OM VB ,再由线面平行的判定定理可得//VB 平面MOC ;(2)由于AC BC =,O 为AB 的中点,可得OC AB ⊥,再由平面VAB ⊥平面ABC ,可证得OC ⊥平面VAB ,然后利用面面垂直的判定定理可得平面MOC ⊥平面VAB ;(3)由于OC ⊥平面VAB ,所以求13C VAB VAB V OC S -∆=⋅⋅,可得三棱锥V ABC -的体积【详解】(1)证明:∵O 、M 分别为AB 、VA 的中点,∴//OM VB ,又∵VB ⊄平面MOC ,OM ⊂平面MOC ,∴//VB 平面MOC ;(2)证明:∵AC BC =,O 为AB 的中点,∴OC AB ⊥,又∵平面VAB ⊥平面ABC ,平面VAB 平面ABC AB =,且OC ⊂平面ABC ,∴OC ⊥平面VAB ,又OC ⊂平面MOC ,∴平面MOC ⊥平面VAB ;(3)解:在等腰直角三角形ACB中,AC BC ==∴2AB =,1OC =,∴等边三角形VAB的面积VAB S ∆=,又∵OC ⊥平面VAB ,∴三棱锥C VAB -的体积133C VAB VAB V OC S -∆=⋅⋅=,∴V ABC C VAB V V --=22.(1)31x y x =-,定义域为1,12⎡⎤⎢⎥⎣⎦;(2)41,92⎡⎤⎢⎥⎣⎦.【分析】(1)利用,,P M Q 三点共线求得函数()y f x =的解析式,根据,x y 的取值范围求得函数的定义域.(2)求得12,S S 的表达式,由此求得k 的表达式,进而求得k 的取值范围.【详解】(1)()2211133233AM AD AB AC AB AC ==⨯⨯+=+ 1111113333AP AQ AP x y x y =⋅+⋅=+ ,由于,,P M Q 三点共线,所以11133x y+=,1111313,3,31x x y x y y x x x -+==-==-.由0101x y <≤⎧⎨<≤⎩得01011103120131x x x x x x x <≤⎧<≤⎧⎪⇒⇒≤≤⎨⎨<≤-<≤⎩⎪-⎩,所以函数()y f x =的定义域为1,12⎡⎤⎢⎥⎣⎦.(2)1211sin ,sin 22S AP AQ BAC S AB AC BAC =⋅⋅∠=⋅⋅∠ ,所以21231AP AQ S x k xy S x AB AC⋅====-⋅ .设31t x =-,3133,31222x x ≤≤≤-≤,故122t ≤≤,13t x +=,22121111322992t t t k t t t t t +⎛⎫ ⎪++⎛⎫⎛⎫⎝⎭===++≤≤ ⎪⎪⎝⎭⎝⎭,对于函数1122y t t t ⎛⎫=+≤≤ ⎪⎝⎭,其在1,12⎡⎤⎢⎥⎣⎦上递减,在[]1,2上递增,当12t =时,52y =,当2t =时,52y =,当1t =时,2y =,所以522y ≤≤,故19422tt≤++≤,41112992tt⎛⎫≤++≤⎪⎝⎭,所以k的取值范围是41, 92⎡⎤⎢⎥⎣⎦.【点睛】要求参数的取值范围,首先把参数的表达式求出来,根据表达式的结构来求解取值范围.。
2023~2024学年第一学期高一期中考试数学试题[含答案]
![2023~2024学年第一学期高一期中考试数学试题[含答案]](https://img.taocdn.com/s3/m/8312445242323968011ca300a6c30c225801f019.png)
在
上单调递增,
f x f 1 1
min
,C 正确;
D
选项,令
2x2
3x
0
,解得
x
3 2
或
0(舍去),
f x
故
的图象与 x 轴只有 1 个交点,D 错误.
故选:ABC
11.
已知关于 x 的不等式
ax²
2bx
3c
0
x
的解集为
|
3
x
1 ,则下列结论正确的是(
A. 充要条件
B. 充分不必要条件
C. 必要不充分条件
D. 既不充分又不必要条件
【答案】C
【解析】
【分析】利用充分、必要条件的定义即可判断.
【详解】由 a b 得不到 ac2 bc2 ,如 c 0 ,故充分性不成立,
反之,由 ac2 bc2 可以得到 a b ,故必要性成立,
则“ a b ”是“ ac2 bc2 ”的必要不充分条件.
若 m 2 ,则 f (x) x2 ,函数 f (x) 在 (0, ) 上为增函数,不符合题意,舍去;
若m
1 ,则
f
(x)
1 x
,函数
f
(x) 在 (0, ) 上为减函数,符合题意;
所以实数 m 的值是 1.
故选:B.
4. 已知 a, b, c 是实数,则“ a b ”是“ ac2 bc2 ”的( )
,
2
x
5
0
【答案】C
【解析】
【分析】“存在一个符合”的否定为“任一个都不符合”
【详解】命题
p: x R
3x2
,使得
2
x
5
0
【高一】2021高一数学上学期文科期中试卷(附答案)

【高一】2021高一数学上学期文科期中试卷(附答案)昆明三中2021――2021学年上学期期中考试高一数学试卷本试卷分第i卷(,请答在机读卡上)和第ii卷两部分,满分共100分,考试用时120分钟。
第一卷一、:(每小题3分,共计36分,请将正确选项涂在机读卡上。
)1.如果集合已知,则=()a.(1,3)b.[1,3]c.{1,3}d.{1,2,3}2.以下组中的两个功能是相同的功能()a.,b.,c、,d3.下列函数中,在上单调递增的是().a、不列颠哥伦比亚省。
4.设集合若则的范围是()a、不列颠哥伦比亚省。
5.若,则的定义域为()a、不列颠哥伦比亚省。
6.设,则的大小关系是()a、不列颠哥伦比亚省。
7.已知,且则的值为()a、 4b.0c.d。
8.若函数,则=()a、不列颠哥伦比亚省。
9.设偶函数满足,则不等式的解集是()a、或者B.或者c.或d.或10.如果和()a.b.c.3d.411.方程的根是,方程的根是,然后()a.b.c.d.的大小关系无法确定12.设置为实数,。
请注意,如果集合中的元素数分别是集合中的元素数,则不可能得出以下结论()a.且b.且c、 D.和昆明三中2021――2021学年上学期期中考试高一数学试卷(答案)一.选择题一百二十三兆四千五百六十七亿八千九百一十万一千一百一十二ddcaabadbbad2、头衔13.314.1015.116.17.18.(4)19.20.(1)(2)21.1)当x<0时,-x>0,f(x)=-(x)2+2(-x)=-x2-2x,f(x)是一个奇数函数,f(x)=-f(-x)=x2+2x,所以=2.F(x)的图像被省略(2)由(1)知=,从图中可以看出,它在[-1,1]上单调增加。
若要在[-1,2]上单调递增,只需求解 22.解(1)取是取保持任何常数∴为奇函数.(2)那就选吧又为奇函数是一个减法函数∞, + ∞)对任意,恒有和∴在[-3,3]上的最大值为6(3) ∵ 是一个奇怪的函数,∴整理原式得进一步提供而在(-∞,+∞)上是减函数,当时,,当时,当时,,当时,什么时候。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 已知集合A={1,2,3},B={2,3,4},求A∪B的值。
A. {1,2,3}B. {1,2,3,4}C. {2,3}D. {1,4}2. 函数f(x)=2x^2-3x+1在区间[-1,2]上的最大值是多少?A. 1B. 5C. 7D. 93. 已知等差数列的首项a1=3,公差d=2,求第10项的值。
A. 23B. 25C. 27D. 294. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π5. 已知直线y=-3x+5与x轴的交点坐标是什么?A. (0, 5)B. (1, 2)C. (5/3, 0)D. (0, 0)6. 已知sin(α)=3/5,α∈(0,π),求cos(α)的值。
A. 4/5B. -4/5C. √(1-(3/5)^2)D. -√(1-(3/5)^2)7. 一个函数f(x)是奇函数,且f(1)=2,求f(-1)的值。
A. 2B. -2C. 0D. 18. 已知一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 7C. 8D. 99. 已知一个函数f(x)=x^3-6x^2+11x-6,求f(2)的值。
A. -2B. 0C. 2D. 410. 已知一个等比数列的首项a1=2,公比q=3,求第5项的值。
A. 162B. 243C. 486D. 729二、填空题(每题4分,共20分)11. 已知函数f(x)=x^2-4x+3,求对称轴的方程。
___________________________12. 已知等比数列的前n项和为S_n=3^n-1,求首项a1。
___________________________13. 已知正弦定理公式为a/sinA=b/sinB=c/sinC,求三角形ABC的面积,已知a=5,sinA=3/5。
___________________________14. 已知某函数的导数f'(x)=6x^2-4x+1,求f'(1)的值。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
2023-2024学年安徽省高一(上)期中数学试卷【答案版】
2023-2024学年安徽省高一(上)期中数学试卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合M ={﹣1,0,1},集合N ={x ∈R |x 2=2x },则M ∩N =( ) A .{0,1}B .{﹣1,0}C .{0}D .∅2.已知命题p :∃x ∈R ,4x >x 4,则¬p 是( ) A .∃x ∈R ,4x ≤x 4 B .∀x ∈R ,4x <x 4C .∀x ∈R ,4x >x 4D .∀x ∈R ,4x ≤x 43.若α是β的必要不充分条件,γ是β的充要条件,则γ是α的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知幂函数f (x )=x α(α∈Z ),具有如下性质:f 2(1)+f 2(﹣1)=2[f (1)+f (﹣1)﹣1],则f (x )是( ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .是非奇非偶函数5.函数f(x)={x +3,x ≤0√x ,x >0,且f (a ﹣3)=f (a +2)(a ∈R ),则f (a )=( )A .2B .1C .√2D .06.已知实数a ,b ,c 满足3×2a ﹣2b +1=0,且a =c +x 2﹣x +1(x ∈R ),则a ,b ,c 的大小关系是( ) A .a >b >cB .b >a >cC .a >c >bD .c >b >a7.水池有两个相同的进水口和一个出水口,每个口进出的速度如图甲乙所示.某天零点到六点该水池的蓄水量如图丙所示(至少打开一个水口).给出以下三个论断:①零点到三点只进水不出水;②三点到四点不进水只出水;③四点到六点不进水也不出水.其中正确论断的序号是( )A .①②B .②③C .①③D .①8.设函数f(x)=√ax 2+bx +c (a ,b ,c ∈R ,且a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a =( ) A .﹣4B .﹣5C .﹣6D .﹣8二、选择题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年第二学期第三学段考试
高 一 (文科)数 学 试 题
命题教师:吕颖锋 本试卷分选择题、非选择题两部分,共4页,满分150分,考试用时120分钟. 注意事项:
1.答卷前,考生务必用黑色字迹的签字笔将自己的校名、姓名、考号填写在答题卡的指定位置.
2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.
3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
第一部分 选择题(共50分)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.-1020°是第 象限的角.
A .第一象限
B .第二象限
C .第三象限
D .第四象限
2.若cos 0sin 0,θθθ<<且则角的终边所在象限是
A .第一象限
B .第二象限
C .第三象限
D .第四象限 3.设tan ,tan αβ是方程2320x x -+=的两个根,则tan()αβ+的值为
A .3-
B .1-
C .1
D .3
4.设02x π≤≤,sin cos x x =-, 则
A. 0x π≤≤
B.
744x ππ≤≤ C.544x ππ≤≤ D.322
x ππ≤≤ 5.在四边形ABCD 中,若AB DC = ,且AB AD = ,则四边形ABCD 一定是 A .矩形 B .菱形 C .正方形 D .平行四边形
6.已知△ABC ,点P 满足(),()||||
AB AC AP R AB AC =λ+λ∈ ,则点P 的轨迹是 A .BC 边上的高所在直线 B .BC 边上的中线所在直线
C .A ∠平分线所在直线
D .BC 边上中垂线所在直线
7.设a 是非零向量,λ是非零实数,下列结论中正确的是
A .a 与λa 的方向相反
B .-λ≥a a
C .a 与2λa 的方向相同
D .-λ≥λ⋅a a
8.设i ,j 是平面内所有向量的一组基底,则下列四组向量中,不.
能作为基底的是 A. 2 i -3j 与3i -2j B. i +j 与i -j C. i 与2 j D. 16i -13j 与23 j -1
3i 9.已知ABC ∆中,点D 在BC 边上,且2CD DB = , CD r AB sAC =+ ,则r s +的值是
A .23
B .43
C .-3
D .0
10.若两个函数的图像经过若干次平移后能够重合,则称这两个函数是“同形函数”,给出下
列三个函数:123()sin cos ;()()sin .f x x x f x x f x x =+=则
A .123(),(),()f x f x f x 为同形函数
B .12(),()f x f x 为同形函数,且它们与3()f x 不是同形函数
C .13(),()f x f x 为同形函数,且它们与2()f x 不是同形函数
D .23(),()f x f x 为同形函数,且它们与1()f x 不是同形函数
第二部分 非选择题(共100分)
二、填空题:本大题共4小题,每小题5分,共20分.
11.若向量a =(1,3),b =(-2,5),则-2a +b = .
12.已知1(2sin )3=αa ,,13
(cos )22
=αb ,,且//a b ,则锐角α的值为 . 13.已知锐角A ,B ,C 满足sin sin sin A B C -=-,且c
o s c o s c o s A B C -=,则A -B = . 14. 在下列五个命题中, ①函数3sin(2)2
y x =-π是偶函数; ②已知1cos 2=α,且α∈[0,2π],则α的取值集合是{3
π} ; ③直线6x =π是函数2cos(2)3
y x =+π图象的一条对称轴; ④△ABC 中,若sinA>sinB ,则A>B ;
⑤函数y =|cos x |的周期是π;
把你认为正确的命题的序号都填在横线上 .
三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.
15. (本小题满分12分)
已知A (1,1),B (3,-1),C (a ,b ).
(1)若2= AC AB ,求点C 的坐标.
(2)若A ,B ,C 三点共线,求a , b 的关系式;
16.(本小题满分12分)
(1)已知3770,,sin(2),sin(())22299
πππα∈
β∈π+β=π-α+β=(),(),,求sin α;
(2)已知0,2πα∈(),若cos sin =5α-α-2sin cos cos 11tan αα-α+-α的值.
17.(本小题满分14分) 已知函数()sin()(,0,0)2f x A x x R π=ω+ϕ∈ω><ϕ<
的部分图像如图所示.
(1)求函数()f x 的解析式;
(2)求函数()()()1212g x f x f x ππ=-
-+的单调递增区间.
18.(本小题满分14分)
将函数sin cos cos sin (0,0)y x x =ωϕ-ωϕω><ϕ<π的图像上各点的横坐标伸长为原来的2倍(纵坐标不变),再向左平移
6π个单位,得到函数()y f x =的图像过点(,0)6π,且相邻两对称轴间的距离为
2π. (1)求,ωϕ的值;
(2)若锐角ABC ∆中,2=B A C +,求()f A 的取值范围.
19.(本小题满分14分)
已知函数2()4cos sin ()22cos 42
x f x x x x π=++-. (1)求()f x 的最小正周期和对称中心;
(2)当[,]36
x ππ∈-
时,求()f x 的最大值和最小值. (3)若α为第二象限的角,且2()2123f απ+=-,求cos 21tan α-α 的值;
20.(本小题满分14分)
函数()cos 22cos 43f x x m x m =-+-.
(1)求当1m =时,()f x 的取值范围;
(2)若()0f x =有解,求实数m 的取值范围.;
(3)若对于任意x R ∈,都有()0f x > 恒成立,求实数m 的取值范围.。