高考数学总复习优编增分练:8+6分项练13函数的图象与性质理

合集下载

高考数学专题《函数的图象》习题含答案解析

高考数学专题《函数的图象》习题含答案解析

专题3.7 函数的图象1.(2021·全国高三专题练习(文))已知图①中的图象是函数()y f x=的图象,则图②中的图象对应的函数可能是()A.(||)y f x=B.|()|y f x=C.(||)y f x=-D.(||)y f x=--【答案】C【解析】根据函数图象的翻折变换,结合题中条件,即可直接得出结果.【详解】图②中的图象是在图①的基础上,去掉函数()y f x=的图象在y轴右侧的部分,然后将y轴左侧图象翻折到y轴右侧,y轴左侧图象不变得来的,∴图②中的图象对应的函数可能是(||)y f x=-.故选:C.2.(2021·浙江高三专题练习)函数()lg1y x=-的图象是()A.B.C.练基础D .【答案】C【解析】将函数lg y x =的图象进行变换可得出函数()lg 1y x =-的图象,由此可得出合适的选项.【详解】将函数lg y x =的图象先向右平移1个单位长度,可得到函数()lg 1y x =-的图象,再将所得函数图象位于x 轴下方的图象关于x 轴翻折,位于x 轴上方图象不变,可得到函数()lg 1y x =-的图象.故合乎条件的图象为选项C 中的图象.故选:C.3.(2021·全国高三专题练习(理))我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学的学习和研究中,经常用函数的图象来研究函数的性质,也经常用函数的解析式来研究函数图象的特征.若函数()y fx =在区间[],a b 上的图象如图,则函数()y f x =在区间[],a b 上的图象可能是( )A .B .C .D .【答案】D【解析】先判断出函数是偶函数,根据偶函数的图像特征可得选项.【详解】 函数()y f x =是偶函数,所以它的图象是由()y f x =把0x ≥的图象保留,再关于y 轴对称得到的.结合选项可知选项D 正确,故选:D .4.(2021·全国高三专题练习(文))函数()5xf x x x e =-⋅的图象大致是( ). A . B .C .D .【答案】B【解析】由()20f >和()20f -<可排除ACD ,从而得到选项.【详解】由()()2223222160f e e =-=->,可排除AD ;由()()2223222160f e e ---=-+=-<,可排除C ;故选:B.5.(2021·陕西高三三模(理))函数x y b a =⋅与()log a y bx =的图像在同一坐标系中可能是()A .B .C .D .【答案】C【解析】根据指数函数和对数函数的单调性,以及特殊点函数值的范围逐一判断可得选项.【详解】令x f x b a ,()()log a g x bx =,对于A 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,所以log >0a b ,而()1log 0a g b =<,所以矛盾,故A 不正确;对于B 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,而()1log >0a g b =,所以矛盾,故B 不正确;对于C 选项:由x f xb a 得>1a ,且()001f b a b ⋅=<=,所以log 0a b <,又()1log 0a g b =<,故C 正确;对于D 选项:由x f xb a 得>1a ,且()00>1f b a b ==⋅,而()()log a g x bx =中01a <<,所以矛盾,故D 不正确;故选:C . 6.(2021·宁夏吴忠市·高三其他模拟(文))已知函数()()()ln 2ln 4f x x x =-+-,则( ). A .()f x 的图象关于直线3x =对称B .()f x 的图象关于点()3,0对称C .()f x 在()2,4上单调递增D .()f x 在()2,4上单调递减【答案】A【解析】先求出函数的定义域.A :根据函数图象关于直线对称的性质进行判断即可;B :根据函数图象关于点对称的性质进行判断即可;C :根据对数的运算性质,结合对数型函数的单调性进行判断即可;D :结合C 的分析进行判断即可.【详解】 ()f x 的定义域为()2,4x ∈,A :因为()()()()3ln 1ln 13f x x x f x +=++-=-,所以函数()f x 的图象关于3x =对称,因此本选项正确;B :由A 知()()33f x f x +≠--,所以()f x 的图象不关于点()3,0对称,因此本选项不正确;C :()()()2ln 2ln 4ln(68)x x x f x x =-+-=-+- 函数2268(3)1y x x x =-+-=--+在()2,3x ∈时,单调递增, 在()3,4x ∈时,单调递减,因此函数()f x 在()2,3x ∈时单调递增,在()3,4x ∈时单调递减,故本选项不正确;D :由C 的分析可知本选项不正确,故选:A7.(2021·安徽高三二模(理))函数()n xf x x a =,其中1a >,1n >,n 为奇数,其图象大致为( ) A . B .C .D .【答案】B【解析】分析()f x 在()0,∞+、(),0-∞上的函数值符号,及该函数在()0,∞+上的单调性,结合排除法可得出合适的选项.【详解】对任意x ∈R ,0x a >,由于1n >,n 为奇数,当0x <时,0n x <,此时()0f x <,当0x >时,0n x >,此时()0f x >,排除AC 选项;当0x >时,任取1x 、()20,x ∈+∞且12x x >,则120x x a a >>,120n n x x >>,所以()()12f x f x >,所以,函数()f x 在()0,∞+上为增函数,排除D 选项.故选:B.8.(2021·浙江高三专题练习)已知函数f (x )=1331,,log 1x x x x ⎧≤⎪⎨>⎪⎩则函数y =f (1-x )的大致图象是( ) A . B .C .D .【答案】D【解析】由()f x 得到()1f x -的解析式,根据函数的特殊点和正负判断即可.【详解】因为函数()f x 133,1log ,1x x x x ⎧≤⎪=⎨>⎪⎩, 所以函数()1f x -()1133,0log 1,0x x x x -⎧≥⎪=⎨-<⎪⎩, 当x =0时,y =f (1)=3,即y =f (1-x )的图象过点(0,3),排除A ;当x =-2时,y =f (3)=-1,即y =f (1-x )的图象过点(-2,-1),排除B ;当0x <时,()1311,(1)log 10x f x x ->-=-<,排除C ,故选:D .9.【多选题】(2021·浙江高一期末)如图,某池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系为t y a =.关于下列法正确的是( )A .浮萍每月的增长率为2B .浮萍每月增加的面积都相等C .第4个月时,浮萍面积不超过280mD .若浮萍蔓延到22m 、24m 、28m 所经过的时间分别是1t 、2t 、3t ,则2132t t t =+【答案】AD【解析】根据图象过点求出函数解析式,根据四个选项利用解析式进行计算可得答案.【详解】由图象可知,函数图象过点(1,3),所以3a =,所以函数解析式为3ty =, 所以浮萍每月的增长率为13323233t t tt t +-⨯==,故选项A 正确; 浮萍第一个月增加的面积为10332-=平方米,第二个月增加的面积为21336-=平方米,故选项B 不正确;第四个月时,浮萍面积为438180=>平方米,故C 不正确;由题意得132t =,234t =,338t =,所以13log 2t =,23log 4t =,33log 8t =,所以2133333332log 2log 8log (28)log 16log 42log 42t t t +=+=⨯====,故D 正确.故选:AD10.(2020·全国高一单元测试)函数()2x f x =和()3g x x =的图象如图所示,设两函数的图象交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出图中曲线1C ,2C 分别对应的函数;(2)结合函数图象,比较(3)f ,(3)g ,(2020)f ,(2020)g 的大小.【答案】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =;(2)(2020)(2020)(3)(3)f g g f >>>.【解析】(1)根据指数函数和一次函数的函数性质解题;(2)结合函数的单调性及增长快慢进行比较.【详解】(1)1C 对应的函数为()3g x x =,2C 对应的函数为()2x f x =.(2)(0)1f =,(0)0g =,(0)(0)f g ∴>,又(1)2f =,(1)3g =,(1)(1)f g ∴<,()10,1x ∴∈;(3)8f =,(3)9g =,(3)(3)f g ∴<,又(4)16f =,(4)12g =,(4)(4)f g ∴>,()23,4x ∴∈.当2x x >时,()()f x g x >,(2020)(2020)f g ∴>.(2020)(2020)(3)(3)f g g f ∴>>>.1.(2021·湖南株洲市·高三二模)若函数()2()mx f x e n =-的大致图象如图所示,则( )A .0,01m n ><<B .0,1m n >>C .0,01m n <<<D .0,1m n <>【答案】B【解析】令()0f x =得到1ln x n m =,再根据函数图象与x 轴的交点和函数的单调性判断.【详解】令()0f x =得mx e n =,即ln mx n =,解得1ln x n m =,由图象知1l 0n x m n =>,当0m >时,1n >,当0m <时,01n <<,故排除AD ,当0m <时,易知mx y e =是减函数,当x →+∞时,0y →,()2f x n →,故排除C故选:B2.(2021·甘肃高三二模(理))关于函数()ln |1|ln |1|f x x x =++-有下列结论,正确的是( ) A .函数()f x 的图象关于原点对称 B .函数()f x 的图象关于直线1x =对称 练提升C .函数()f x 的最小值为0D .函数()f x 的增区间为(1,0)-,(1,)+∞【答案】D 【解析】A.由函数的奇偶性判断;B.利用特殊值判断;C.利用对数函数的值域求解判断;D.利用复合函数的单调性判断. 【详解】2()ln |1|ln |1|ln |1|f x x x x =++-=-,由1010x x ⎧+>⎪⎨->⎪⎩,解得1x ≠±,所以函数的定义域为{}|1x x ≠±, 因为()ln |1|ln |1|ln |1|ln |1|()f x x x x x f x -=-++--=++-=,所以函数为偶函数,故A 错误. 因为(0)ln |1|0,(3)ln8f f =-==,所以(0)(3)f f ≠,故B 错误;因为 ()2|1|0,x -∈+∞,所以()f x ∈R ,故C 错误;令2|1|t x =-,如图所示:,t 在(),1,[0,1)-∞-上递减,在()(1,0],1,-+∞上递增,又ln y t =在()0,∞+递增,所以函数()f x 的增区间为(1,0)-,(1,)+∞,故D 正确; 故选:D3.(2021·吉林长春市·东北师大附中高三其他模拟(理))函数ln xy x=的图象大致为( )A .B .C .D .【答案】C 【解析】 求出函数ln xy x=的定义域,利用导数分析函数的单调性,结合排除法可得出合适的选项. 【详解】 对于函数ln xy x =,则有0ln 0x x >⎧⎨≠⎩,解得0x >且1x ≠, 所以,函数ln xy x=的定义域为()()0,11,+∞,排除AB 选项;对函数ln x y x =求导得()2ln 1ln x y x -'=.当01x <<或1x e <<时,0y '<;当x e >时,0y '>. 所以,函数ln xy x=的单调递减区间为()0,1、()1,e ,单调递增区间为(),e +∞, 当01x <<时,0ln xy x =<,当1x >时,0ln x y x=>,排除D 选项. 故选:C.4.(2021·海原县第一中学高三二模(文))函数2xx xy e+=的大致图象是( )A .B .C .D .【答案】D 【解析】利用导数可求得2xx xy e+=的单调性,由此排除AB ;根据0x >时,0y >可排除C ,由此得到结果. 【详解】 由题意得:()()222211x xxxx e x x e x x y e e +-+-++'==,令0y '=,解得:1x =,2x =,∴当11,,22x ∞∞⎛⎛⎫+∈-⋃+ ⎪ ⎪⎝⎭⎝⎭时,0y '<;当11,22x ⎛+∈ ⎝⎭时,0y '>;2x x x y e +∴=在1,2⎛--∞ ⎝⎭,1,2⎛⎫++∞ ⎪ ⎪⎝⎭上单调递减,在1122⎛⎫-+ ⎪ ⎪⎝⎭上单调递增,可排除AB ; 当0x >时,0y >恒成立,可排除C. 故选:D.5.(2021·天津高三三模)意大利画家列奥纳多·达·芬奇的画作《抱银鼠的女子》(如图所示)中,女士颈部的黑色珍珠项链与她怀中的白貂形成对比.光线和阴影衬托出人物的优雅和柔美.达·芬奇提出:固定项链的两端,使其在重力的作用下自然下垂,形成的曲线是什么?这就是著名的“悬链线问题”.后人研究得出,悬链线并不是抛物线,而是与解析式为2x x e e y -+=的“双曲余弦函数”相关.下列选项为“双曲余弦函数”图象的是( )A .B .C .D .【答案】C 【解析】分析函数2x xe e y -+=的奇偶性与最小值,由此可得出合适的选项.【详解】令()e e 2x x f x -+=,则该函数的定义域为R ,()()2x xe ef x f x -+-==,所以,函数()e e 2x xf x -+=为偶函数,排除B 选项.由基本不等式可得()112f x ≥⨯=,当且仅当0x =时,等号成立,所以,函数()f x 的最小值为()()min 01f x f ==,排除AD 选项. 故选:C.6.(2021·浙江高三月考)函数()3log 01a y x ax a =-<<的图象可能是( )A .B .C .D .【答案】B 【解析】先求出函数的定义域,判断函数的奇偶性,构造函数,求函数的导数,利用是的导数和极值符号进行判断即可. 【详解】根据题意,()3log a f x x ax =-,必有30x ax -≠,则0x ≠且x ≠即函数的定义域为{|0x x ≠且x ≠,()()()()33log log a a x a x x f f x ax x ---=--==,则函数3log a y x ax =-为偶函数,排除D ,设()3g x x ax =-,其导数()23g x x a '=-,由()0g x '=得x =±,当3x >时,()0g x '>,()g x 为增函数,而()f x 为减函数,排除C ,在区间,33⎛⎫- ⎪ ⎪⎝⎭上,()0g x '<,则()g x 在区间,33⎛⎫- ⎪ ⎪⎝⎭上为减函数,在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上,()0g x '>,则()g x 在区间3⎛⎫+∞ ⎪ ⎪⎝⎭上为增函数,0g=,则()g x 存在极小值33339g a ⎛⎛⎫=-⨯=- ⎪ ⎪⎝⎭⎝⎭,此时()g x ()0,1,此时()0f x >,排除A , 故选:B.7.(2019·北京高三高考模拟(文))当x∈[0,1]时,下列关于函数y=2(1)mx -的图象与y =的图象交点个数说法正确的是( ) A .当[]m 0,1∈时,有两个交点 B .当(]m 1,2∈时,没有交点 C .当(]m 2,3∈时,有且只有一个交点 D .当()m 3,∞∈+时,有两个交点【答案】B 【解析】设f (x )=2(1)mx -,g (x ) ,其中x∈[0,1]A .若m=0,则()1f x =与()g x =[0,1]上只有一个交点(1,1),故A 错误.B .当m∈(1,2)时,111()(0)1,()(0)1()()2f x f g x g f x g x m<<∴≤=≥=>∴<即当m∈(1,2]时,函数y=2(1)mx -的图象与y =x∈[0,1]无交点,故B 正确,C .当m∈(2,3]时,2111()(1)(1),()(1)32f x f mg x g m <<∴≤=-≤=2(1)m >-时()()f x g x <,此时无交点,即C 不一定正确.D .当m∈(3,+∞)时,g (0)1,此时f (1)>g (1),此时两个函数图象只有一个交点,故D 错误,故选:B.8.(2021·浙江高三专题练习)若关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,则实数a的取值范围是()A.1,14⎡⎫⎪⎢⎣⎭B.10,4⎛⎤⎥⎝⎦C.3,14⎡⎫⎪⎢⎣⎭D.30,4⎛⎤⎥⎝⎦【答案】A 【解析】转化为当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,根据图象列式可解得结果.【详解】由题意知关于x的不等式34log2xax-≤在10,2x⎛⎤∈ ⎥⎝⎦恒成立,所以当10,2x⎛⎤∈ ⎥⎝⎦时,函数342xy=-的图象不在log ay x=的图象的上方,由图可知0111log 22a a <<⎧⎪⎨≥⎪⎩,解得114a ≤<. 故选:A9.对a 、b ∈R ,记{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24()f x x x x x =--+∈R .(1)求(0)f ,(4)f -.(2)写出函数()f x 的解析式,并作出图像.(3)若关于x 的方程()f x m =有且仅有3个不等的解,求实数m 的取值范围.(只需写出结论) 【答案】见解析.【解析】解:(1)∵{},max ,,a a b a b b a b⎧=⎨<⎩≥,函数{}2()max ||,24f x x x x =--+,∴{}(0)max 0,44f ==,{}(4)max 4,44f -=-=.(2)(3)5m =或m 10.(2021·全国高一课时练习)函数()2xf x =和()()30g x xx =≥的图象,如图所示.设两函数的图象交于点()11A x y ,,()22B x y ,,且12x x <.(1)请指出示意图中曲线1C ,2C 分别对应哪一个函数;(2)结合函数图象,比较()8f ,()8g ,()2015f ,()2015g 的大小. 【答案】(1)1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =;(2)()()()()2015201588f g g f >>>.【解析】(1)根据图象可得结果;(2)通过计算可知1282015x x <<<,再结合题中的图象和()g x 在()0+∞,上的单调性,可比较()8f ,()8g ,()2015f ,()2015g 的大小.【详解】(1)由图可知,1C 的图象过原点,所以1C 对应的函数为()()30g x xx =≥,2C 对应的函数为()2x f x =.(2)因为11g =(),12f =(),28g =(),24f =(),()9729g =,()9512f =,()101000g =,()101024f =,所以11f g >()(),22f g <()(),()()99f g <,()()1010f g >.所以112x <<,2910x <<.所以1282015x x <<<.从题中图象上知,当12x x x <<时,()()f x g x <;当2x x >时,()()f x g x >,且()g x 在()0+∞,上是增函数,所以()()()()2015201588f g g f >>>.1. (2020·天津高考真题)函数241xy x =+的图象大致为( ) 练真题A .B .C .D .【答案】A 【解析】由函数的解析式可得:()()241xf x f x x --==-+,则函数()f x 为奇函数,其图象关于坐标原点对称,选项CD 错误; 当1x =时,42011y ==>+,选项B 错误. 故选:A.2.(2019年高考全国Ⅲ卷理)函数3222x xx y -=+在[]6,6-的图像大致为( ) A . B .C .D .【答案】B【解析】设32()22x xx y f x -==+,则332()2()()2222x x x x x x f x f x ----==-=-++,所以()f x 是奇函数,图象关于原点成中心对称,排除选项C .又34424(4)0,22f -⨯=>+排除选项D ; 36626(6)722f -⨯=≈+,排除选项A , 故选B .3.(2020·天津高考真题)已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭B .1,(0,22)2⎛⎫-∞- ⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞【答案】D 【解析】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有2个不同交点,不满足题意; 当k 0<时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得k =,所以k >综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.4.(2019年高考全国Ⅱ卷理)设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦【答案】B【解析】∵(1) 2 ()f x f x +=,()2(1)f x f x ∴=-. ∵(0,1]x ∈时,1()(1)[,0]4f x x x =-∈-;∴(1,2]x ∈时,1(0,1]x -∈,1()2(1)2(1)(2),02f x f x x x ⎡⎤=-=--∈-⎢⎥⎣⎦; ∴(2,3]x ∈时,1(1,2]x -∈,()2(1)4(2)(3)[1,0]f x f x x x =-=--∈-,如图:当(2,3]x ∈时,由84(2)(3)9x x --=-解得173x =,283x =,若对任意(,]x m ∈-∞,都有8()9f x ≥-,则73m ≤.则m 的取值范围是7,3⎛⎤-∞ ⎥⎝⎦.故选B.5.(2017·天津高考真题(文))已知函数f(x)={|x|+2,x <1x +2x ,x ≥1.设a ∈R ,若关于x 的不等式f(x)≥|x 2+a|在R 上恒成立,则a 的取值范围是 A .[−2,2] B .[−2√3,2] C .[−2,2√3] D .[−2√3,2√3] 【答案】A【解析】满足题意时f (x )的图象恒不在函数y =|x2+a|下方,当a =2√3时,函数图象如图所示,排除C,D 选项;当a =−2√3时,函数图象如图所示,排除B 选项,本题选择A 选项.6.(2018·全国高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D 【解析】分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果.详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .。

(京津专用)2019高考数学总复习 优编增分练:8 6分项练12 函数的图象与性质 文

(京津专用)2019高考数学总复习 优编增分练:8 6分项练12 函数的图象与性质 文

8+6分项练12 函数的图象与性质1.(2018·葫芦岛模拟)已知实数x ,y 满足⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y,则下列关系式中恒成立的是( )A .tan x >tan yB .ln ()x 2+2>ln ()y 2+1C.1x >1yD .x 3>y 3答案 D解析 ⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫12y⇔x >y ,对于A ,当x =3π4,y =-3π4时,满足x >y ,但tan x >tan y 不成立.对于B ,若ln ()x 2+2>ln ()y 2+1,则等价于x 2+1>y 2成立,当x =1,y =-2时,满足x >y ,但x 2+1>y 2不成立.对于C ,当x =3,y =2时,满足x >y ,但1x >1y不成立.对于D ,当x >y 时,x 3>y 3恒成立.2.函数f (x )=e x+1x (e x -1)(其中e 为自然对数的底数)的图象大致为( )答案 A解析 f (-x )=e -x+1(-x )(e -x-1) =e x+1(-x )(1-e x )=e x +1x (e x-1)=f (x ), 所以f (x )为偶函数,图象关于y 轴对称, 又当x →0时,f (x )→+∞,故选A.3.已知定义域为R 的奇函数f (x )满足f (3-x )+f (x )=0,且当x ∈⎝ ⎛⎭⎪⎫-32,0时,f (x )=log 2(2x+7),则f (2 017)等于( ) A .-2 B .log 23 C .3 D .-log 25答案 D解析 因为奇函数f (x )满足f (3-x )+f (x )=0, 所以f (x )=-f (3-x )=f (x -3),即周期为3, 所以f (2 017)=f (1)=-f (-1)=-log 25,故选D.4.(2018·山西省运城市康杰中学模拟)已知函数f (x )=ln(e x +e -x )+x 2,则使得f (2x )>f (x +3)成立的x 的取值范围是( ) A .(-1,3) B.()-∞,-3∪()3,+∞ C.()-3,3 D .(-∞,-1)∪()3,+∞答案 D解析 因为f (-x )=ln(e -x+e x )+(-x )2=ln(e x+e -x)+x 2=f (x ), 所以函数f (x )是偶函数,又f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增, 所以f (2x )>f (x +3)⇔|2x |>|x +3|, 解得x <-1或x >3.故选D.5.(2018·贵州省凯里市第一中学模拟)定义:如果函数f (x )的导函数为f ′(x ),在区间[a ,b ]上存在x 1,x 2(a <x 1<x 2<b ),使得f ′(x 1)=f (b )-f (a )b -a ,f ′(x 2)=f (b )-f (a )b -a,则称f (x )为区间[a ,b ]上的“双中值函数”.已知函数g (x )=13x 3-m 2x 2是[0,2]上的“双中值函数”,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤43,83B.⎝ ⎛⎭⎪⎫43,83C.⎝ ⎛⎭⎪⎫43,+∞ D .(-∞,+∞)答案 B解析 由题意可知,g (x )=13x 3-m 2x 2,∵g ′(x )=x 2-mx 在区间[0,2]上存在x 1,x 2(0<x 1<x 2<2),满足g ′(x 1)=g ′(x 2)=g (2)-g (0)2-0=43-m , ∴方程x 2-mx +m -43=0在区间(0,2)上有两个不相等的解,则⎩⎪⎪⎨⎪⎪⎧Δ=m 2-4⎝ ⎛⎭⎪⎫m -43>0,0<m 2<2,m -43>0,4-2m +m -43>0,解得43<m <83,则实数m 的取值范围是⎝ ⎛⎭⎪⎫43,83. 6.(2018·咸阳模拟)已知奇函数f (x )满足f (1-x )=f (1+x ),则( ) A .函数f (x )是以2为周期的周期函数 B .函数f (x )是以4为周期的周期函数 C .函数f (x +1)是奇函数 D .函数f (x +2)是偶函数 答案 B解析 根据题意,定义在R 上的函数f (x )是奇函数, 则满足f (-x )+f (x )=0,即f (-x )=-f (x ), 又由f (1-x )=f (1+x ),得f (x +2)=f [1+(x +1)]=f [1-(x +1)] =f (-x )=-f (x ), 即f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ),故函数的周期为4.7.(2018·安徽亳州市涡阳一中模拟)若y =8x -log a x 2(a >0且a ≠1)在区间⎝ ⎛⎦⎥⎤0,13上无零点,则实数a 的取值范围是( ) A .(1,+∞)B.⎝ ⎛⎭⎪⎫0,13∪(1,+∞) C.⎝ ⎛⎭⎪⎫13,1∪(1,+∞) D .(0,1)∪()4,+∞答案 C解析 令y =8x -log a x 2=0,则8x =log a x 2, 设f (x )=8x,g (x )=log a x 2,于是要使函数y =8x -log a x 2(a >0且a ≠1)在区间⎝ ⎛⎦⎥⎤0,13上没有零点,只需函数f (x )与g (x )的图象在区间⎝ ⎛⎦⎥⎤0,13上没有交点, 当a >1时,显然成立;当0<a <1时,f (x )=8x单调递增,且f ⎝ ⎛⎭⎪⎫13=813=2,此时,要使函数f (x )与g (x )的图象在区间⎝ ⎛⎦⎥⎤0,13上没有交点, 则需g ⎝ ⎛⎭⎪⎫13=log a 19>f ⎝ ⎛⎭⎪⎫13=2,即log a 19>2=log a a 2,于是a 2>19,解得13<a <1,故实数a 的取值范围是a >1或13<a <1,故选C.8.定义在R 上的函数f (x )满足f (x +2)=2f (x ),且当x ∈[2,4]时,f (x )=⎩⎪⎨⎪⎧-x 2+4x ,2≤x ≤3,x 2+2x,3<x ≤4,g (x )=ax +1,对∀x 1∈[-2,0],∃x 2∈[-2,1],使得g (x 2)=f (x 1),则实数a 的取值范围为( )A.⎝ ⎛⎭⎪⎫-∞,-18∪⎣⎢⎡⎭⎪⎫18,+∞B.⎣⎢⎡⎭⎪⎫-14,0∪⎝ ⎛⎦⎥⎤0,18C .(0,8]D.⎝ ⎛⎦⎥⎤-∞,-14∪⎣⎢⎡⎭⎪⎫18,+∞ 答案 D解析 由题意知问题等价于函数f (x )在[-2,0]上的值域是函数g (x )在[-2,1]上的值域的子集.当x ∈[2,4]时,f (x )=⎩⎪⎨⎪⎧-(x -2)2+4,2≤x ≤3,x +2x,3<x ≤4,由二次函数及对勾函数的图象及性质,得f (x )∈⎣⎢⎡⎦⎥⎤3,92,由f (x +2)=2f (x ),可得f (x )=12f (x +2)=14f (x +4),当x ∈[-2,0]时,x +4∈[2,4].则f (x )在[-2,0]上的值域为⎣⎢⎡⎦⎥⎤34,98. 当a >0时,g (x )∈[-2a +1,a +1],则有⎩⎪⎨⎪⎧-2a +1≤34,a +1≥98,解得a ≥18;当a =0时,g (x )=1,不符合题意;当a <0时,g (x )∈[a +1,-2a +1],则有⎩⎪⎨⎪⎧a +1≤34,-2a +1≥98,解得a ≤-14. 综上所述,可得a 的取值范围为⎝ ⎛⎦⎥⎤-∞,-14∪⎣⎢⎡⎭⎪⎫18,+∞. 9.(2018·四川省成都市第七中学模拟)已知函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≥0,g (x ),x <0是奇函数,则g (f (-2))的值为________.答案 -2解析 ∵函数f (x )=⎩⎪⎨⎪⎧x 2-x ,x ≥0,g (x ),x <0是奇函数,∴f (-2)=-f (2)=-(4-2)=-2,g (f (-2))=g (-2)=f (-2)=-2.10.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为________. 答案 2解析 画出函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1的图象如图,由g (x )=2|x |f (x )-2=0可得f (x )=22|x |,则问题化为函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1与函数y =22|x |=21-|x |的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个. 11.(2018·东北三省三校模拟)函数f (x )=a x -2 015+2 017(a >0且a ≠1)所过的定点坐标为________.答案 (2 015,2 018) 解析 当x =2 015时,f (2 015)=a 2 015-2 015+2 017=a 0+2 017=2 018,∴f (x )=ax -2 015+2 017(a >0且a ≠1)过定点(2 015,2 018).12.(2018·南平质检)已知实数x ,y 满足x 2-sin y =1,则sin y -x 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤-54,1+2解析 由x 2-sin y =1,可得sin y =x 2-1. 又sin y ∈[-1,1],所以x 2-1∈[-1,1], 解得-2≤x ≤ 2.sin y -x =x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54.结合-2≤x ≤2,可得⎝ ⎛⎭⎪⎫x -122-54∈⎣⎢⎡⎦⎥⎤-54,1+2. 13.若函数f (x )对定义域内的任意x 1,x 2,当f (x 1)=f (x 2)时,总有x 1=x 2,则称函数f (x )为单纯函数,例如函数f (x )=x 是单纯函数,但函数f (x )=x 2不是单纯函数,下列命题:①函数f (x )=⎩⎪⎨⎪⎧log 2x ,x ≥2,x -1,x <2是单纯函数;②当a >-2时,函数f (x )=x 2+ax +1x在(0,+∞)上是单纯函数;③若函数f (x )为其定义域内的单纯函数,x 1≠x 2,则f (x 1)≠f (x 2);④若函数f (x )是单纯函数且在其定义域内可导,则在其定义域内一定存在x 0使其导数f ′(x 0)=0,其中正确的命题为________.(填上所有正确命题的序号) 答案 ①③解析 由题设中提供的“单纯函数”的定义可知,当函数是单调函数时,该函数必为单纯函数.因为当x ≥2时,f (x )=log 2x 单调,当x <2时,f (x )=x -1单调,结合f (x )的图象可知f (x )是单纯函数,故命题①正确;对于命题②,f (x )=x +1x +a ,由f (2)=f ⎝ ⎛⎭⎪⎫12但2≠12可知f (x )不是单纯函数,故命题②错误;此命题是单纯函数定义的逆否命题,故当x 1≠x 2时,f (x 1)≠f (x 2),即命题③正确;对于命题④,例如,f (x )=x 是单纯函数且在其定义域内可导,但在定义域内不存在x 0,使f ′(x 0)=0,故④错误,答案为①③.14.已知函数f (x )=sin x +2|sin x |,关于x 的方程f 2(x )-af (x )-1=0有以下结论: ①当a ≥0时,方程f 2(x )-af (x )-1=0恒有根;②当0≤a <649时,方程f 2(x )-af (x )-1=0在[]0,2π内有两个不等实根;③当a ≥0时,方程f 2(x )-af (x )-1=0在[]0,6π内最多有9个不等实根;④若方程f 2(x )-af (x )-1=0在[]0,6π内根的个数为非零偶数,则所有根之和为15π.其中正确的结论是________.(填序号) 答案 ③④解析 如图所示,令f (x )=t ,故可将题意理解为先求出t 2-at -1=0的解,然后再令f (x )=t 即可得出方程的根的情况,而假设t 2-at -1=0有两解t 1,t 2,则t 1+t 2=a ,t 1·t 2=-1,故t 1,t 2一正一负,显然负根与函数f (x )的图象不会产生交点,故只需讨论正根与图象的交点,不妨假设t 1为正根,故可得t 1-1t 1=a ,对于①显然错误,只要足够大,很显然与函数图象不会有交点,故①错误.对于②,当0≤a <649时,a ∈⎣⎡⎭⎫0,83,故t 1∈[1,3),故方程f 2(x )-af (x )-1=0在[]0,2π内有两个或三个不等实根,故②错误.对于③,当a ≥0时,故a ∈[0,+∞),当a =0时,t 1的最小值取1.当t 1=1时,此时在[]0,6π内有9个不等实根;当a >0时,此时在[]0,6π内无根或者3个根或者6个根,故最多9个根,③正确;对于④,当在[]0,6π内有偶数(非零)个根时,即为6个根,此时6个解关于x =5π2对称,故6个根的和为5π2×2×3=15π,④正确,故正确的为③④.。

高中数学函数的图象与性质考试题(含答案解析)

高中数学函数的图象与性质考试题(含答案解析)

函数的图象与性质试题课程名称高考数学二轮复习模拟考试教研室___________________ 高三数学组_________________复习时间年月日时分至适用专业班级成绩开卷A卷闭卷_±B卷班级_______________________ 姓名______________________ 学号___________________ 考生注童:舞弊万莫償,那祥要退学,自爱当守诺,最怕錯上第,若真不及格,努力下次过。

答案耳在答题娥上,耳在试题妖上无效。

一、选择题一、选择题1. (2017-高考山东卷)设函数y=\/4二x2的定义域为A,函数y=\n(\~x)的定义域为b则AHB=()A・(1, 2) B. (1, 2C・(一2, 1) D. -2, 1)[log4 工.工>0 •2・(2017-沈阳模拟)已知函数f(x)= \则师4))的值为()A. —£B. —99D.3. (2017-湖南东部六校联考)函数y=\M()A・是偶函数,在区间0)上单调递增B.是偶函数,在区间(一8, 0)上单调递减C.是奇函数,在区间(0, +8)上单调递增 D ・是奇函数,在区间(0, +8)上单调递减5. (2017-西安模拟)对于函数y=f(x),部分x 与y 的对应关系如下表:上,则 Xl+X2~\ ----- X2 017 = ( ) A. 7 554B. 7 540C. 7 561D. 7 5646. 已知/(x)是定义在R 上的奇函数,且在[0, +8)上单调递增,若/(lgx)<0, 则x 的取值范围是() A. (0, 1) B ・(1, 10) C. (1, +8)D. (10, +8)7. (2016-福州质检)已知偶函数/⑴满足:当xi, x 2e(0, +8)时,(x!-x2)[/(xi) -Ax2)]>0 恒成立.设 “=/(一4), b=/(l), c=/(3),则 d, h, c 的大小关系为( ) A. a<b<c B ・ h<a<c C. b<c<aD. c<b<a8. 函数/W 的定义域为R.若/(x+2)为偶函数,且血)=1,则/⑻+/(9)=( )A. —2B. —1C. 0试 题 共页 第页.V1 2 3 4 5 6 7 8 9 y375961824D. 1数列{忌}满足:xi = 1,且对于任B 点3,亦1)都在函数y=f(x)的图象9. (2017-高考山东卷)设/⑴=心,0<x<l, 1 U H),Q.若何%+】)'©=()A. 2 C. 6B. 4 D. 810. (2017•山西四校联考)已知函数/W满足:①定义域为R;®VxeR,都有/U+2)=/U);③当A-G[-1, 1]时,/W=—Lrl+1.则方程/W=*log2lxl在区间[一3, 5]内解的个数是()A. 5 C. 7B. 6 D. 811.(2017.天津模拟)已知函数爪)的图象如图所示,则/⑴的解析式可能是()A. x2cos xC. xsin x12・已知定义在R上的奇函数几兀)满足/(A—4)=-/«,且在区间[0, 2]上是增函数,贝|J()A.X-25)<All)</(80)B./(80)</(ll)</(-25)C.几11)勺(80)勺(一25)D・人一25)彳80)今(11)二、填空题13. (2017-高考全国卷II)已知函数/(x)是定义在R上的奇函数,当兀丘(一8, 0)时,X A)=2A3+A2,则f(2)= _____________ ・试题共页第页14.若函数f(x) = 2x+a^x为奇函数,则实数4= ____________ ・215・已知函数几丫)=苑丁+sin卅则人一2 017)+几一2 016)+用))土A2 016)+/(2 017)= ________ .16.已知定义在R上的函数/U)满足:①函数y=f(x-V)的图象关于点(1, 0)对称;②VxeR,石一"=石+寸:③当炸(一扌,一弓时,_/W = log2( — 3卄1).则/(2 017)= _______ ・(-log., T>0,且何一厶则曲「) = ()B.-扌5C・-42.(2017-高考北京卷)已知函数妙=3'—(分,则金)()A. 是奇函数, 且在R上是增函数B. 是偶函数, 且在R上是增函数C.D.3.4.A.C.是奇函数,是偶函数,且在R上是减函数且在R上是减函数函数劝2站的图象大致是(函数y=kl(l—x)在区间4上是增函数,那么区间4是()B •卜 I](―°°,0)[0, +oo) D.伶 +8)A. — log377D・_4函数/(x)的上确界.则函数用・)=是奇函数,则实数。

2022版新高考数学总复习真题专题--函数的图象(解析版)

2022版新高考数学总复习真题专题--函数的图象(解析版)

2022版新高考数学总复习--§2.5函数的图象—五年高考—考点1函数的图象1.(2021浙江,7,4分)已知函数f(x)=x2+14,g(x)=sin x,则图象为下图的函数可能是()A.y=f(x)+g(x)-14B.y=f(x)-g(x)-14C.y=f(x)g(x)D.y=g(x)f(x)答案D2.(2020浙江,4,4分)函数y=x cos x+sin x在区间[-π,π]上的图象可能是()答案A3.(2020天津,3,5分)函数y=4xx2+1的图象大致为()答案A4.(2019课标Ⅰ,文5,理5,5分)函数f(x)=sinx+xcosx+x2在[-π,π]的图象大致为()答案D5.(2019浙江,6,4分)在同一直角坐标系中,函数y=1a x ,y=log a(x+12)(a>0,且a≠1)的图象可能是()答案D6.(2018课标Ⅱ,文3,理3,5分)函数f(x)=e x-e-xx2的图象大致为()答案B7.(2018课标Ⅲ理,7,5分)函数y=-x4+x2+2的图象大致为()答案D8.(2018浙江,5,4分)函数y=2|x|sin 2x的图象可能是()答案D以下为教师用书专用(1—8)的部分图象大致为() 1.(2017课标Ⅰ文,8,5分)函数y=sin2x1-cosx答案 C 本题考查函数图象的识辨. 易知y =sin2x1-cosx 为奇函数,图象关于原点对称,故排除B 选项;sin 2≈sin 120°=√32,cos 1≈cos 60°=12,则f (1)=sin21-cos1=√3,故排除A 选项;f (π)=sin2π1-cos π=0,故排除D 选项,故选C .方法总结 已知函数解析式判断函数图象的方法:(1)根据函数的定义域判断图象的左右位置,根据函数的值域判断图象的上下位置; (2)根据函数的单调性判断图象的变化趋势; (3)根据函数的奇偶性判断图象的对称性; (4)根据函数的周期性判断图象的循环往复.2.(2017课标Ⅲ文,7,5分)函数y =1+x +sinxx 2的部分图象大致为( )答案 D 当x ∈(0,1)时,sin x >0,∴y =1+x +sinxx 2>1+x >1,排除A 、C . 令f (x )=x +sinx x 2,则f (-x )=-x +sin (-x )(-x )2=-f (x ),∴f (x )=x +sinxx 2是奇函数, ∴y =1+x +sinxx 2的图象关于点(0,1)对称,故排除B .故选D .解后反思 函数图象问题,一般从定义域、特殊点的函数值、单调性、奇偶性等方面入手进行分析.选择题通常采用排除法.3.(2016课标Ⅰ,理7,文9,5分)函数y =22-e |x |在[-2,2]的图象大致为( )答案 D 当x =2时,y =8-e 2∈(0,1),排除A ,B ;易知函数y =2x 2-e |x |为偶函数,当x ∈[0,2]时,y =2x 2-e x,求导得y'=4x -e x ,当x =0时,y'<0,当x =2时,y'>0,所以存在x 0∈(0,2),使得y'=0,故选D .4.(2016浙江,3,5分)函数y =sin x 2的图象是 ( )答案 D 排除法.由y =sin x 2为偶函数判断函数图象的对称性,排除A ,C ;当x =π2时,y =sin (π2)2=sin π24≠1,排除B ,故选D .5.(2015课标Ⅱ,理10,文11,5分)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点.点P 沿着边BC ,CD 与DA 运动,记∠BOP =x.将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )答案 B 当点P 与C 、D 重合时,易求得PA +PB =1+√5;当点P 为DC 的中点时,有OP ⊥AB ,则x =π2,易求得PA +PB =2PA =2√2.显然1+√5>2√2,故当x =π2时, f (x )没有取到最大值,则C 、D 选项错误.当x ∈[0,π4)时, f (x )=tan x +√4+tan 2x ,不是一次函数,排除A ,故选B .6.(2015安徽文,10,5分)函数f (x )=ax 3+bx 2+cx +d 的图象如图所示,则下列结论成立的是 ( )A.a >0,b <0,c >0,d >0B.a >0,b <0,c <0,d >0C.a <0,b <0,c >0,d >0D.a >0,b >0,c >0,d <0答案 A 由f (x )的图象易知d >0,且f '(x )=3ax 2+2bx +c 的图象是开口向上的抛物线,与x 轴正半轴有两个不同的交点,则{a >0,-b 3a>0,c >0,即{a >0,b <0,c >0,故选A .评析 本题考查导数的应用及运用图象解题的能力.7.(2015浙江,5,5分)函数f (x )=(x -1x )cos x (-π≤x ≤π且x ≠0)的图象可能为 ( )答案 D 因为f (-x )=(-x +1x )cos (-x )=-(x -1x )cos x =-f (x ),所以函数f (x )为奇函数,排除A 、B .当0<x <1时,x -1x <0,cos x >0,所以f (x )<0,排除C ,故选D .8.(2012课标理,10,5分)已知函数f (x )=1ln (x+1)-x ,则y =f (x )的图象大致为( )答案 B 令g (x )=ln (x +1)-x ,则g'(x )=1x+1-1=-xx+1, ∴当-1<x <0时,g'(x )>0,当x >0时,g'(x )<0,∴g (x )max =g (0)=0.∴f (x )<0,排除A 、C ,又由定义域可排除D ,故选B .评析 本题考查了函数的图象,考查了利用导数判断函数单调性,求值域,考查了数形结合的数学思想.考点2 函数图象的应用1.(2020北京,6,4分)已知函数f (x )=2x-x -1,则不等式f (x )>0的解集是 ( )A.(-1,1)B.(-∞,-1)∪(1,+∞)C.(0,1)D.(-∞,0)∪(1,+∞) 答案 D2.(2017天津文,8,5分)已知函数f (x )={|x |+2,x <1,x +2x,x ≥1.设a ∈R ,若关于x 的不等式f (x )≥|x2+a|在R 上恒成立,则a 的取值范围是 ( )A.[-2,2]B.[-2√3,2]C.[-2,2√3]D.[-2√3,2√3] 答案 A以下为教师用书专用(1—2)1.(2016课标Ⅱ,12,5分)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x+1x与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i=1m(x i +y i )=( )A.0B.mC.2mD.4m答案 B 由f (-x )=2-f (x )可知f (x )的图象关于点(0,1)对称,又易知y =x+1x =1+1x的图象关于点(0,1)对称,所以两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,∴∑i=1m(x i +y i )=0×m2+2×m 2=m.故选B .思路分析 分析出函数y =f (x )和y =x+1x的图象都关于点(0,1)对称,进而得两函数图象的交点成对出现,且每一对交点都关于点(0,1)对称,从而得出结论.2.(2015安徽文,14,5分)在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则a 的值为 . 答案 -12解析 若直线y =2a 与函数y =|x -a |-1的图象只有一个交点,则方程2a =|x -a |-1只有一解,即方程|x -a |=2a +1只有一解,故2a +1=0,所以a =-12.— 三年模拟 —A 组 考点基础题组考点1 函数的图象1.(2020河北新时代NT 教育模拟)已知函数f (x )={e x -4,x ≥0,e -x -4,x <0,则函数g (x )=x 2f (x )的大致图象是 ( )答案 A2.(2020湖南炎陵一中仿真考试)函数f (x )=x 4e x -e -x 的部分图象可能是( )答案 B3.(2021湖南岳阳一模,3)函数f (x )=x +ln |x |x的图象大致为 ( )A BCD答案 A4.(2021辽宁沈阳市郊联体一模,4)函数f (x )=xcosx -1的部分图象大致是 ( )A BCD答案 D5.(2021山东德州二模,5)函数f (x )=2x+1·ln |x |4x +1的部分图象大致为 ( )A BCD答案 A6.(2020普通高等学校招生全国统一考试考前演练)某函数的部分图象如图,则下列函数中可以作为该函数的解析式的是 ( )A.y =sin2xe sin2xB.y =cos2xe cos2x C.y =|cos2x |e cos2xD.y =|cosx |e cosx答案 C7.(2021福建三明三模,5)若函数y =f (x )的大致图象如图所示,则f (x )的解析式可能是 ( )A. f (x )=x|x |-1 B. f (x )=x1-|x | C. f (x )=xx 2-1 D. f (x )=x1-x 2答案Ce|x|在[-32,32]上的图象大致为()8.(2020山东百师联盟自测,7)函数f(x)=2|x|cos x-12答案A考点2函数图象的应用(多选题)(2021江苏南通一模,12)已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=e x(x+1),则下列命题正确的是()A.当x>0时,f(x)=-e-x(x-1)B.函数f(x)有3个零点C. f(x)<0的解集为(-∞,-1)∪(0,1)D.∀x1,x2∈R,都有|f(x1)-f(x2)|<2答案BCDB组综合应用题组时间:30分钟分值:30分一、单项选择题(每小题5分,共20分)1.(2021山东日照一模,6)如图所示,单位圆上一定点A与坐标原点重合.若单位圆从原点出发沿x轴正向滚动一周,则A点形成的轨迹为()A BCD 答案 A2.(2021上海普陀二模,16)已知函数f (x )=3x 1+3x ,设x i (i =1,2,3)为实数,且x 1+x 2+x 3=0.给出下列结论: ①若x 1·x 2·x 3>0,则f (x 1)+f (x 2)+f (x 3)<32;②若x 1·x 2·x 3<0,则f (x 1)+f (x 2)+f (x 3)>32.其中正确的是 ( ) A.①与②均正确 B.①正确,②不正确C.①不正确,②正确D.①与②均不正确答案 A3.(2020河北邯郸备考检测,8)函数f (x )=e x +1e x -1·cos x 的部分图象大致为 ( )答案 A4.(2020普通高等学校招生全国统一考试考前演练,9)设符号min {x ,y ,z }表示x ,y ,z 中的最小者,已知函数f (x )=min {|x -2|,x 2,|x +2|},则下列结论正确的是 ( )A.∀x ∈[0,+∞), f (x -2)>f (x )B.∀x ∈[1,+∞), f (x -2)>f (x )C.∀x ∈R , f (f (x ))≤f (x )D.∀x ∈R , f (f (x ))>f (x )答案 C二、多项选择题(每小题5分,共10分)5.(2021江苏七市第二次调研,10)已知函数f (x )=√|x 2-a |(a ∈R ),则y =f (x )的大致图象可能为 ( )AB C D答案 ABD 6.(2021山东聊城二模,12)用符号[x ]表示不超过x 的最大整数,例如:[0.6]=0,[2.3]=2.设f (x )=(1-ln x )(ax 2+2ln x )有3个不同的零点x 1,x 2,x 3,则 ( )A.x =e 是f (x )的一个零点B.x 1+x 2+x 3=2√e +eC.a 的取值范围是(-1e ,0)D.若[x 1]+[x 2]+[x 3]=6,则a 的范围是[-2ln39,-ln24) 答案 AD — 一年原创 —1.(2021 5·3原创题)已知某函数图象如图所示,则该函数有可能是 ( )A.f (x )=(x 2-cx )e xB.f (x )=(x 2-cx )ln (x +3) C.f (x )=13x 3-cx D.f (x )=x 2-cx e x答案 A2.(2021 5·3原创题)若偶函数f (x )=ax 2+(b -2)x 的图象过点A (1,2),则函数g (x )=bx +a x ,x ∈[-3,-12]的值域为 .答案 [-203,-4]。

2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

2024_2025学年高三数学新高考一轮复习专题三角函数的图像和性质2含解析

三角函数的图像和性质学校:___________姓名:___________班级:___________考号:___________1.函数y=lgcos x的定义域为( )A. (2k π,+2kπ)(k∈Z)B. (-+2k π,+2kπ)(k∈Z)C. (k π,+kπ)(k∈Z)D. (-+k π,+kπ)(k∈Z)2.将函数的图象向左平移个单位长度,再将得到的图象上的全部点的横坐标变为原来的2倍(纵坐标不变),最终得到函数的图象,则()A. B. C. D.3.将函数的图象上各点向右平行移动个单位长度,再把横坐标缩短为原来的一半,纵坐标伸长为原来的4倍,则所得到的图象的函数解析式是()A. B.C. D.4.函数y=cos-2x的单调递增区间是()A. (k∈Z)B. (k∈Z)C. (k∈Z)D. (k∈Z)5.函数的单调递减区间为()A. B.C. D.6.函数在定义域内零点的个数为A. 3B. 4C. 6D. 77.下列函数中最小值为8的是()A. B. C . D.18.函数的图象向右平移个单位长度后得到函数g(x)的图象,且g(x)的图象的一条对称轴是直线,则ω的最小值为.9.函数的单调减区间为()A. B.C. D.10.已知函数.(1)求的最小正周期和单调递减区间;(2)试比较与的大小.1.【答案】B2.【答案】C3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】D8.【答案】9.【答案】A10.【答案】解:(1),∴函数的最小正周期为.令,得,函数的单调增区间为,函数的单调减区间为,(2),.,且在上单调递增,,即.3。

高中数学(函数的性质)复习及习题课件PPT

高中数学(函数的性质)复习及习题课件PPT
对于函数图像,我们有如下的结论:
(1)如果函数图像上任意一点P关于原点对称的点P′也在函数的图像上,那么,函
数图像关于原点对称,原点O叫作这个函数图像对称的中心.
(2)如果函数图像上任意一点P关于y轴对称的点P′也在函数的图像上,那么,函数
图像关于y轴对称,y轴叫作这个函数图像的对称轴.
知识清单
考点二 函数的奇偶性
函 数
高中
数学
§第二节 函数的性质
(复习+习题练习)
真题在线

真题在线

知识清单
考点一
函数的单调性
1.函数单调性的概念
如果对于定义域内某个区间上的任意两个自变量1 , 2 ,当1 < 2 时,有
1 < 2 ,那么函数f(x)在此区间上单调递增(增函数);当1 < 2 时,有
2.函数奇偶性的定义
(1)奇函数:如果对于函数y=f(x)在定义域内的任意一个x,都有f(-x)=-f(x),则
这个函数叫作奇函数.
(2)偶函数:如果对于函数y=f(x)在定义域内的任意一个x,都有f(-x)=f(x),则这
个函数叫作偶函数.
(3)如果f(x)是奇函数或偶函数,我们就说f(x)具有奇偶性.
1 > 2 ,那么函数f(x)在此区间上单调递减(减函数).如果函数y=f(x)在
某个区间上是增函数或减函数,就说f(x)在此区间上具有单调性,这个区间叫
作单调区间.
知识清单ቤተ መጻሕፍቲ ባይዱ
考点一
函数的单调性
2.单调函数的图像
增函数的图像从左往右呈上升趋势,减函数的图像从左往右呈下降趋势.
3.函数单调性证明的一般过程
知识清单

2025年高考数学一轮复习-函数的图象与性质-专项训练(含答案)

2025年高考数学一轮复习-函数的图象与性质-专项训练一、基本技能练1.已知函数f (x )的定义域为(0,+∞),则函数F (x )=f (x +2)+3-x 的定义域为()A.(-2,3]B.[-2,3]C.(0,3]D.(0,3)2.下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y =ln xB.y =|x |+1C.y =-x 2+1D.y =3-|x |3.已知函数f (x )2-2x +2,x >0,x +a ,x ≤0的值域为[1,+∞),则a 的最小值为()A.1B.2C.3D.44.函数f (x )=ln |x |+1+cos x 在[-π,π]上的大致图象为()5.设函数f (x )=2(6-x ),x <1,x -1,x ≥1,则f (-2)+f (log 26)=()A.2B.6C.8D.106.已知函数f (x )=-x |x |,且f (m +2)+f (2m -1)<0,则实数m 的取值范围为()B.(-∞,3)C.(3,+∞)-13,+∞7.已知定义域为R的偶函数f(x)满足f(1+x)=f(1-x),1,则()A.-32B.-1C.1D.328.定义在R上的奇函数f(x),满足f(x+2)=-f(x),当0≤x≤1时,f(x)=x,则f(x)≥12的解集为()A.12,+∞ B.12,32C.4k+12,4k+32(k∈Z) D.2k+12,2k+32(k∈Z)9.(多选)已知函数f(x)=2xx2+9,则()A.f(x)的定义域为RB.f(x)是偶函数C.函数y=f(x+2022)的零点为0D.当x>0时,f(x)的最大值为1310.(多选)对于函数f(x)=x|x|+x+1,下列结论中错误的是()A.f(x)为奇函数B.f(x)在定义域上是单调递减函数C.f(x)的图象关于点(0,1)对称D.f(x)在区间(0,+∞)上存在零点11.已知函数f(x)是定义域为R的奇函数,当x<0时,f(x)=2x,则f(log27)=________.12.写出一个同时具有下列性质①②③的函数f(x)=________.①f(-x)=f(x);②当x∈(0,+∞)时,f(x)>0;③f(x1x2)=f(x1)·f(x2).二、创新拓展练13.(多选)已知y=f(x)是定义域为R的奇函数,且y=f(x+2)为偶函数,若当x∈[0,2]时,f(x)=12log3(x+a2),下列结论正确的是()A.a=1B.f(1)=f(3)C.f(2)=f(6)D.f(2022)=-1214.(多选)已知函数f(x)为偶函数,且f(x+2)=-f(2-x),则下列结论一定正确的是()A.f(x)的图象关于点(-2,0)中心对称B.f(x)是周期为4的周期函数C.f(x)的图象关于直线x=-2轴对称D.f(x+4)为偶函数15.若f(x)=ln |a+11-x|+b是奇函数,则a=______,b=______.16.设函数f(x)=x-1,x≤0,x2+x,x>0,则f(f(-ln2))=________;当x∈(-∞,m]时,函数f(x)的值域1,14,则m的取值范围是________.参考答案与解析一、基本技能练1.答案A解析函数F(x)=f(x+2)+3-x +2>0,-x≥0,解得-2<x≤3.2.答案B解析对于A,函数y=ln x定义域是(0,+∞),不是偶函数,A不是;对于B,函数y=|x|+1定义域为R,是偶函数且在(0,+∞)上单调递增,B是;对于C,函数y=-x2+1定义域为R,是偶函数且在(0,+∞)上单调递减,C不是;对于D,函数y=3-|x|定义域为R,是偶函数且在(0,+∞)上单调递减,D不是.故选B.3.答案A解析由已知得当x>0时,f(x)=x2-2x+2=(x-1)2+1,值域为[1,+∞);当x≤0时,f(x)=-x+a,值域为[a,+∞);∵函数f(x)的值域为[1,+∞),∴a≥1,则a的最小值为1.故选A.4.答案C解析由题知f(x)的定义域为R,f(-x)=f(x),所以f(x)是偶函数,排除A;f(π)=lnπ+1-1<ln e-1=0,排除B,D.故选C.5.答案B解析因为f(x)2(6-x),x<1,x-1,x≥1.所以f(-2)=log28=3,f(log26)=2log26-1=3,所以f(-2)+f(log26)=6.故选B.6.答案D解析对f(x)=-x|x|,其定义域为R,且f(-x)=x|x|=-f(x),故f(x)为R上的奇函数;又当x>0时,f(x)=-x2,其在(0,+∞)单调递减;当x<0时,f(x)=x2,其在(-∞,0)单调递减;又f(x)是连续函数,故f(x)在R上是单调递减函数;则f(m+2)+f(2m-1)<0,即f(m+2)<f(1-2m),则m+2>1-2m,解得m>-13.故选D.7.答案C解析因为函数f(x)是定义域为R的偶函数,所以f(x)=f(-x),又因为f (1+x )=f (1-x ),所以f (2-x )=f (x ),则f (2-x )=f (-x ),即f (2+x )=f (x ),所以f (x )的周期为T =2.-32+ 1.8.答案C解析由题意,函数f (x )满足f (x +2)=-f (x ),可得f (x )=f (x +4),所以函数f (x )是周期为4的函数,又由f (x )为R 上的奇函数,可得f (-x )=-f (x ),所以f (x +2)=f (-x ),可得函数f (x )的图象关于x =1对称,因为当0≤x ≤1时f (x )=x ,可得函数f (x )的图象,如图所示,当x ∈[-1,3]时,令f (x )=12,解得x =12或x =32,所以不等式f (x )≥12的解集为4k +12,4k +32(k ∈Z ).故选C.9.答案AD解析对A ,由解析式可知f (x )的定义域为R ,故A 正确;对B ,因为f (x )+f (-x )=2xx 2+9+-2x x 2+9=0,可知f (x )是奇函数,故B 不正确;对C ,y =f (x +2022)=2(x +2022)(x +2022)2+9=0,得x =-2022,故C 不正确;对D ,当x >0时,0<f (x )=2x x 2+9=2x +9x ≤22x ·9x =13,当且仅当x =3时取等号,故D 正确.故选AD.10.答案ABD解析f (x )x 2+x +1,x <0,2+x +1,x ≥0,由图象可知,图象关于点(0,1)对称,因此不是奇函数,在定义域内函数为增函数,在(0,+∞)上没有零点.故选ABD.11.答案-17解析因为函数f (x )是定义域为R 的奇函数,且当x <0时,f (x )=2x ,所以f (log 27)=-f (-log 27)=-2log 217=-17.12.答案x 2(答案不唯一)解析由题意,要求f (x )为偶函数且值域为(0,+∞).若满足f (x 1x 2)=f (x 1)·f (x 2),则f (x )可以为幂函数,则有f (x )=x 2满足条件.二、创新拓展练13答案BD解析根据题意,f (x )是定义域为R 的奇函数,则f (-x )=-f (x ),又由函数f (x +2)为偶函数,则函数f (x )的图象关于直线x =2对称,则f(-x)=f(4+x),即有f(x+4)=-f(x),即f(x+8)=-f(x+4)=f(x),所以f(x)是周期为8的周期函数,当x∈[0,2]时,f(x)=12log3(x+a2),可得f(0)=12log3a2=0,所以a2=1,a=±1,A错;由f(x+4)=f(-x),可得f(1)=f(3),B正确;f(6)=f(-2)=-f(2),C错;f(2022)=f(252×8+6)=f(6)=f(-2)=-f(2)=-12log3(2+1)=-12,D正确.故选BD.14.答案AD解析因为f(x+2)=-f(2-x),所以f(x)的图象关于点(2,0)中心对称,又因为函数f(x)为偶函数,所以f(x)是周期为8的周期函数,且它的图象关于点(-2,0)中心对称和关于直线x=4轴对称,所以f(x+4)为偶函数.故选AD.15.答案-12ln2解析f(x)=ln|a+11-x|+b,若a=0,则函数f(x)的定义域为{x|x≠1},不关于原点对称,不具有奇偶性,所以a≠0.由函数解析式有意义可得:x≠1且a+11-x≠0,所以x≠1且x≠1+1 a .因为函数f(x)为奇函数,所以定义域必须关于原点对称,所以1+1a =-1,解得a =-12,所以f (x )=ln |1+x2(1-x )|+b ,定义域为{x |x ≠1且x ≠-1}.由f (0)=0,得ln 12+b =0,所以b =ln 2,即f (x )=ln|-12+11-x |+ln 2=ln |1+x 1-x |,在定义域内满足f (-x )=-f (x ),符合题意.16.答案e -12-112,解析∵-ln 2<0,∴f (-ln 2)=e-ln2-1=12-1=-12,又-12<0,f (f (-ln 2))=e -12-1或ee -1;当x ≤0时,f (x )∈(-1,0],当x >0时,f (x )∞,14,且在x =12时,函数f (x )取得最大值14,根据函数表达式,绘制函数图象如下:当f (x )=-1时,-x 2+x =-1,解得x =1+52,要使f (x )的值域在x ∈(-∞,m ]1,14,则必须m ∈12,。

2021第13练 函数的图象与性质

第13练函数的图象与性质一、单项选择题1. 已知a=2-13,b=log1415,c=log314,那么()A. b>c>aB. a>b>cC. c>b>aD. b>a>c2. 已知函数f(x)是定义在R上的奇函数,若f(x)的最小正周期为3,且f(1)>1,f(2)=2m-3m+1,则m的取值范围是()3. 函数f(x)=1+x2+tan xx的部分图象大致为()A B C D4. 若定义在R的奇函数f(x)在(-∞,0)上单调递减,且f(2)=0,则满足xf(x -1)≥0的x的取值范围是()A. [-1,1]∪[3,+∞)B. [-3,-1]∪[0,1]C. [-1,0]∪[1,+∞)D. [-1,0]∪[1,3]二、多项选择题5. 已知函数f(x)是定义在R上的偶函数,且对任意的x∈R,恒有f(x+1)=f(x-1),当x∈[0,1)时,f(x)=log0.5(1-x),则下列命题中正确的是()A. 函数f(x)的周期是2B. f(x)在(1,2)上是增函数,在(2,3)上是减函数C. f(x)的最大值是1,最小值是0D. 当x∈(3,4)时,f(x)=log0.5(x-3)6. 若函数f(x)具备以下两个条件:①f(x)的图象至少有一条对称轴或一个对称中心;②f(x)至少有两个零点.则称这样的函数为“多元素”函数,下列函数中为“多元素”函数的是()A. y=x2-2x-3B. y=e2-x+e x-10C. y =x 3-3x 2+2D. y =12x +1三、 填空题 7. 已知函数f (x )=⎩⎨⎧ 1,x ∈Z ,0,x ∈∁R Z ,Z 是整数集.给出以下四个命题:①f (f (2))=1;②f (x )是R 上的偶函数;③对任意的x 1,x 2∈R ,f (x 1+x 2)≤f (x 1)+f (x 2);④f (x )是周期函数,且最小正周期是1.其中正确的命题是________.(填序号)8. 已知13≤k <1,函数f (x )=|2x -1|-k 的零点分别为x 1,x 2 (x 1<x 2),若函数g (x )=|2x -1|-k 2k +1的零点分别为x 3,x 4 (x 3<x 4),则x 4+x 2-(x 3+x 1)的最小值为________.四、 解答题9. 已知函数f (x )=x 2-4x +a +3,a ∈R .(1) 若函数f (x )在(-∞,+∞)上至少有一个零点,求a 的取值范围;(2) 若函数f (x )在[a ,a +1]上的最大值为3,求a 的值.10. 已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .(1) 写出函数y =f (x )的解析式;(2) 若方程f (x )=a 恰有3个不同的解,求实数a 的取值范围.。

2020版高三新课标专题辅导与增分攻略数学(文):函数的图象与性质含解析

∴f(x)的最小正周期为4.
由于f(1-x)=f(1+x).f(1)=2.
故令x=1.得f(0)=f(2)=0.
令x=2.得f(3)=f(-1)=-f(1)=-2.
令x=3.得f(4)=f(-2)=-f(2)=0.
故f(1)+f(2)+f(3)+f(4)=2+0-2+0=0.
所以f(1)+f(2)+f(3)+…+f(50)=12×0+f(1)+f(2)=0+2+0=2.故选C.
[答案]-1 (-∞.0]
1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面.多以选择、填空题形式考查.一般出现在第5~10或第13~15题的位置上.难度一般.主要考查函数的定义域.分段函数求值或分段函数中参数的求解及函数图象的判断.
2.此部分内容有时出现在选择、填空题压轴题的位置.多与导数、不等式、创新性问题结合命题.难度较大.
A.a<b<cB.c<b<a
C.b<a<cD.b<c<a
[解析]奇函数f(x)在R上是增函数.当x>0时.f(x)>f(0)=0.当x1>x2>0时.f(x1)>f(x2)>0.
∴x1f(x1)>x2f(x2).∴g(x)在(0.+∞)上单调递增.且g(x)=xf(x)是偶函数.∴a=g(-log25.1)=g(log25.1).2<log25.1<3,1<20.8<2.由g(x)在(0.+∞)上单调递增.得g(20.8)<g(log25.1)<g(3).∴b<a<c.故选C.
2020版高三新课标专题辅导与增分攻略数学(文):函数的图象与性质含解析
编 辑:__________________

2019高考数学总复习优编增分练8+6分项练13函数的图象与性质理

+分项练函数的图象与性质.(·葫芦岛模拟)已知实数,满足<,则下列关系式中恒成立的是( ). > .>>.>答案解析<⇔>,对于,当=,=-时,满足>,但 > 不成立.对于,若>,则等价于+>成立,当=,=-时,满足>,但+>不成立.对于,当=,=时,满足>,但>不成立.对于,当>时,>恒成立..函数()=(其中为自然对数的底数)的图象大致为( )答案解析(-)====(),所以()为偶函数,图象关于轴对称,又当→时,()→+∞,故选..已知函数()=(\\(-+,<,-+,≥,))则函数()=()-的零点个数为( ) ....答案解析画出函数()=(\\(-+,<,-+,≥))的图象如图,由()=()-=可得()=,则问题化为函数()=(\\(-+,<,-+,≥))与函数==-的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个,故选..(·福建省厦门市高中毕业班质检)设函数()=(\\((-(-,≤,,>,))若()≥()恒成立,则实数的取值范围为( ).[] .[].[,+∞)答案解析∵ ()=(\\((-(-,≤,,>,))若()≥()恒成立,则()是()的最小值,由二次函数性质可得对称轴≥,由分段函数性质得-≤ ,得≤≤,综上,可得≤≤,故选..(·安徽省示范高中(皖江八校)联考)已知定义在上的函数()在[,+∞)上单调递减,且(+)是偶函数,不等式(+)≥(-)对任意的∈恒成立,则实数的取值范围是( )∪∪[,+∞)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学总复习优编增分练:8+6分项练13函数的图象与
性质理
1.(2018·葫芦岛模拟)已知实数x,y满足x<y,则下列关系式中恒成立的是( )
A.tan x>tan y B.ln>ln()
y2+1
C.> D.x3>y3
答案D
解析x<y ⇔x>y,
对于A,当x=,y=-时,满足x>y,但tan x>tan y不成立.
对于B,若ln>ln,则等价于x2+1>y2成立,当x=1,y=-2时,满足x>y,但x2+1>y2不成立.
对于C,当x=3,y=2时,满足x>y,但>不成立.
对于D,当x>y时,x3>y3恒成立.
2.函数f(x)=(其中e为自然对数的底数)的图象大致为( )
答案A
解析f(-x)=错误!
===f(x),
所以f(x)为偶函数,图象关于y轴对称,
又当x→0时,f(x)→+∞,故选A.
3.已知函数f(x)=则函数g(x)=2|x|f(x)-2的零点个数为( ) A.1 B.2 C.3 D.4
答案B
解析画出函数f(x)=的图象如图,
由g(x)=2|x|f(x)-2=0可得f(x)=,则问题化为函数f(x)=与函数y==21-|x|的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个,故选B.
4.(2018·福建省厦门市高中毕业班质检)设函数f(x)=若f(x)≥f(1)恒成立,则实数a的取值范围为( )
A.[1,2] B.[0,2]
C.[1,+∞) D.[)
2,+∞
答案A
解析∵ f(x)=错误!
若f(x)≥f(1)恒成立,
则f(1)是f(x)的最小值,
由二次函数性质可得对称轴a≥1,
由分段函数性质得2-1≤ln 1,得0≤a≤2,
综上,可得1≤a≤2,故选A.
5.(2018·安徽省示范高中(皖江八校)联考)已知定义在R上的函数f(x)在[1,+∞)上单调递减,且f(x+1)是偶函数,不等式f(m+2)≥f(x-1)对任意的x∈恒成立,则实数m的取值范围是( )。

相关文档
最新文档