酶具有的三个特征

合集下载

第二章 酶1

第二章 酶1

三、酶活性的调节
影响酶促反应速度的因素包括: 底物浓度、酶浓度、pH、温度、抑制剂、激活剂等。
参与酶活性调控方式包括:
基因表达调控、激素、反馈抑制、蛋白酶激活、可逆共价修 饰、别构调节等。
(一)共价修饰
1.不可逆共价修饰:蛋白酶解激活
酶原与酶原的激活
有些酶在细胞内合成或初分泌时只是酶的无活性前体, 必须在一定条件下,这些酶的前体水解一个或几个特定的 肽键,致使构象发生改变,表现出酶的活性。这种无活性 酶的前体称为酶原(zymogen)。 酶原向酶的转化过程称为酶原的激活。酶原的激活实 际上是酶的活性中心形成或暴露的过程。
协同效应: 寡聚酶(几个亚基)中,每个亚基的一个结合部位, 一旦一个效应物结合以后,会引起(诱导)酶分子构 象变化,使得酶分子上的电子分布被改变, 结果是使 后面的配体对酶的亲和力发生相应的改变。 如果一个效应物结合以后,后面的配体更容易结合,则 为正协同效应。 如果一个效应物结合以后,面后的配体更难结合,则为 负协同效应。 但同促协同效应一般为正协同效应。
(一)不可逆抑制作用: 抑制剂与酶分子的必需基团共价结合引 起酶活性的抑制,且不能采用透析等简 单方法使酶活性恢复的抑制作用就是不 可逆抑制作用。 酶的 不可 逆抑制 作用包 括专一 性抑制 (如有机磷农药对胆碱酯酶的抑制)和 非专一性抑制(如路易士气对巯基酶的 抑制)两种。
(二)可逆抑制作用: 抑制剂以非共价键与酶分子可逆性 结合造成酶活性的抑制,且可采用 透析等简单方法去除抑制剂而使酶 活性完全恢复的抑制作用就是可逆 抑制作用。 可逆抑制作用包括竞争性、反竞争 性、和非竞争性抑制几种类型。
断裂或形成 酶活性中心外的必需基团:维持酶活性中心的空间构象
(三)酶促反应的特点与机制

生物化学课件第六章 酶(化学)

生物化学课件第六章  酶(化学)

相对专一性
酶的专一性
结构专一性
(表6-3)
绝对专一性
立体异构专一性
7
相对专一性(relative specificity)
①族专一性(基团专一性) A — B 作用于一类或一些结构很相似的底物。
②键专一性 CAH2—OHB
α-葡萄糖
5
OH
苷酶
OHO
O
1
O
R
+H2O
OH
酯酶:R—C—O—R′ + H2O
脂肪(:水)水解酶
16
(二)酶的命名
2、惯用名: 通常只取一个较重要的底物名称和作用方式。
乳酸:NAD+氧化还原酶
乳酸脱氢酶
对于催化水解反应的酶一般在酶的名称上省去反应类 型。如水解蛋白的酶称蛋白酶,水解淀粉的酶叫??
有时为了区分同一类酶还在前面加上来源。 如胃 蛋白酶、胰蛋白酶、木瓜蛋白酶等
17
氧转水 裂异合
12
(一)酶的分类:
1. 氧化还原酶:催化氧化还原反应的酶。
AH2 + B
A + BH2
(1)脱氢酶类:催化直接从底物上脱氢的反应。
(2)氧化酶类 ①催化底物脱氢,氧化生成H2O2: ②催化底物脱氢,氧化生成H2O:
(3)过氧化物酶
(4)加氧酶(双加氧酶和单加氧酶)
13
(一)酶的分类
1个 Fe3+ 每秒能催化6×10-4个 H2O2的分解
同一反应,酶催化反应的速度比一般催化剂的反应
速度要大106~1013倍(表6-1)。
6
2.酶的特性:——生物催化剂
(1)催化效率极高
(2)高度的专一性:
酶对底物具有严格的选择性称为酶的专一(特异)性。 如:蛋白酶只能催化蛋白质的水解,酯酶?? 淀粉酶??

03 生物化学习题与解析--酶

03 生物化学习题与解析--酶

酶一、选择题(一) A 型题• 酶的活性中心是指A .结合抑制剂使酶活性降低或丧失的部位B .结合底物并催化其转变成产物的部位C .结合别构剂并调节酶活性的部位D .结合激活剂使酶活性增高的部位E .酶的活性中心由催化基团和辅酶组成• 酶促反应中,决定反应特异性的是A .酶蛋白B .辅酶C .别构剂D .金属离子E .辅基• 关于酶的叙述正确的是A .酶是生物催化剂,它的化学本质是蛋白质和核酸B .体内的生物催化剂都是蛋白质C .酶是活细胞合成的具有催化作用的蛋白质D .酶改变反应的平衡点,所以能加速反应的进程E .酶的底物都是有机化合物• 酶蛋白变性后活性丧失原因是A .酶蛋白被完全降解为氨基酸B .酶蛋白的一级结构受到破坏C .酶蛋白的空间结构受到破坏D .酶蛋白不再溶于水E .失去了激活剂• 含有维生素 B 1 的辅酶是A . NAD +B . FADC . TPPD . CoAE . FMN• 解释酶的专一性较合理的学说是A .锁 - 钥学说B .化学渗透学说C .诱导契合学说D .化学偶联学说E .中间产物学说• 酶的竞争性抑制剂的特点是A .当底物浓度增加时,抑制剂作用不减B .抑制剂和酶活性中心的结合部位相结合C .抑制剂的结构与底物不相似D .当抑制剂的浓度增加时,酶变性失活E .抑制剂与酶的结合是不可逆的8 .磺胺类药物能抑菌,是因为细菌利用对氨基苯甲酸合成二氢叶酸时,磺胺是二氢叶酸合成酶的A .竞争性抑制剂B .不可逆抑制剂C .非竞争性抑制剂D .反竞争性抑制剂E .别构抑制剂9 .关于酶的共价修饰,正确的是A .活性中心的催化基团经修饰后,改变酶的催化活性B .通过打断某些肽键,使酶的活性中心形成而改变酶的活性C .只涉及酶的一级结构的改变而不涉及高级结构的改变D .有级联放大效应E .只包括磷酸化修饰和甲基化修饰10 .关于关键酶的叙述,正确的是A .一个反应体系中的所有酶B .只受别构调节而不受共价修饰C .一个代谢途径只有一个关键酶D .并不催化处于代谢途径起始或终末的反应E .一般催化代谢途径中速度较慢、不可逆的反应11 .关于有机磷化合物对酶的抑制,叙述正确的是A .因能用解磷定解毒,故属于可逆性抑制B .能强烈抑制胆碱酯酶活性C .该抑制能被过量的 GSH 解除D .有机磷化合物与酶活性中心的巯基结合E .该抑制能被适量的二巯基丙醇解除12 .关于非竞争性抑制剂的叙述,正确的是A .由于抑制剂结合酶活性中心以外的部位,酶与底物结合后,还能与抑制剂结合B .酶的 K m 与抑制剂浓度成反比C .与酶活性中心上的必需基团结合,影响酶与底物的结合D .在有非竞争性抑制剂存在的情况下,如加入足量的酶,能达到正常的 V maxE .也称为别构抑制剂13. 反竞争性抑制作用的动力学特点是A . K m 降低, V max 降低B .抑制剂可与酶和酶 - 底物复合物同时结合C . K m 不变, V max 降低D .抑制剂只与酶或酶 - 底物复合物结合E . K m 降低, V max 增高14. 酶和一般催化剂相比,其特点之一是A .温度能影响催化效率B .高温时会出现变性C .降低反应的活化能D .提高速度常数E .不改变平衡常数15. 关于 K m 的叙述,正确的是A .指酶 - 底物复合物的解离常数B .酶的 K m 越大,底物与酶的亲和力越大C .是酶的特征性常数,与酶的浓度无关D .与底物的种类无关E .与环境的 pH 无关16. 关于酶的最适 pH ,叙述错误的是A .与底物的种类有关B .与底物的浓度有关C .与缓冲液的种类有关D .与缓冲液的浓度无关E .与酶的纯度有关17. 关于酶和底物的结合,叙述错误的是A .一般为非共价结合B .若底物为蛋白质等大分子,结合范围涉及整个酶分子C .若底物为小分子化合物,结合范围只是酶的活性中心D .酶构象的破坏,则严重影响酶 - 底物复合物的形成E .结合基团可能也具有催化功能,催化基团也有结合作用18. 关于酶的最适温度,叙述错误的是A .与底物的种类和浓度有关B .与介质的种类和 pH 有关C .与环境的离子强度无关D .与酶的种类和浓度有关E .以酶活力对温度作图图形呈倒 U 形19. 关于酶的磷酸化修饰,叙述错误的是A .酶经磷酸化修饰后,酶的活性增加B .磷酸化和去磷酸化反应是由各种蛋白激酶催化的C .被磷酸化的部位是酶活性中心的丝氨酸、苏氨酸及酪氨酸残基的羟基D .磷酸化时需消耗 ATPE .别构酶不能进行磷酸化修饰20. 酶原激活的主要途径是A .化学修饰B .亚基的聚合和解离C .别构激活D .翻译后加工E .水解一个或几个特定的肽段21. 化学毒气(路易士气)与酶活性中心结合的基团是A .丝氨酸的羟基B .组氨酸的咪唑基C .赖氨酸的ε - 氨基D .半胱氨酸的巯基E .谷氨酸的氨基22. 浓度为 10 -6 mol/L 的碳酸酐酶在一秒钟内催化生成 0.6mol/L 的 H 2 CO3 ,则碳酸酐酶的转换数为A . 6 × 10 -4B . 6 × 10 -3C . 0.6D . 6 × 10 -5E . 1.7 × 10 -623. 酶促反应动力学研究的是A .酶分子的空间构象及其与辅助因子的相互关系B .酶的电泳行为C .酶促反应速度及其影响因素D .酶与底物的空间构象及其相互关系E .酶活性中心各基团的相互关系24. 反竞争性抑制剂对酶促反应速度的影响是A .K m ↑, V max 不变B .K m ↓, V m ax ↓C . K m 不变,V max ↓D .K m ↓,V max ↑E .K m ↓, V max 不变25. 有关乳酸脱氢酶同工酶的叙述,正确的是A .乳酸脱氢酶含有 M 亚基和 H 亚基两种,故有两种同工酶B . M 亚基和 H 亚基都来自同一染色体的某一基因位点C .它们在人体各组织器官的分布无显著差别D .它们的电泳行为相同E .它们对同一底物有不同的 K m 值26. 关于同工酶叙述正确的是A .催化相同的化学反应B .分子结构相同C .理化性质相同D .电泳行为相同E .翻译后化学修饰不同所造成的结果也不同27. L- 谷氨酸脱氢酶属于A .氧化还原酶类B .水解酶类C .裂合酶类D .转移酶类E .合成酶类28. 能使酶发生不可逆破坏的因素是A .强碱B .低温C .透析D .盐析E .竞争性抑制29. 关于酶与临床医学关系的叙述,错误的是:A .体液酶活性改变可用于疾病诊断B .乙醇可诱导碱性磷酸酶生成增加C .酶可用于治疗疾病D .酪氨酸酶缺乏可引起白化病E .细胞损伤时,细胞酶释入血中的量增加30. 心肌梗塞时,乳酸脱氢酶的同工酶谱增加最显著的是:A . LDH 5B . LDH 4C . LDH 3D . LDH 2E . LDH 131. 测定血清酶活性常用的方法是A .在最适条件下完成酶促反应所需要的时间B .以 280nm 的紫外吸收测酶蛋白的含量C .分离提纯酶蛋白,称取重量计算酶含量D .在规定条件下,测其单位时间内酶促底物减少量或产物生产量E .以上方法都常用(二) B 型题A .抛物线B .矩形双曲线C .直线D .平行线E . S 形曲线1. 竞争性抑制作用与反应速度的关系曲线是2. 反竞争性抑制作用与反应速度的关系曲线一般是• 底物浓度与反应速度的关系曲线是• 变构酶的动力学曲线是A .竞争性抑制B .非竞争性抑制C .反竞争性抑制D .不可逆性抑制E .反馈抑制5. 砷化物对巯基酶的抑制是6. 甲氨蝶呤对四氢叶酸合成的抑制是7. 丙二酸对琥珀酸脱氢酶的抑制是A .寡聚酶B .限制性内切酶C .多酶体系D .酶原E .单体酶8. 由一条多肽链组成• 无催化活性• 基因工程中的工具酶11. 可催化一系列连续的酶促反应A .转移酶B .水解酶C .异构酶D .裂解酶E .氧化还原酶12. 醛缩酶属于• 消化酶属于• 磷酸化酶属于• 过氧化氢酶属于A .有机磷农药B .磺胺类药物C .二巯基丙醇D .解磷定E .琥珀酸16. 二氢叶酸合成酶的抑制剂• 胆碱酯酶的抑制剂• 有机磷农药中毒的解毒• 重金属盐中毒的解毒A .米氏常数B .酶的活性单位C .酶的转换数D .酶的最大反应速度E .酶的速度• 单位时间内生成一定量的产物所需的酶量• 可以反映酶对底物的亲和力• 每秒钟 1mol 酶催化底物转变为产物的摩尔数A .多数酶发生不可逆变性B .酶促反应速度最大C .多数酶开始变性D .温度增高,酶促反应速度不变E .活性降低,但未变性• 环境温度>60 ℃• 环境温度>80 ℃• 酶在0 ℃ 时• 环境温度与最适温度相当A .酶浓度B .抑制剂C .激活剂D . pH 值E .底物浓度• 能使酶活性增加• 影响酶与底物的解离• 可与酶的必需基团结合,影响酶的活性• 酶被底物饱和时,反应速度与之成正比A .氨基转移B .羧化反应C .丙酮酸脱羧D .琥珀酸脱氢E .丙酮酸激酶• 磷酸吡哆醛与磷酸吡哆胺作辅酶• FAD 作辅酶• 生物素作辅酶A .斜率↑,纵轴截距↓,横轴截距不变B .斜率↑,纵轴截距不变,横轴截距↑C .斜率↑,纵轴截距↑,横轴截距不变D .斜率不变,横轴截距↑,纵轴截距↓E .斜率不变,横轴截距↓,纵轴截距↑34. 竞争性抑制的林 - 贝作图特点是• 非竞争性抑制的林 - 贝作图特点是• 反竞争性抑制的林 - 贝作图特点是(三) X 型题1. 对酶的叙述正确的是A .辅酶的本质是蛋白质B .能降低反应活化能C .活细胞产生的生物催化剂D .催化热力学上不能进行的反应E .酶的催化效率没有一般催化剂高2. 大多数酶具有的特征是A .单体酶B .为球状蛋白质,分子量都较大C .以酶原的形式分泌D .表现出酶活性对 pH 值特有的依赖关系E .最适温度可随反应时间的缩短而升高3. LDH 1 和 LDH 5 的叙述正确的是A .二者在心肌和肝脏分布量不同B .催化相同的反应,但生理意义不同C .分子结构、理化性质不同D .用电泳的方法可将其分离E .骨骼肌和红细胞中含量最高4 .金属离子在酶促反应中的作用是A .参与酶与底物结合B .可作催化基团C .在氧化还原反应中传递电子D .转移某些化学基团E .稳定酶分子构象5 .酶的辅助因子包括A .金属离子B .小分子有机化合物C . H 2 OD . CO 2E . NH 36 .酶的化学修饰包括A .甲基与去甲基化B .磷酸化与去磷酸化C .乙酰化与去乙酰化D .腺苷化与脱腺苷化E .–SH 与–S–S–的互变7 .关于 pH 值对酶促反应的影响,正确的是A .影响酶分子中许多基团的解离状态B .影响底物分子的解离状态C .影响辅酶的解离状态D .最适 pH 值是酶的特征性常数E .影响酶 - 底物复合物的解离状态8 .影响酶促反应速度的因素有A .抑制剂B .激活剂C .酶浓度D .底物浓度E . pH9 .竞争性抑制作用的特点是A .抑制剂与酶的活性中心结合B .抑制剂与底物结构相似C .增加底物浓度可解除抑制D .抑制程度与 [S] 和 [I] 有关E .增加酶浓度可解除抑制10 .磺胺类药抑制细菌生长是因为A .属于非竞争性抑制作用B .抑制细菌二氢叶酸合成酶C .造成四氢叶酸缺乏而影响核酸的合成D .抑制细菌二氢叶酸还原酶E .属于反竞争性抑制作用11 .关于酶催化作用的机制正确的是A .邻近效应与定向作用B .酸碱双重催化作用C .表面效应D .共价催化作用E .酶与底物如锁子和钥匙的关系,进行锁 - 匙的结合12 .关于同工酶的叙述,正确的是A .由相同的基因控制而产生B .催化相同的化学反应C .具有相同的理化性质和免疫学性质D .对底物的 K m 值不同E .由多亚基组成13 .关于温度对酶促反应的影响,正确的是A .温度越高反应速度越快B .最适温度是酶的特征性常数C .低温一般不使酶破坏,温度回升后,酶又可以恢复活性D .温度升高至60 ℃ 以上时,大多数酶开始变性E .酶的最适温度与反应进行的时间有关14 .关于酶含量调节叙述正确的是A .底物常阻遏酶的合成B .终产物常诱导酶的合成C .属于迟缓调节D .细胞内酶的含量一般与酶活性呈正相关E .属于快速调节二、是非题• 竞争性抑制剂抑制程度与作用时间无关。

第6章 酶

第6章 酶

k1 k3 E+P ES k2
推导基于两个假设:
分解为E及P的反应为慢反应,反应速度取决于 慢反应即 V=k3[ES] (1)
1. E与S形成ES复合物的反应是快速平衡反应而ES
2. S的总浓度远远大于E的总浓度,因此在反应的 初始阶段,S的浓度可认为不变即[S]=[St]
Km值的推导:
当反应速度为最大反应速度一半时:
在其他因素不变的情况下,底物浓度对 反应速度的影响呈矩形双曲线关系。

V
Vmax
[S]
当底物浓度较低时:
反应速率与底物浓度成正比;反应为 一级反应。
V
Vmax
[S]
随着底物浓度的增高:
反应速率不再成正比例加速;反应为 混合级反应。
V
Vmax
[S]
当底物浓度高达一定程度:
反应速率不再增加,达最大速率;反 应为零级反应。
胰凝乳蛋白酶的一级结构和空间结构
二、酶蛋白的结构
必需基团(essential group) 酶分子中氨基酸 残基侧链的化学基团 中,一些与酶活性密 切相关的化学基团。
酶的活性中心 (active center)
指必需基团在空间结构上彼此靠近, 组成具有特定空间结构的区域,能与底 物特异结合并将底物转化为产物。
辅酶 (coenzyme): 与酶蛋白非共价键结合较疏松, 可用透析或超滤方法除去。 辅基 (prosthetic group): 与酶蛋白共价键结合较紧密, 不能用透析或超滤的方法除去。
辅助 因子: 分类
酶的辅助因子从其化学本质来看可分为三类:
①金属离子
②小分子有机物,如维生素 ③蛋白质类辅酶
(一)无机离子对酶的作用
2、专一性不可逆抑制剂

酶
• 辅酶在催化反应过程中,直接参加了反应。 • 每一种辅酶都具有特殊的功能,可以特定地 催化某一类型的反应。在反应中起运载体的 作用,传递电子、质子或其它基团。 • 同一种辅酶可以和多种不同的酶蛋白结合形 成不同的全酶。 • 一般来说,全酶中的辅酶决定了酶所催化的 类型(反应专一性),而酶蛋白则决定了所 催化的底物类型(底物专一性)。
(3)过氧化物酶
(4)加氧酶(双加氧酶和单加氧酶)
O2 +
OH OH
OH C=O C=O OH
(顺,顺-已二烯二酸)
RH + O2 + 还原型辅助因子 ROH + H2O + 氧化型辅助因子 (又称羟化酶)
2、转移酶 Transferase
• 转移酶催化基团转移反应,即将一个底物分子 的基团或原子转移到另一个底物的分子上。
HOOCCH=CHCOOH H2O
HOOCCH2CHCOOH OH
5、异构酶 Isomerase
• 异构酶催化各种同分异构体的相互转化, 即底物分子内基团或原子的重排过程。
• 例如,6-磷酸葡萄糖异构酶催化的反应
CH2OH O OH OH OH OH OH OH CH2OH O CH2OH OH
A
酶蛋白决定反应的特异性和高效性 辅助因子决定反应的种类与性质
辅助因子分类
(按其与酶蛋白结合的紧密程度)
辅酶 (coenzyme): 与酶蛋白结合疏松,可用透析或超滤的 方法除去。 辅基 (prosthetic group): 与酶蛋白结合紧密,不能用透析或超 滤的方法除去。 金属离子
辅酶/辅基的作用特点
• 活性中心:
• 必需基团:活性中心的必需基团,活性中心以外的必 需基团 • 活性中心: 底物结合部位+ 催化部位 • 活性中心是酶与底物结合并表现催化作用的空间区域, 大多由肽链上相距甚远的氨基酸残基提供必需基团, 经肽链折叠环绕,使之在三维空间中相互接近,构成 特定的空间构象,起催化中心作用。在结合酶中辅酶 和辅基也参与活性中心的组成。

酶的基本知识

酶的基本知识
成都中医药大学峨眉学院 资源教研室 童娟 制
二、酶的概念
(二)酶的特性
1.催化效率高 2. 特异性强:高度专一性 3.反应条件温和 4.可调节性:酶促反应受多种因素调控 5.稳定性差
酶是活细胞产生的,对底物具有高度
催化效率和高度特异性的一类生物催化 剂。
成都中医药大学峨眉学院 资源教研室 童娟 制

成都中医药大学峨眉学院 资源教研室 童娟
二、底物浓度对酶反应速度的影响
(二)米氏方程

1913年,德国化学家Michaelis和Menten根据中 间产物学说对酶促反映的动力学进行研究,推 导出了表示整个反应中底物浓度和反应速度关 系的著名公式,称为米氏方程。
Vmax [S] V= Km + [S]
第三章 酶
Enzyme
目的要求:
介绍酶的概念、作用特点和分
类、命名,讨论酶的结构特征 和催化功能,进而讨论影响酶 作用的主要因素。对酶类药物 作简单的介绍。
成都中医药大学峨眉学院 资源教研室 童娟

第四章
第一节 第二节 第三节 第四节
酶的基本知识
酶的概述 酶的结构和功能 酶促反应 酶类药物简介
第一节 概述
成都中医药大学峨眉学院 资源教研室 童娟

三、 酶的分类
(二)根据酶的化学组成可将酶分为: 1 单纯蛋白酶类:只含有蛋白质成分 2 结合蛋白酶类(全酶):含有蛋白成分 (酶蛋白)和非蛋白成分(辅助因子)
全酶 = 酶蛋白 + 辅助因子
辅酶 与酶蛋白结合比较疏松的小分子有机物 辅助因子 辅基 与酶蛋白结合紧密的小分子有机物。 金属离子 金属离子作为辅助因子。
成都中医药大学峨眉学院 资源教研室 童娟 制

酶的化学本质结构和特性

酶的化学本质结构和特性
乳酸
C3H
丙酮酸
2.转移酶类(transferases)
催化基团的转移
AR+ B
A +BR
例:谷丙转氨酶(GPT)(EC 2.6.1.2,L-丙氨酸: α—酮戊二酸氨基转移酶)
3.水解酶类(hydrolases)
AB + H2O
A·OH + BH
4.裂合酶类(lyases)
从底物移去一个基团而形成双键或逆反应
Thomas Cech University of Colorado at Boulder, USA
1983年美国S.Altman等研究RNaseP(由20%蛋 白质和80%的RNA组成),发现RNaseP中的RNA 可催化E. coli tRNA的前体加工。
Sidney Altman Yale University New
Haven, CT, USA
Cech和Altman各自独立地发现了RNA的催 化活性,并命名这一类酶为ribozyme(核酶), 2人共同获1989年诺贝尔化学奖。
1.Cell vol 31, 147~157,1982年。
2.Sci. Amer. Vol 255, 64~75,1986。
3.抗体酶(abzyme)
例: 葡萄糖氧化酶活性的测定 葡萄糖+O2+H2O 葡萄糖氧化酶 葡糖酸+H2O2
四、酶的作用动力学(kinetics)
什么是动力学? 什么是酶作用动力学?
(一)底物浓度对酶反应速度的影响
1.米氏方程的提出
中间复合物学说:
第一步: E+S
ES
第二步: ES→E+P
V∝[ES]
1913年Michaelis和 Menten推导了米氏方程

高中生物 章节知识要点 酶的特性素材 新人教版必修1

高中生物 章节知识要点 酶的特性素材 新人教版必修1

[教材优化全析]通过上节课的实验“比较过氧化氢在不同条件下的分解”,我们认识到,在其他条件相同的情况下,过氧化氢酶催化过氧化氢分解的效率(速度)要远远高于Fe 3+的作用,这就是酶的高效性。

全析提示酶只改变反应速度,而不改变反应平衡。

1.酶具有高效性生物体最基本的特征是新陈代谢,新陈代谢是由一系列化学反应组成的。

这些化学反应的高速顺利进行都需要酶的催化,即使像CO 2水合作用这样简单的反应也是通过体内碳酸酐酶催化的CO 2+H 2O −−−−→−碳酸酐酶H 2CO 3每个酶分子在1s 内可以使6×105个CO 2发生水合作用,这样可以保证使组织细胞中的CO 2迅速进入血液,然后再通过肺泡及时排出,这个经酶催化的反应,要比未经催化的反应快107倍。

再如刀豆种子中脲酶催化尿素水解的反应:要点提炼关于酶的高效性、专一性、作用条件较温和三个特征可通过作相关的实验 设计加深理解。

在20℃时,脲酶催化反应的速率常数是3×104s -1,无酶催化时,尿素水解的速率常数为3×10-10s -1。

可见,脲酶催化反应的速率比非催化反应速率加快了1014倍。

大量的实验数据表明,酶的催化效率大约是无机催化剂的107~1013倍。

据报道,如果在人的消化道中没有各种消化酶类参与催化作用,那么,在体温37℃的情况下,要消化一餐简单的午饭,大约需要50年。

经过实验分析,动物吃下的肉食,在消化道内只要几小时就可以完全消化分解;在将唾液淀粉酶稀释100万倍后,仍具有催化能力;体内产生的一些有害代谢产物如过氧化氢,能在极短的时间内被过氧化氢酶催化分解,避免对机体造成伤害;催化细胞内呼吸作用一系列化学反应的酶也有很高的作用效率,从而保证机体所需能量的持续高速供应。

由此可见,酶的催化效率是极高的。

全析提示酶的高效性是保证机体代谢各种化学反应在常温常压的条件下高效进行的 前提条件。

2.酶具有专一性过氧化氢酶只能催化过氧化氢分解,不能催化其他化学反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档