第五章 有心力场中的运动
物体在有心力场中运动的分析(毕业论文)

本科毕业论文题目:物体在有心力场中运动的分析目录1.引言 (1)2.有心力基本概念及它的性质: (1)3.推出动力学方程 (2)4.用开普勒定律推出引力公式 (6)5.两体问题 (7)6.结论 (9)7.参考文献 (10)8.致谢......................................................... - 10 -物体在有心力场中运动的分析摘要有心力场中的运动是经典力学和天体力学的一个重要问题.本文概括地介绍了有心力及其有关它的一些重要结论.首先研究质点和质点系在有心力作用下的运动,有心力的基本性质.用动力学方法推导关于有心力的公式,及在开普勒三定律的基础上推导万有引力方程.,介绍有心力场在物理学中的应用。
关键词有心力;动力学;开普勒定律;两体问题。
1.引 言经典力学的发展是与对天体运行的观察和研究分不开的.早在17世纪初叶,开普勒(J.Kepler )通过对太阳系各行星运动的观察,总结出行星运动的三个定律,于1620年发表在《论天体之协调》(On Celestial Harmonics )一书中.在此基础上,牛顿建立了著名的万有引力定律.行星绕恒星的运动属于所谓“有心运动”一类的运动.有心运动是一类常见的运动,天体的运行,原子核外的电子运动都属于这类运动.火箭和人造卫星的发射和运行都离不开对有心运动的研究.首先我们介绍有心力的基本概念及它的性质,然后利用开氏三定律推导出引力公式并对公式进行分析.2.有心力基本概念及它的性质:一般来讲,如果运动质点所受力的作用线始终通过惯性系中某一个固定点,则我们就说这个质点所受的力是有心力,此固定点称为力心.有心力的量值,一般是矢径(即质点和力心之间的距离)r 的函数,而力的方向则始终沿着质点和力心的连线,凡是趋向定点的是引力,离开定点的是斥力。
行星绕太阳运动时受到的力,电子饶原子核转动时受到的库仑引力,近似看做有心力.有心力场是自然界中最普遍、最重要的力场之一.有心力构成的力场称为有心力场.我们平时假定力心不动研究有心力场问题.这时以力心作为坐标质点,变成一个平面问题.质点受变力作用而沿曲线运动时,变力所作的总功为d W B A .⎰= (1)在平面极坐标系中,力所做的功为θθd F dr F W B A r +=⎰ (2)因为有心力只具有径矢方向的分量)(r F F r =,而横向分量为0=θF ,故质点由A 点运动到B 点时有心力作的功是dr r F dr r F W B A r r ⎰⎰==21)()( (3)这个顶积分的值只取决于起点和终点的矢径,与质点运动的路径无关,这就证明了有心力是保守力.而平面力,力和位置坐标相互平行且应满足0=⨯∇,那么角动量守恒.这是有心力场的一个特点,根据有心力场的特点,下面推导有心力场的动力学方程及加讨论。
有心力场中的运动

但:开普勒不知道行星和太阳之间有平方反比引力. 牛顿:由开普勒三定律 万有引力定律
任务:弄清这一推证过程. 行星运动三定律 第一定律: 第一定律:行星绕太阳作椭圆运动,并以太阳为椭圆 的一个焦点; 第二定律: 第二定律:从太阳引向行星的矢径在相等时间内扫过 相等的面积;
第三定律: 第三定律:行星公转周期的平方和轨道半长轴的立方 成正比.
几何关系:
:与行星无关的常量,只可能与太阳的性质 (太阳的质量)有关.
显然: 行星与太阳之间的引力应该正比于而不是反 比于太阳的质量M 令 (G:普适常量)
——万有引力定律
�
由于已知 将 代入比耐公式得: ,所以由比耐公式可求运动轨道.
令: 则: ——谐振动方程
其解为:
令:
,有:
又:
将r的表达式代入得到:
E<0: e<1 E=0: e=1 E>0: e>1
椭圆轨道
(束缚运动)
抛物线轨道 (无限运动) 双曲线轨道 (无限运动)
三,行星的运动
开普勒问题
运动规律
已讲:已知平方反比引力
一,运动形式的分类
设:平方反比引力为 质点移动 ,F做功: F ;
对dw积分,得势能:
设:
时,
,则
等效势能:
又:
则 :
——限制了质点的运动区域 中运动
由图:E<0: 质点限制在有限区域 E E>0: 运动区域
E=0: 过渡情况,质点也能运动到无穷远 即运动形式分两类: 束缚运动 无限运动
二,轨道运动
一,守恒量 在有心力场中,角动量 守恒
运动过程中,
:质点的位置始终在一个垂直于L
的平面上.即:有心力场中的运动是平面运动. 设:质点运动所在的平面为xz平面( 则: )
质点在有心力场中的运动

从地面发射物体要飞出太阳系,既要克服地球
引力,又要克服太阳引力,所以发射时物体的动能
必须满足12 m
v3 2
2 1
m
v2 2
2 1
mv3 2
v3 v22 v3m s1)
第三宇宙 速度
必须满足12 m
v3 2
2 1
m
v2 2
2 1
mv3 2
v3 v22 v32 v22 (v3 v)2
16.7103(m s1)
第三宇宙 速度
地球 相对太阳的速度 v 29.8103 m / s
物体相对于地球的发射速度 v3 v3 v
2. 轨迹方程
A2
远日点
r
o
A1
近日点
1 1 (1 cos)
圆锥 曲线
rp
1 圆或椭圆 1 双曲线 1 抛物线
式中 p是个决定图形尺寸的常数,半正焦
弦, 是偏心率
3. 宇宙速度
第一宇宙速度(环绕速度)
以卫星和地球为研究
对象,忽略大气阻力,系
统机械能守恒。取无穷远
2 1
mv3 2
G
r Msm
物体相对太阳的速度
v3
2GMs 42.2103(m s1) r
宇宙速度
地球 相对太阳的速度 v 29.8103 m / s
物体相对于地球的发射速度 v3 v3 v
从地面发射物体要飞出太阳系,既要克服地球
引力,又要克服太阳引力,所以发射时物体的动能
宇宙速度
第二宇宙速度(逃逸速度)
物体在地面发射时系统的机械能为:
有心力

目录内容摘要 (1)关键词 (1)Abstract (1)Key words (1)1 引言 (2)2 质点在有心力场中的运动性质 (2)2.1 有心力的意义 (2)2.2 质点在有心力场中的运动性质 (2)3 质点在有心力场中运动的求解方法 (4)3.1 牛顿定律法 (4)3.2 比耐公式 (5)3.3 守恒定律法 (5)3.4 分析力学法 (5)4 应用举例 (7)结束语 (11)参考文献 (12)内容摘要:本题目分析了质点在有心力场中的运动性质和有心力场中质点动力学问题求解方法,并以质点在平方反比引力场中运动为例进行分析比较,以加深对有心力场的理解和对各类方法的合理应用。
关键词:有心力运动性质求解方法Abstract:The title of the particle motion in the nature of the central force field and particle dynamics in the central field problem solving methods,and the inverse square gravitational field of the particle in the case of motion were analyzed and compared in order to deepen the understanding of the central field and the rational application of various methods.Key words:Central force The nature of sports Solution1 引言质点在有心力场中的运动是自然界中的运动之一。
有心力不仅在天文学上有着非常重要的应用,而且在近代物理上也促进了一些新的发现。
对于有心力场中质点动力学问题求解方法在各类教材中介绍了一些不同的方法,其中最常用的是比耐公式法。
(完整版)第五章有心力场中的运动

p3 d 0 (1 cos )2
此式就是质点的运动方程。
式中积分常数为 0,即矢径r与e重合的时刻,称为
过近地点时间。
轨道平面方位(,i)和偏心率矢量e的方位确定后,轨道
方程和时间积分即完全确定二体问题的运动规律。
以上积分过程中出现8个积分常数,E,L,,i,,p,e,
,称为轨道根数,由于有关系式e
mr v F (r) r r 0 r
d (r v) 0
dt
r v L(常矢量)
称为动量矩积分(守恒)。L为单位质量的质点对O的动
量矩。常矢量L垂直于r与v构成的平面,因此质点必永远在此
平面内运动,此平面称为轨道平面。
因此可以采用极坐标来研究问题。
动量矩积分在极坐标中的的标量形式:
上节讨论的二体问题是多体问题中唯一可导出解析积分 的最简单情况。三体问题,即三个相互以万有引力吸引的质 点运动,不存在解析积分。
若三体问题中有一体质量m远小于另外两体的质量m1,m2, 以至于它对后两者运动的影响可以忽略不计,则可以认为m1, m2作为独立的二体运动,只需要讨论m在m1,m2的共同引力场 中的运动。这种简化的三体问题称为限制性三体问题。考虑 地球和月球引力共同作用的航天器运动就是典型的限制性三 体问题。
可以看出e在轨道面内且与速度方向垂直。在近地点e与e
方向一致,在远地点e与e方向相反,在其它位置e与e有夹角。
由此可以得出结论:在近地点或远地点施加冲量对改变偏 心率有最好的效果。
在近地点,e与e一致,使e增
加,轨道椭圆更扁。相反在远地点,
e与e相反,e减小,轨道椭圆更圆。
利用此原理,同步地球卫星的 发射过程设计为先进入近地圆轨道, 然后施加冲量,转移至远地点为同 步卫星高度的椭圆轨道(称为霍曼转 移轨道),然后在远地点施加冲量使 偏心率减为0,变成以远地点为半径 的同步圆轨道。
质点在有心力场中的运动

学特 征 为动 量矩 守 恒 为 计算 方便
,
机 械 能守 恒
所 以有 心 力对 力 心 的力矩
以
后.Βιβλιοθήκη =尸又户=
0
,
[s]
:
了一
由 力矩 与 动量 矩 的关 系
:
_ -
m 司 ( ( r l 司 r
: “
;
1
掠 面 速度或 面 积
U
由 上式 知
、
夕=
h 为速 度矩 (
二 一
f
盯_
滋 . 伙
t d
-
勒 定律 对椭 圆 进行 面 积分 和周 期 积 分导 出 牛顿 万 有 引 力定律
一
、
,
户
=
( h 为常 数 ) (
,
5
)
或 任意位 置 它 的动 能 与势 能 之和 是 一 个 恒 定不 变 的 常 数 质点 的 动能 和 势能 之和 叫做 质点 的机 械 能
用 符号 E 来表 示
, ,
通 过实 例加 以说 明
布 句 昨
_
、
,
司_
-
。 U
[1] 求
u
( 和
7
) ) 和 (刀 由 (3
因 此运 动 质 点 在 有心 力 场 中 动 量矩 为一 恒 量
即: J
=
一一
t d
又
-
速度 ) 【 ] 所 以通 过 上 述 对 质点 在 有 心 力 场 中 运 Z 动形 式
,
代替 r
。
夕的 微分 方 程
、
运 动 规律 分 析可 知 质点 在 有心 力场 中的 运
。
在 进
曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解-中心力场(圣才出品)

第5章中心力场5.1 复习笔记一、中心力场中粒子运动的一般性质1.角动量守恒与径向方程设质量为的粒子在中心势中运动,则Hamilton量表示为则该粒子的能量本征方程可表示为上式左边第二项称为离心势能(centrifugal potential),第一项称为径向动能算符。
径向波函数满足的方程:(1)有时作如下替换是方便的.令:则满足:(2)(8)式在解题中的实际应用会更多。
径向方程(1)中不出现刻画本征值的磁量子数m,因此能量本征值E与m无关,所以能级有m简并.2.径向波函数在r→0邻域的渐近行为求解径向方程(1)时,处只有的解才是物理上可以接受的.或等价地,要求径向方程(2)的解:满足3.两体问题化为单体问题引入如下的约化质量,可以将两体问题化为单体问题。
化为单体问题后,单体应该满足如下方程,其中式23是在两体质心系中列出的方程。
(3)式(3)中第一式描述质心运动,是自由粒子的能量本征方程.Ec是质心运动能量,这一部分与体系的内部结构无关.式(3)中第二式描述相对运动.E是相对运动能量.二、无限深球方势阱质量为 的粒子在半径为n的球形匣子中运动.这相当于1.l=0的情况粒子的能量本征值为相应的归一化波函数可表示为2.l ≠0的情况 粒子的能量本征值表为与l E ,n 相应的径向本征函数表示为:三、三维各向同性谐振子考虑质量为μ的粒子在三维各向同性谐振子势V(r)中运动,ω是刻画势阱强度的参量.三维各向同性谐振子的能量本征值如下:与之相应的径向波函数经归一化后,n表示径向波函数的节点数(不包括r=0, 点).r讨论:1.能级简并度对于给定能级E的简并度为N2.Cartesian坐标系中求解如采用直角坐标系,它们的共同本征态为:即三个一维谐振子的能量本征函数之积.相应的能量本征值为:能级简并度为:四、氢原子具有一定角动量的氢原子的径向波函数满足下列方程及边界条件式中μ边电子的约化质量,)/1/(p e e m m m +=μ其中p e m m 和分别为电子和质子质量。
带电粒子在有心力场中运动时的两个守恒矢量

带电粒子在有心力场中运动时的两个守恒矢量
陈祖刚;陈治
【期刊名称】《工科物理》
【年(卷),期】1998(008)002
【摘要】证明了带电粒子在有心力场中运动时有两个守恒矢量,其中之一存在于任意的有心力场中,另一个仅存在于与距离平方成反比的有心力场中。
【总页数】2页(P10-11)
【作者】陈祖刚;陈治
【作者单位】北京服装学院,北京100029;北京联合大学纺织工程学院,北京100025
【正文语种】中文
【中图分类】O413.1
【相关文献】
1.有心力场具有Runge—lena矢量守恒的条件 [J], 陈祖刚;陈治
2.从“两个半径的大小关系”入手分析带电粒子在圆形磁场中的运动 [J], 李伟康
3.用矢量法研究粒子在有心力场中的运动 [J], 张昌莘
4.应用矢量的分解与合成解决带电粒子在电场中的运动 [J], 李莲兰
5.带电粒子在偏转电场运动过程中的能量转化与守恒分析 [J], 陈曦;张石友;张晓琳因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 有心力场
质点受力F的作用线始终 通过惯性空间的固定点O,则 称此力我有心力,点O为力心, 有心力构成的力场称为有心 力场。O至质点的矢径记为r, 有心力F的作用线与r共线。
2-3
F (r) F(r) r r
mr F (r) r 0 r
2. 能量积分
mv v F (r) r v 0 r
1. 万有引力场
F
G
mme r2
(r r
)
G 6.67 1011m3/kg s2,万有引力常数。
V (r) G mme r
两质点组成的系统,无外力作用,仅在
两者的万有引力作用下的运动,称为二体问题。
将地球和航天器均视作均值球体,根据上例的分析,可以 质量集中于球心的质点me和m分别表示地球和航天器。由于
高等动力学
中国矿业大学力建学院力学系 李毅
2-1
目录 第五章 有心力场中的运动
§5-1 有心力场的普遍性质 §5-2 二体问题 §5-3 限制性三体问题
2-2
有心力场是自然界中最普遍的力场。天体或航天器的 运动可简化为质心运动和绕质心的转动,即轨道运动和姿 态运动。忽略轨道运动和姿态运动的耦合作用,可分别独 立研究这两种运动。
r
2. 动力学方程与初积分
由上节mr F (r) r 0知, r
二体问题的动力学方程为:
r
r3
r
0
(5.2.5)
此方程为二阶矢量微分方程,
可化为三个二阶标量微分方程组,
应有六个积分常数。如图所示。
我们不直接使用积分的方法
求解此问题,而是使用初积分与
直接积分相结合的方法来求解。
二体问题的能量积分和面积积分可由上节得出:
r2 L (5.1.9)
质点的矢径扫过的面积为:
dA 1 r 2d
2
A 1 r 2 1 L
2
2
因此,动量矩积分又称为面积积分。
将能量积分也用极坐标表示:
1 (r2 r 22 ) 1 V (r) E
2
m
(5.1.12)
(5.1.9)与(5.1.12)组成封闭方程组,可用来求解此类问题。
§5-2 二体问题
r
2
L r re cos
从而导出极坐标形式的轨道方程:
r p
1 e cos
2
式中参数p L 称为半轴参数。
此轨道方程显然是以O为焦点,且相对于e为对称轴的圆锥曲线。
e 1 椭圆 e 1 抛物线 e 1 双曲线
将轨道方程代人动量矩积分并分离变量,得到
p3 d dt (1 cos )2
t
1
2EL2
2
,p
L2
的存在,
其中有6个是独立的。通常选择,i,,p,e,作为独立的轨
道根数。
3. 开普勒运动
二体问题描述的运动称为开普勒运动。从轨道方程:
r p
1 e cos
可以看出轨道曲线是以O为焦点,且相对偏心率矢量e为对称轴 的圆锥曲线。曲线的类型取决于偏心率e的值 :
e 1 椭圆 e 1 抛物线 e 1 双曲线 从(5.2.10)判断,e 1,e 1,e 1等价于 E 0, E 0,E 0
p3 d 0 (1 cos )2
此式就是质点的运动方程。
式中积分常数为 0,即矢径r与e重合的时刻,称为
过近地点时间。
轨道平面方位(,i)和偏心率矢量e的方位确定后,轨道
方程和时间积分即完全确定二体问题的运动规律。
以上积分过程中出式e
1 m d (v v) F(r) 1 d (r r) 0
2 dt
r 2 dt
d (1 mv2 ) F (r)r 0 dt 2
1 v2 1 V (r) E 2m
称为能量积分(守恒)
V (r) r F (r)dr, 称为势能
3. 面积积分
mr F (r) r 0 r
r v 0
me>>m,可足够精确地认为系统的质心O与地球的球心Oe重合。 二体问题简化为只需研究质点m在静止的地球万有引力作用下 的运动。
me 5.9761024 kg, Gme 3.986105 km3/s2 称为地球引力参数
F (r)
G
mme r2
m
r2
mg
地球表面处g 9.82m / s2。
V (r) m
mr v F (r) r r 0 r
d (r v) 0
dt
r v L(常矢量)
称为动量矩积分(守恒)。L为单位质量的质点对O的动
量矩。常矢量L垂直于r与v构成的平面,因此质点必永远在此
平面内运动,此平面称为轨道平面。
因此可以采用极坐标来研究问题。
动量矩积分在极坐标中的的标量形式:
v2 E
2r rv L
(5.2.6) (5.2.7)
此外。二体问题还存在另一个初积分。由(5.2.5)
v
L
r3
r
L
d dt
(v
L)
r3
(r
(r
r))
d dt
(v
L
r
r)
0
v L r e(常矢量)
r
(5.2.9)
v L r e(常矢量)
r 称为拉普拉斯积分。
(5.2.9)
在
轨道与赤道平面相交的两个交点中,
对应于航天器上升的交点称为升交
点,记作N,ON与OX 0的夹角称 为升交点赤经,轨道面与赤道面的
倾角i称为轨道面倾角。与i是确定
轨道面的空间方位的两个独立的广义坐标。
由偏心率矢量e可确定角,
称为近地点幅角。
偏心率矢量e与矢径r点积:
r e r ( 1 v L 1 r)
积分常数矢量e称为偏心率矢量。
e2 1 (v L r)2
2
r
1
L2
2
(v2
2
r
)
2EL2
1 2
(5.2.10)
面积积分表明质点的轨道为平
面,该平面在惯性空间中是固定的。
为确定轨道平面的位置,以O为原
点建立惯性参考系(OX 0Y0Z0),其中
Z0沿地球的极轴,X 0Y0为赤道平面。
轴X
沿
0
地球公转轨道的春分点,
r
dr d
dr
d
L r2
e sin
p
速度v :
v
vr2 v2
1 e2 2e cos
p
太阳系中的行星,地球附近的航天器轨道都是椭圆轨道。
rm in
r(0)
p 1 e
记为r,称为近地点(点)
rm
ax
r
椭圆轨道与双曲线轨道的根本区别在于:前者有界而后者
无界。与E 0对应的抛物线轨道介于两种类型轨道之间的临界 情形,对应的速度称为抛物线速度或逃逸速度,记作vp
vp
2
r
将速度v分解为周向速度v 和径向速度vr。 由动量矩积分得:
v
r
L r
L p
(1 e cos )
(1 e cos )
p
则vr