高等工程数学

合集下载

高等工程数学考研真题试卷

高等工程数学考研真题试卷

高等工程数学考研真题试卷一、选择题(每题3分,共30分)1. 设函数\( f(x) \)在点\( x_0 \)处可导,且\( f'(x_0) \neq 0 \),则\( f(x) \)在\( x_0 \)处的切线斜率为:A. \( f(x_0) \)B. \( f'(x_0) \)C. \( x_0 \)D. \( 0 \)2. 线性代数中,若矩阵\( A \)可逆,则下列哪个说法是正确的?A. \( A \)是对称矩阵B. \( A \)是正交矩阵C. \( A \)的行列式不为零D. \( A \)是单位矩阵3. 根据概率论,若随机变量\( X \)服从正态分布\( N(\mu,\sigma^2) \),则其期望值和方差分别是:A. \( \mu, \sigma \)B. \( \sigma, \mu \)C. \( \mu, \sigma^2 \)D. \( \sigma, \sigma^2 \)4. 常微分方程\( y'' - 2y' + y = 0 \)的特征方程是:A. \( r^2 - 2r + 1 = 0 \)B. \( r^2 - 2r + 2 = 0 \)C. \( r^2 + 2r + 1 = 0 \)D. \( r^2 - 2r - 1 = 0 \)5. 在多元函数极值问题中,若函数\( f(x, y) \)在点\( (x_0, y_0) \)处取得极小值,则下列说法正确的是:A. 在该点处,\( f(x, y) \)的一阶偏导数都为零B. 在该点处,\( f(x, y) \)的二阶偏导数都为正C. 在该点处,\( f(x, y) \)的Hessian矩阵是正定的D. 在该点处,\( f(x, y) \)的梯度向量为零二、填空题(每题4分,共20分)6. 若函数\( f(x) = 3x^3 - 2x^2 + x - 5 \),则\( f''(x) \)的值为________。

高等工程数学 PPT

高等工程数学 PPT

( p, q) 在 Re p>0,Re q>0 内为全纯函数.
18
函数满足如下重要性质:
性质4.对称性 ( p, q) (q, p) 性质5. 与 的关系
( p, q) ( p ) ( q ) ( p q )
19
(1.8)
(1.9)
Section 3. 误差函数
了解特殊函数的定义,熟悉特
殊函数的基本性质
为后续学习打下基础 特殊函数也广泛应用于工程科
学中。
5
内容简介
积分变换理论包括
F-氏变换 L-氏变换 其它变换。如:小波变换等。
6
内容简介
积分变换理论意义
直接用来求解微分方程 广泛应用于其它工程科学。如
振动力学、电工学、无线电技 术等等。
C1
2 (t z )
2

dt
1
(1.15)
4i sin
(t 1)

C2
2 ( z t)
dt
(1.16)
其中,C1为沿(- ,-1)切开的t平面上的一条正向闭 曲线,且含1, z为内点. C2为在t平面上沿负向 绕1一周,沿正向绕点-1一周的8字形闭曲线.
23
本章参考书目
个领域中常用的应用数 学方法
为今后学习其它工程课
程奠定必要的数学基础
2
内容简介
特殊函数(高等函数)
积分变换理论
泛函与变分法
曲线与曲面造型
3
内容简介
特殊函数(高等函数)定义
某些特定形式含参数积分
某些偏微分方程的特征函数 椭圆函数
4
内容简介

高等工程数学

高等工程数学
括加法、数乘、减法、转置、乘法(包括方阵的正 整数幂)、逆矩阵以及分块运算。 -本讲重点和难点是矩阵的乘法。 3、特殊矩阵 -零矩阵Om×n 、单位矩阵E、数量矩阵aE、对角矩阵、对 称矩阵、反对称矩阵 (上、下)三角矩阵
线性方程组
本讲重点 1、线性方程组的解法,解的情况的判定 2、齐次和非齐次方程组解的结构,特别是基础解系的概 念
Precision Engineering Lab., Xiamen Univ.
高等工程数学
机电工程系 郭隐彪
目 录
Precision Engineering Lab., Xiamen Univ.
第一部分 矩阵论 第二部分 数值计算方法
第一部分 矩阵论
第一章 线性代数基本知识 第二章 方阵的相似化简 第三章 向量范数和矩阵范数 第四章 方阵函数与函数矩阵 第五章 矩阵分解 第六章 线性空间和线性变换
第二部分 数值计算方法
第一章 误差的基本知识 第二章 线性方程组的数值解法 第三章 方阵特征值和特征向量的数值计算 第四章 计算函数零点和极值点的迭代法 第五章 函数的插值与最佳平方逼近 第六章 数值积分与数值微分 第七章 常微分方程数值解法
第一章 线性代数基本知识
§1.1 向量和向量空间 §1.2 矩阵及其运算 §1.3 矩阵的初等变换及其应用 §1.4 线性方程组 §1.5 特征值与特征向量
第五章 矩阵分解
§5.1 方阵的三角分解 §5.2 方阵的正交(酉)三角分解 §5.3 矩阵的奇异值分解
第六章 线性空间和线性变换
§6.1 线性空间 §6.2 线性变换 §6.3 内积空间及两类特殊的线性变换
向量和向量空间
1、向量的内积、长度、夹角和正交等 2、关于向量组的线性相关性 3、关于向量组的极大无关组和向量组的秩

高等工程数学难度排名

高等工程数学难度排名

高等工程数学难度排名摘要:1.高等工程数学的概述2.高等工程数学的难度排名3.影响高等工程数学难度的因素4.如何应对高等工程数学的学习挑战正文:一、高等工程数学的概述高等工程数学是指在大学本科或研究生阶段,工程类专业学生需要学习的数学课程。

这些课程主要包括高等数学、线性代数、概率论与数理统计、微分方程、数值计算等内容,是工程类专业学生必备的数学基础。

二、高等工程数学的难度排名根据学生的反馈和教育专家的研究,高等工程数学的难度排名如下:1.微积分:作为高等工程数学的基础,微积分的难度相对较低,但概念较多,需要理解和运用。

2.线性代数:线性代数的概念相对抽象,但难度适中,掌握了基本概念和方法后,可以轻松应对。

3.概率论与数理统计:概率论与数理统计的难度相对较高,需要对概念有深入的理解,并能熟练运用各种概率分布和统计方法。

4.微分方程:微分方程是工程数学中的重要内容,其难度因方程的复杂程度和求解方法的不同而有所差异。

5.数值计算:数值计算是解决实际工程问题的重要手段,其难度主要在于理解和掌握各种数值计算方法的适用场景和优缺点。

三、影响高等工程数学难度的因素1.课程内容:不同课程的内容和难度有所差异,微积分相对简单,而概率论与数理统计的难度较大。

2.学习方法:合适的学习方法和良好的学习习惯可以降低学习难度,提高学习效果。

3.学生基础:学生的数学基础和逻辑思维能力对学习高等工程数学的难度有直接影响。

四、如何应对高等工程数学的学习挑战1.打好基础:加强基础知识的学习,提高基本运算和逻辑推理能力。

2.选择合适的教材和参考书:选择适合自己学习需求的教材和参考书,有利于提高学习效果。

3.做好学习计划:合理安排学习时间,制定学习计划,有助于提高学习效率。

4.多做练习:通过大量的练习,加深对概念的理解,提高解题能力。

高等工程数学课件--第1章 集合与映射

高等工程数学课件--第1章  集合与映射

定义1.2.3 设X、Y、Z是三个非空集合,并设 有两个映射 f1 : X Y , f2 : Y Z , 由 f1 , f 2 确定 X 到 Z 的映射 f3 : x f2 ( f1 ( x))( x X ) 称为映射 f1 和 f 2 的乘积(product),记为 f 3 f 2 f1 定理1.2.1 设有映射 f1 : X Y , f2 : Y Z , f3 : Z W , 则

lim An Ak .
n k 1

如果 An n 1是单调递减集合序列,则

lim An Ak .
n k 1

1.2 映 射(mapping)
定义1.2.1 设X、Y是两个非空集合,如果存在一
个X 到Y 的对应法则 f ,使得对 X中的每一个元素 x 都有Y中唯一的一个元素 y 与之对应,则称 f 是X 到Y的一个映射,记为 y f (x).
若 B A ,则称 A\B 为B 在A中的余集或B c 的补集,记为 B 。
定理 1.1.1 设A、B、C是三个集合, Ai (i I )为集合X的 子集,则
(1) A ( B C ) ( A B) ( A C ); A ( B C ) ( A B) ( A C );
(2) f 是X 到 Y的满映射当且仅当 Y R( f ).
非空集合,X 到自身的双映射称为X的一 一变换(one-to-one transformation);如果X 是有限集,X 的一一变换称为X 的置换 (permutation)。
非空集合X 上的恒等映射是一个双映射。 例. 微分算子,积分算子,矩阵。
定理1.2.3 映射f :X→Y是可逆映射的充分必 要条件是 f 是X到Y的双映射。 定理1.2.4 设映射f : X→Y , g :Y→Z,则 (1) 如果 f 和 g 都是单映射,则g f 是单映射;

高等工程数学复习重点

高等工程数学复习重点

1.线性变换定义、例子、表示矩阵求法、作用
2.线性变换特征值、特征向量、定义、求法
3.范数定义、向量、矩阵常见范数、求范数
4.矩阵对角化——对角化方法与Jordan标准型的关系、矩阵Jordan标准型的求法
5.子空间定义、常见字空间的构造、直和子空间、分解为直和
6.矩阵的零空间、R n在零空间下的直和分解
7.矩阵的域空间
8.代数精度的定义
9.Newton-Cotes求积公式中节点的定义、性质、与代数精度的关系
10.Newton迭代法的构造及构造原理
11.牛顿插值的定义、差商的定义、性质
12.代数线性方程组的几何数值计算方法
13.主元的定义、类型、在算法中的作用
14.线性方程组中的迭代解法中有关收敛的结论
15.插值多项式构造方法——拉格朗日、牛顿、埃尔米特插值
16.插值余项的定义、构造
17.正态总体下抽样分布的结论
18.t-、x2-、F- 分布有关构造结论
19.单正态总体有关参考数区间估计的结论
20.距估计定义、求法
21.极大似然估计定义、求法、性质(微分法、定义法)
22.常见分布:(0-1)、β(n,p),P(λ),G(p),U(a,b),E(λ),N(µ,σ2)
23.X2-拟合优度检验
24.单因素方差分析、条件、结论、算法、方差分析表
25.回归分析定义、科学意义、条件(G-M条件)、最小二乘法算法、性质、一元线性回归
方程的求法、应用。

高等工程数学

摘要高等工程数学是工程类硕士研究生的一门重要的数学基础课程,在研究生数学素养的训练、创新能力的提高方面具有重要作用。

内容包含矩阵论、数值计算方法和数理统计三部分,其主要内容有:先行空间与线性变换、内积空间、矩阵的标准型、数理统计的基本概念与抽样分布、参数估计、假设检验、回归分析与方差分析。

关键词:线性空间、假设检验、方差分析一、线性空间的综述简单的说,线性空间是这样一种集合,其中任意两元素相加可构成此集合内的另一元素,任意元素与任意数(可以是实数也可以是复数,也可以是任意给定域中的元素)相乘后得到此集合内的另一元素。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.1 数域的概念设P是一个非空数集,且至少含有非零的数,若P中任意两个数的和、差、积、商(除分母为零外)仍属于该集合,则称P是一个数域。

容易验证有理数集合Q、实数集合R与复数集合C都是数域,分别称为有理数域、实数域与复数域。

1.2 线性空间定义设V是一个非空集合,P是一个数域,如果:(1)在集合V上定义一个二维运算(通常称为加法),即对V中任意两个元素x,y经过这个运算后得到的结果,仍是集合V中唯一确定的元素,该元素称为x 与y的和记作x+y.(2)在数域P与集合V的元素之间还定义了一种运算,叫做数量乘法,即对于P任意数λ与V中任意元素x,经过这一运算后所得到的结果,仍是V中唯一确定的元素,称为唯一确定的元素,称为λ与x的数量乘积,记作λ x。

如果加法和数量乘法还满足下述规则,则称V为数域P上的线性空间。

1.3线性空间的运算(1)对任意x,y∈V,x+y=y+x;(2)对任意x,y,z∈V,(x+y)+z=x+(y+z);(3)V中存在一个零元素,记作θ,对任意x∈V,都有x+θ=x;(4)对任意x∈V,都有y∈V,使得x+y=θ,元素y称为x的负元素,记作-x;(5)对任意x∈V,都有1x=x;对任何λ,μ∈P,x,y∈V。

高等工程数学课程评价方案

高等工程数学课程评价方案一、引言高等工程数学是工程专业的重要基础课程,它涉及到高等数学、线性代数、概率论与数理统计等知识,是工科生必修的一门课程。

为了确保学生能够充分掌握课程要求的知识和技能,对于高等工程数学课程的评价应该更加全面、科学、客观。

因此,我们需要建立一套科学客观的高等工程数学课程评价方案,以便为学生的学习提供有效的指导和促进。

二、目标与内容1. 评价目标高等工程数学课程的评价目标应当是全面客观的,既要充分考察学生在知识掌握和应用能力上的表现,又要考察学生的学习态度和思维能力。

具体包括以下几个方面:(1)学生能够熟练掌握高等数学、线性代数、概率论与数理统计等基本理论和方法。

(2)学生能够运用所学知识解决实际工程问题。

(3)学生具有较强的数学分析和推理能力。

(4)学生具有较强的自主学习能力和团队合作意识。

2. 评价内容高等工程数学课程的评价内容主要包括以下几个方面:(1)考试和测验:包括期中考试、期末考试和平时小测验。

主要考察学生对于课程所学知识的掌握程度和应用能力。

(2)实验和作业:包括实验报告和课堂作业。

主要考察学生的实际动手能力和解决问题的能力。

(3)学习表现:包括参与度、课堂表现等。

主要考察学生的学习态度和团队合作意识。

三、评价方法1. 传统评价方法传统的评价方法主要包括考试、测验和作业,要求学生在限定的时间内,回答一定数量的问题,从而考察学生对所学知识的掌握和理解程度。

这种方法的优点是客观、公正,能够准确反映学生的学习状况。

但是,它也存在一些缺点,比如不能全面考察学生的知识、技能和能力。

2. 综合评价方法综合评价方法是一种将不同的评价方法进行综合考虑,从而更加全面客观地评价学生的学习状况。

比如可以采用以下综合评价方法:(1)成绩评价:将考试、测验、作业等成绩进行综合计算,得出学生的最终成绩。

(2)学习表现评价:考察学生的学习态度、团队合作意识等。

(3)实践能力评价:考察学生的实际动手能力和解决问题的能力。

高等工程数学智慧树知到答案2024年南京理工大学

高等工程数学南京理工大学智慧树知到答案2024年第一章测试1.有限维线性空间上范数1,范数2之间的关系是A:2强于1 B:等价 C:1强于2 D:无法比较答案:B2.赋范线性空间成为Banach空间,需要范数足?A:完备性 B:可加性 C:不变性 D:非负性答案:A3.标准正交系是一个完全正交系的充要条件是满足Parseval等式A:错 B:对答案:B4.在内积空间中,可以从一组线性无关向量得到一列标准正交系A:对 B:错答案:A5.矩阵的F范数不满足酉不变性A:错 B:对答案:A6.与任何向量范数相容的矩阵范数是?A:F范数 B:极大行范数 C:算子范数 D:极大列范数答案:C7.正规矩阵的谱半径与矩阵何种范数一致A:极大行范数 B:极大列范数 C:矩阵2范数 D:算子范数答案:C8.矩阵收敛,则该矩阵的谱半径A:无从判断 B:大于1 C:小于1 D:等于1答案:C9.矩阵幂级数收敛,则该矩阵的谱半径A:等于1 B:大于1 C:无从判断 D:小于1答案:D10.正规矩阵的条件数等于其最大特征值的模与最小特征值的模之商A:错 B:对答案:B第二章测试1.l矩阵不变因子的个数等于( )A:矩阵的列数 B:矩阵的秩 C:行数和列数的最小值 D:矩阵的行数答案:B2.Jordan标准形中Jordan块的个数等于( )A:矩阵的秩 B:行列式因子的个数 C:不变因子的个数 D:初等因子的个数答案:D3.Jordan块的对角元等于其( )A:初等因子的零点 B:初等因子的次数 C:不变因子的个数 D:行列式因子的个数答案:A4.n阶矩阵A的特征多项式等于( )A:A的n个不变因子的乘积 B:A的n阶行列式因子 C:A的行列式因子的乘积 D:A的次数最高的初等因子答案:AB5.下述条件中,幂迭代法能够成功处理的有( )A:主特征值有两个,是一对共轭的复特征值 B:主特征值有两个,是一对相反的实数 C:主特征值是实r重的 D:主特征值只有一个答案:ABCD6.n阶矩阵A的特征值在( )A:A的n个行盖尔圆构成的并集与n个列盖尔圆构成的并集的交集中 B:A的n个列盖尔圆构成的并集中 C:A的n个行盖尔圆构成的并集中 D:都不对答案:ABC7.不变因子是首项系数为1的多项式A:错 B:对答案:B8.任意具有互异特征值的矩阵,其盖尔圆均能分隔开A:对 B:错答案:B9.特征值在两个或两个以上的盖尔圆构成的连通部分中分布是平均的A:错 B:对答案:A10.规范化幂迭代法中,向量序列uk不收敛A:对 B:错答案:B第三章测试1.二阶方阵可作Doolittle分解A:错 B:对答案:A2.若矩阵A可作满秩分解A=FG,则F的列数为A的()A:列数B:都不对C:秩D:行数答案:C3.矩阵的满秩分解不唯一.A:错 B:对答案:B4.酉等价矩阵有相同的奇异值.A:对 B:错答案:A5.求矩阵A的加号逆的方法有()A:满秩分解 B:Greville递推法 C:奇异值分解 D:矩阵迭代法答案:ABCD6.若A为可逆方阵,则A:错 B:对答案:B7.用A的加号逆可以判断线性方程组Ax=b是否有解?A:对 B:错答案:A8.A的加号逆的秩与A的秩相等A:错 B:对答案:B9.若方阵A是Hermite正定矩阵,则A的Cholesky分解存在且唯一.A:错 B:对答案:B10.是Hermite标准形.A:错 B:对答案:A第四章测试1.()是利用Gauss消去法求解线性方程组的条件.A:系数矩阵的顺序主子式均不为0B:系数矩阵满秩C:所有主元均不为0D:都不对答案:AC2.关于求解线性方程组的迭代解法, 下面说法正确的是().A:J法和GS法的敛散性无相关性B:若迭代矩阵谱半径不大于1, 则迭代收敛C:若系数矩阵A对称正定, 则GS迭代法收敛D:都不对答案:AC3.如果不考虑舍入误差, ()最多经n步可迭代得到线性方程组的解.A:SOR法B:共轭梯度法C:最速下降法D:都是答案:B4.关于共轭梯度法, 下面说法正确的是()A:相邻两步的残量正交 B:相邻两步的搜索方向正交 C:搜索方向满足A共轭条件 D:B和C都对答案:D5.下面哪些是求解线性方程组的迭代解法().A:共轭梯度法 B:三角分解解法 C:ABC都对 D:最速下降法答案:AD6.若系数矩阵A对称正定, 则()A:J法和GS法均收敛B:都不对 C:可用Cholesky法求解线性方程组D:SOR法收敛答案:C7.任意线性方程组都可以通过三角分解法求解.A:错 B:对答案:A8.最速下降法和共轭梯度法的区别在于选取的搜索方向不同.A:错 B:对答案:B9.广义逆矩阵法可用于任意线性方程组的求解.A:对 B:错答案:A10.Gauss消去法和列主元素法的数值稳定性相当.A:错 B:对答案:A第五章测试1.对于凸规划,如果x为问题的KKT点,则其为原问题的全局极小点A:对 B:错答案:A2.对于无约束规划问题,如果海塞阵非正定,我们可采用哪种改进牛顿法求解原问题?A:难以处理 B:构造一对称正定矩阵来取代当前海塞阵,并一该矩阵的逆乘以当前梯度的负值作为方向 C:牛顿法 D:阻尼牛顿法答案:B3.共轭梯度法中,为A:FR公式 B:DY公式 C:DM公式 D:PRP公式答案:A4.内点罚函数法中常用的障碍函数有A:三种都可以B:二次函数C:倒数障碍函数D:对数障碍函数答案:CD5.广义乘子罚函数的优点是在罚因子适当大的情形下,通过修正拉格朗日乘子就可逐步逼近原问题的最优解?A:错 B:对答案:B6.分子停留在最低能量状态的概率随温度降低趋于( ).A:2 B:3 C:0 D:1答案:D7.模拟退火算法内循环终止准则可采用的方法.A:固定步数 B:温度很低时 C:接受概率很低时 D:由接受和拒绝的比率控制迭代步答案:AD8.背包问题是组合优化问题吗?A:错 B:对答案:B9.单纯形算法是求解线性规划问题的多项式时间算法.A:对 B:错答案:B10.对于难以确定初始基本可行解的线性规划问题,我们引入人工变量后,可采用哪些方法求解原问题?A:单纯形法 B:无法确定 C:两阶段法 D:大M法答案:CD第六章测试1.如果不限定插值多项式的次数,满足插值条件的插值多项式也是唯一的()A:错 B:对答案:A2.改变节点的排列顺序,差商的值不变()A:错 B:对答案:B3.Hermite插值只能用插值基函数的方法求解()A:错 B:对答案:A4.在最小二乘问题中,权系数越大表明相应的数据越重要()A:错 B:对答案:B5.加窗傅里叶变换时频窗的长宽比是信号自适应的()A:对 B:错答案:B6.傅里叶变换域的点和时间域上的点是一一对应的()A:对 B:错答案:B7.若f(t)的傅里叶变换为,则 f(2t)的傅里叶变换为 ( )A: B: C:答案:B8.小波函数对应了()A:低通滤波器 B:高通滤波器答案:B第七章测试1.有界区域上的弦振动方程定解问题可以用傅里叶积分变换法求解。

《高等工程数学》科学出版社 吴孟达版习题答案(1-8章)精编版

《高等工程数学》――科学出版社版习题答案: 第一章习题(P26) 1.略2.在R 4中,求向量a =[1,2,1,1]T ,在基a 1 = [1 , 1, 1, 1]T , a 2 = [1 , 1, -1,-1]Ta 3 = [1 , -1, 1, -1]T a 4 = [1 , -1,-1, 1]T 下的坐标。

解:其坐标为:x =( 5/4, 1/4, -1/4,-1/4 )T 3.在R 2×2中,求矩阵12A=03⎡⎤⎢⎥⎣⎦,在基 111B =11⎡⎤⎢⎥⎣⎦,211B =10⎡⎤⎢⎥⎣⎦,311B =00⎡⎤⎢⎥⎣⎦,410B =00⎡⎤⎢⎥⎣⎦下的坐标。

解:其坐标为:x =( 3, -3, 2,-1 )T4.试证:在R 2×2中,矩阵111B =11⎡⎤⎢⎥⎣⎦,211B =01⎡⎤⎢⎥⎣⎦,311B =10⎡⎤⎢⎥⎣⎦,410B =11⎡⎤⎢⎥⎣⎦线性无关。

证明:设 k 1B 1+ k 2B 2+ k 3B 3+ k 4B 4=0000⎡⎤⎢⎥⎣⎦,只要证明k 1= k 2 = k 3= k 4 =0即可。

余略。

5.已知R 4中的两组基:T T T T 1234=[1,0,0,0],=[0,1,0,0],=[0,0,1,0],=[0,0,0,1]αααα和T T T T 1234=[2,1,1,1],=[0,3,1,0],=[5,3,2,1],=[6,6,1,3]ββββ-求由基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵,并求向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标。

解:基1234{,,,}αααααB =到基1234{,,,}βββββB =的过渡矩阵是:2056133611211013⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦- 向量1234[,,,]x x x x ξ=在基1234{,,,}βββββB =的坐标是:11234205612927331336112923x 112190018101373926x x x x ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-----1=--27--6.设R[x]n 是所有次数小于n 的实系数多项式组成的线性空间,求多项式p(x) = 1+ 2x n -1在基{1,(x -1),(x -1)2,(x -1)3,….,(x -1)n -1}的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

/HP/20111103/EnrolDD40066.shtml
华中科技大学2012年博士研究生入学考试--考试大纲(高等工程数学)
发布人:圣才学习网发布日期:2011-11-03 16:31 共人浏览[大] [中] [小] 1.考试对象:工科类博士研究生入学考试者
2.考试科目:矩阵论,数值分析,数理统计
3.评价目标:
•考查学生对上述科目基础知识的掌握状况
•考查学生对学科数学基础理论和方法的逻辑分析与应用能力
4.答卷方式:闭卷、笔试
5.题型比例:
概念题:30%;计算、证明题:70%
6.答题时间:180分钟
7.考试科目的内容分布:
满分100分,每科目各占1/3
8.考试内容与考试要求:
(1)了解线性空间的基本概念,掌握线性变换及其变换矩阵的性质与计算,掌握线性空间R3上的基本正交变换。

(2)了解Jordan标准形的基本理论与方法,掌握方阵和线性变换的Jordan矩阵计算方法,能应用Jordan化方法分析、解决相关问题。

(3)了解矩阵分解的基本思想,了解方阵的三角分解、Schur分解,掌握满秩分解和奇异值分解及其分解计算方法,掌握正规矩阵的分解性质。

(4)了解向量范数与矩阵范数,掌握向量与矩阵P范数的计算,了解矩阵函数的定义和矩阵分析的基本内容,掌握常用的矩阵函数的计算方法及其应用。

(5)了解矩阵广义逆的概念,掌握矩阵的M-P广义逆的定义、性质及其基本应用。

(6)掌握插值多项式的各种构造方法及其截断误差的表示,了解三次样条插值。

(7)掌握函数的最佳平方逼近与曲线拟合的最小二乘法,了解正交多项式。

(8)理解代数精度的概念;掌握牛顿—柯特斯求积公式、Gauss型求积公式的构造;了解复化求积公式及Romberg算法。

(9)理解常微分方程初值问题的数值解法,会求局部截断误差与阶;能讨论单步法的绝对稳定性区域。

(10)掌握非线性方程求根的迭代公式的构造法并能判断其收敛性及收敛阶。

(11)掌握求解线性方程组的高斯主元消去法及Jocabi、Gauss-Seidel迭代法并会判别迭代的收敛性。

(12)了解抽样分布及有关内容。

(13)掌握参数估计的点估计、区间估计方法及其估计量的评价标准。

(14)掌握参数的假设检验,分布的非参数假设检验有关方法。

(15)掌握方差分析。

(16)掌握正交设计有关内容。

(17)掌握线性回归有关内容。

9.参考书目:
[1]杨明,刘先忠,《矩阵论》(第二版),华中科技大学出版社,2005.
[2]李红,《数值分析》,华中科技大学出版社,2003.
[3] 于寅,《高等工程数学》(第三版),华中理工大学出版社,1995.。

相关文档
最新文档