二阶常微分方程边值问题
二阶阶微分方程的解法及应用课件

参数法是一种求解二阶微分方程的方法,通 过引入参数,将微分方程转化为关于参数的 常微分方程。这种方法适用于具有特定形式 的一阶和二阶微分方程,特别是当微分方程 的解与某个参数有关时。通过求解关于参数 的常微分方程,我们可以找到微分方程的解
二阶阶微分方程的解法及应用课件
目 录
• 二阶阶微分方程的基本概念 • 二阶阶微分方程的解法 • 二阶阶微分方程的应用 • 二阶阶微分方程的数值解法 • 二阶阶微分方程的边界值问题
01 二阶阶微分方程的基本概 念
二阶阶微分方程的定义
二阶阶微分方程是包含两个未知函数 和它们的二阶导数的方程。
二阶阶微分方程的一般形式为 F(x, y, y', y''...) = 0,其中 F 是一个给定的函 数,x 和 y 是未知函数及其导数。
供需模型
01
二阶微分方程可以用来描述商品价格随时间和供需关系的变化
。
投资回报
02
在金融领域,二阶微分方程可以用来预测股票价格的变化和投
资回报。
经济增长
03
在研究经济增长时,二阶微分方程可以用来描述人均收入随时
间的变化。
在工程中的应用
控制系统
在自动化和控制工程中,二阶微分方程被用来描述系 统的动态响应和稳定性。
一维边界值问题
一维边界值问题是指求解一个关于一个自变量的二阶微分方程,同时给出该自变 量在两个特定点的取值条件。
一维边界值问题通常用于描述一个物理系统在一维空间中的行为,例如弦的振动 、波的传播等。解决这类问题通常需要使用打靶法、有限差分法等数值方法。
多维边界值问题
多维边界值问题是指求解一个关于多个自变量的二阶微分方 程组,同时给出这些自变量在多维空间中的边界条件。
Banach空间二阶非线性常微分方程周期边值问题的解

B n c 间. 令 c , ] { : a ah空 U E 一 U J— E I 续 } U连 , 则 c j, ] [ E 在范 数 I I 一ma I ()l xl £ l u 下也是 B n c aah 空 间.令 c [ , 一 { : 。 - E] “ J— 厂
第 4 6卷 2 1 0 0年 第 5期
V 01 4 2 0 No.5 .6 01
西
北 师 范 大 学
学
报 自然 科 学 版 ) (
1 3
J u n lo rh s o r a fNo t wetNor a nie st ( t r l ce c ) m lU v r iy Na u a in e S
dif r nta q a i n wih dic ntno e m s i n c pa e r bt i d f e e ile u to t s o i us t r n Ba a h s c s a e o ane .
rs l i ; no o t r tv e hn q Ke r s: i c e sn e a o y wo d n r a i g op r t r; fx d p nt u —ow e o utons m o t ne ie a i e t c i ue i e oi ; p l
近 年来 ,非 线 性常 微分 方程 周期 边 值 问题解 的
一
存 在性 、唯一性 和 多解 性一 直 是微 分方 程领 域非 常 引人关 注 的 问题 L ] 1 ,但 现 有 文 献 大 都 要 求 非 线 性
项 f t 连续 .本 文 在 B n c (, ) a a h空 间 中 ,就非 线 性 项 f( , 在 较 弱 的连 续 性 条 件 下 ,利 用 上 下 解 方 t ) 法 与增 算 子不 动点 定理 ,讨 论 二 阶非线 性 常微分 方 程周期 边 值 问题 f 一 ()一 f t ,t J一 [ ,丁 , … £ (, ) ∈ O 2c ]
常微分方程的边值问题

常微分方程的边值问题常微分方程是数学中一个重要的分支,研究的是函数的导数与自变量之间的关系。
在实际问题中,常微分方程的解可以描述物理、工程、经济等领域的变化规律。
而边值问题是常微分方程中的一类特殊问题,它要求在给定的边界条件下求解方程的解。
一、边值问题的定义与分类边值问题是指在一定边界条件下求解常微分方程的解。
边界条件是一组给定的条件,它们通常是关于未知函数及其导数在一些特定点上的值或关系。
边值问题可分为以下两类:1. Dirichlet 边值问题:给定函数在边界上的值。
假设我们要求解的常微分方程为 y''(x) + p(x)y'(x) + q(x)y(x) = r(x),边值问题可以表示为:y(a) = A,y(b) = B其中,a, b 是给定的自变量取值,A, B 是给定的常数。
2. Neumann 边值问题:给定函数在边界上的导数值。
假设我们要求解的常微分方程还是 y''(x) + p(x)y'(x) + q(x)y(x) = r(x),边值问题可以表示为:y'(a) = A,y'(b) = B二、求解边值问题的方法求解边值问题有多种方法,其中比较常用的包括:1. 分离变量法这是一种基本的求解边值问题的方法。
通过将方程中的未知函数分离变量,得到一个关于自变量的方程和一个关于未知函数的方程,再分别求解这两个方程。
2. 特征值法对于某些特殊的边值问题,可以使用特征值法进行求解。
特征值法的关键在于将边值问题转化为一个特征值问题,通过求解特征值和特征函数来得到方程的解。
3. 迭代法对于某些复杂的边值问题,可以使用迭代法逐步逼近方程的解。
迭代法是通过不断逼近函数解来改善近似解的精度,从而得到较为准确的解。
三、常见的边值问题应用常微分方程的边值问题在实际应用中具有广泛的应用,下面列举几个常见的例子:1. 自由振动问题自由振动是常微分方程的一个典型应用,比如弹簧振子的运动可以用一阶线性常微分方程来描述。
二阶微分方程数值求解

二阶微分方程数值求解
要数值求解二阶微分方程,首先需要将其转化为一个一阶微分方程组。
假设待求解的二阶微分方程为:
y''(x) = f(x, y(x), y'(x))
将其转化为一阶微分方程组:
z(x) = y'(x)
z'(x) = f(x, y(x), z(x))
然后,可以选择数值求解方法,如欧拉方法、改进的欧拉方法、四阶龙格-库塔方法等等,对这个一阶微分方程组进行数值求解。
以欧拉方法为例,假设已知初始条件 y(x0) = y0,z(x0) = z0,
选择步长 h。
则可以按照以下步骤进行数值求解:
1. 初始化步数 n = 0,设置初始条件 y(x0) = y0,z(x0) = z0。
2. 计算下一步的值:y(x + h) = y(x) + h * z(x),z(x + h) = z(x) +
h * f(x, y(x), z(x))。
3. 将 x 增加 h,即 x = x + h。
4. 将步数 n 增加 1,即 n = n + 1。
5. 重复步骤 2-4,直到达到目标位置的 x 值(如终点 x 结束条
件 x >= x_end)。
需要注意的是,数值求解方法的精度和稳定性都会受到步长的影响,过大的步长可能导致数值不稳定,过小的步长可能导致
计算量过大。
因此,选择合适的步长是很重要的。
值得一提的是,当二阶微分方程为边值问题时,可以采用有限差分法、有限元法等数值方法进行数值求解。
这些方法会更为复杂,并涉及到边界条件的处理。
课件:级第四章 2 边值问题

y(a)
(a x b)
y(b)
例 3:传热问题 建立微分方程:
d 2T 1 dT f (r) dr2 r dr
对流传热
建立边界条件:
a1T(b) b1T(b) T1
r=b
T1
●第三类边界条件
-给定边界处函数和导数共同满足的条件
●第三类边值问题
y f (x, y, y) (a x b)
●● ● ●●
y(x)
x =a
x =b
打靶法的几何说明
对于初值问题
y f x, y, y a x b
y(a)
y(a) m
m
m0
m1
mn
y(b) y(b)m0 y(b)m1 y(b)mn
y(b)m F(m)
合适的 m 值应满足:
y(b)m
即: F(m)
化标准形式:f (m) F(m) 0
1T
2
解: 第一步:明确需要确定哪些函数值 u0,u1,u2,,uN,uN1
将
Ti
ui1
2ui h2
ui1
代入离散化方程
h2 ui1 2ui ui1 k g(Zi )
u0 2u1 u2
u1 2u2 u3 uN 1 2uN
h2
k
h2 k
u N 1
g (Z1 )
g(Z2 ) h2
●第一类边值问题
y f (x, y, y) (a x b)
y(a) y(b)
例 2:传热问题
绝热 r=b
建立微分方程:
d 2T 1 dT f (r) dr2 r dr
建立边界条件:
T (b) 0
●第二类边界条件 -给定边界处导函数满足的条件
带非齐次边界条件的二阶常微分方程边值问题正解的存在性

V0. 125 No. 4
0e .2 1 t 02
文章 编号 :0 4 82 (0 2 0 - 2 10 10 - 8 0 2 1 )4 0 5 - 5 -
带 非 齐 次 边 界 条 件 的 二 阶 常 微 分 方 程 边值 问题 正解 的存 在 性
谢 春 杰
( 西北师范大学数 学与统计 学院 , 甘肃 兰州 7 07 ) 3 00
( ¨ d =1 y s c ) c A I ㈩州 +
由 ( )知 p +6 H1 := c+伽 >0 则 ,
dy ) M +・ J( Ds + ]
解 的 A。 B值 如下 :
算 子. 引理 11 设 P为 B nc 间 X中 的体 锥 , [ aah空 0
摘要 : 运用 一凸算子理论研究了带非齐次边界条件的二阶常微分方程边值 问题 fP t () +h tI )=0 t∈ ( , ) ( () t ) ()( 厂 , 01, Lu O a ( )一6 ( ) ( ) = [ p O 0 ]十A, C( )- ( ) ( ) =卢 M U 1 I 1 1 - [ ]+
( (), t ) P t 1( ) +Y t 2 ( )=0 t∈ ( , ) ( ) , 0 1 , 5
1 预 备 知 识
本文 总假定 :
( ) ∈ C [ ,] ( H1 P ( 0 1 ,0,+∞ ) , ∈ C(0, ) h [
1 ,0 +∞) , ][ , ) 并且 () 0 1 £ 在[ ,]的任意子区间
的文献 研 究 了非 齐 次 边 值 问 题
,特 别 地 ,文
[ , ]分别 考 虑 了方 程 ( )在 非齐 次边 界条件 8 9 1
M0 ()=0M1 ∑bt 和 u()=0 ,()= it l )+ ( 0 ,
二阶常微分方程边值问题

ylabel'$$y$$','Interpreter','latex','color','r','fontsize',28;
实验结果与分析:
差分法结果如下:
从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差分二阶导数比起差分一阶导数来说,更加接近原函数.差分二阶导数在后面几乎能跟原函数重合,是非常好的求边值问题的方法.
成绩:
批阅教师签名:
定解问题往往不具有解析解,或者其解析解不易计算.所以要采用可行的数值解法.有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解.此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解即收敛性,等等.
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关.描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件.利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解.
二阶微分方程的三点边值问题

江 枫
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%定义y
syms y;
y=(((x+2).*(x+2)).^(-1));
hold on
grid on
yx=zeros(1,n);
yxx=zeros(1,n);
for i=2:n-1
yx(i-1)=(y(i+1)-y(i-1))/(2*h);
yxx(i-1)=(y(i+1)+y(i-1)-2*y(i))/h^2;
由(2.21)和(2.22)可知,差商(2.23)和(2.24)逼近微商 的精度为一阶,即为 ,为了得到更精确的差分表达式,将(2.19)减(2.20)可得
(2.25)
从而可以的到
(2.26a)
或者
(2.26b)
其中, .
可得一阶导数 的差分近似表达式为
(2.27)
由此可知,(2.16)差商逼近微商 的精度为二阶,即为 。
课程名称:数值代数课程设计
指导教师:刘兰冬
班级:
姓名:
学号:
实验项目名称:
二阶常微分方程边值问题
实验目的及要求:
二阶常微分方程边值问题
,
(该问题真解为: )步长h自己选定,利用差分法求出近似解,利用MATLAB函数画出比较图形。
实验原理:
一、微分方程:
微分方程是现代数学中一个很重要的分支,从早期的微积分时代起,这个学科就成为了理论研究和实践应用的一个重要领域。在微分方程理论中,定解条件通常有两种提法:一种是给出了积分曲线在初始时刻的性态,相应的定解条件称为初值问题;另一种是给出了积分曲线首末两端的性态,这类条件则称为边界条件,相应的定解问题称为边值问题。
许多物理现象随着时间而发生变化、如热传导过程、气体扩散过程和波的传播过程都与时间有关。描述这些过程的偏微分方程具有这样的性质;若初始时刻t=t0的解已给定,则t>t0时刻的解完全取决于初始条件和某些边界条件。利用差分法解这类问题,就是从初始值出发,通过差分格式沿时间增加的方向,逐步求出微分方程的近似解。
end
plot(x,y,'r','linewidth',2)
plot(x(2:n-1),yx(1:n-2),'g','linewidth',2);
plot(x(2:n-1),yxx(1:n-2),'b','linewidth',2);
legend('原函数','差分一阶导数','差分二阶导数')
xlabel('$$x$$','Interpreter','latex','color','r','fontsize',28);
有限差分逼近的相关概念
设函数 光滑,且 ,利用Taylor展开,可得
(2.19)
(2.20)
由(2.19)可以得到一阶导数的表达式
(2.21a)
或者
(2.21b)
同理由(2.20)式可得
(2.22a)
或者
(2.22b)
其中 表示截断误差项.因此,可得一阶导数的 的差分近似表达式为
(2.23)
(2.24)
微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。
定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。
有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。
二、二阶常微分方程
二阶常微分方程一般可表示成如下的形式:
, (2.1)
边值条件有如下三类[9]:
第Hale Waihona Puke 类边值条件, (2.2)第二类边值条件
, (2.3)
第三类边值条件[19]
, (2.4)
其中 , , , 。
在对边值问题用数值方法求解之前,应该从理论上分析该边值问题的解是否存在,若问题的解不存在,用数值方法计算出来的数据没有任何意义。下面的定理给出了边值问题存在唯一解的充分条件。
ylabel('$$y$$','Interpreter','latex','color','r','fontsize',28);
实验结果与分析:
差分法结果如下:
从图上我们可以看到,可以得到函数图像确实十分接近理论上的解答,差分二阶导数比起差分一阶导数来说,更加接近原函数。差分二阶导数在后面几乎能跟原函数重合,是非常好的求边值问题的方法。
成绩:
批阅教师签名:
常微分方程边值问题在应用科学与工程技术中有着非常重要的应用,例如工程学、力学、天文学、经济学以及生物学等领域中的许多实际问题通常会归结为常微分方程边值问题的求解。虽然求解常微分方程边值问题有很多解析方法可以求解,但这些方法只能用来求解一些特殊类型的方程,对从实际问题中提炼出来的微分方程往往不再适用,因而对常微分方程边值问题的数值方法的研究显得尤为重要。经典的数值方法主要有:试射法(打靶法)和有限差分法。
我们在整个实验中,感觉最困难的就是对于差分法的理解以及程序的编写上面。我们查询了各种有关于常微分方程边值问题、有限差分法、二阶常微分方程的资料以及论文,差分法实际上就是用离散的、只含有有限个未知量的差分方程去近似代替连续变量的微分方程和定解条件。有一点要注意,我们这个算法只适合用于等间隔差分。
做了这道题之后,感觉我们对于常微分边值问题有了更进一步的理解,尤其是各种思维之间的转换尤其重要,在今后的数学学习中,希望我们能够灵活的运用。
类似地,我们还可以给出二阶微商 和高阶微商的差分近似表达式。例如将(2.19)和(2.20)两式相加可得
进而有
(2.28)
其中 .
因此,二阶导数 的差分近似表达式[8]为
(2.29)
实验内容(方法和步骤):
差分法代码如下
clc;
clear all
h=0.05;
%x属于【a,b】
a=-1;b=1;
x=a:h:b;
定理:设方程(2.1)中的函数 及 , 在区域
内连续,并且
(ⅰ) ;
(ⅱ) 在 内有界,即存在常数 ,使得
, ,
则边值问题(2.1)-(2.4)的解存在且唯一。
我们假设函数 可以简单地表示成
,
即边值问题(2.1)-(2.2)为具有如下形式的二阶线性边值问题
(2.5)
三、有限差分法:
有限差分方法是用于微分方程定解问题求解的最广泛的数值方法,其基本思想是用离散的、只含有有限个未知量的差分方程去近似代替连续变量的微分方程和定解条件,并把相应的差分方程的解作为微分方程定解问题的近似解。