第五章 沥青混凝土混合料要点

合集下载

沥青混合料知识点总结

沥青混合料知识点总结

沥青混合料知识点总结了解沥青混合料,首先需要了解其主要组成部分。

沥青混合料一般由四个主要部分组成:矿料、沥青、添加剂和空气孔隙。

其中,矿料是沥青混合料的主要骨料,沥青是粘合骨料的胶凝物质,添加剂则是用来改善混合料性能的物质。

空气孔隙是指混合料内部的气体空间,它在一定程度上影响着混合料的性能。

了解这些组成部分可以更好地理解沥青混合料的性能与特点。

在混合料的生产与设计过程中,需要考虑到许多因素。

例如,矿料的种类、粒径分布、形状等因素都会影响混合料的性能。

在选择骨料时,需要考虑到其物理性质、力学性质以及耐久性等因素。

而沥青的选择则需要考虑其黏度、温度敏感性、老化性能等因素。

此外,添加剂的选择也需要根据混合料的具体要求进行调整。

因此,在混合料的生产与设计过程中,需要综合考虑各种因素,以确保混合料具有良好的性能和耐久性。

混合料的设计是保证混合料质量的重要环节。

混合料的设计需要根据具体工程要求,结合原材料的性能与特点,进行合理的配合设计。

混合料设计需要考虑到混合料的抗压强度、抗变形性能、耐久性等因素,以确保混合料具有良好的性能。

在混合料设计中,需要考虑骨料的配合比、沥青的用量、添加剂的种类与用量等因素,以确定最佳的混合比例。

混合料设计需要充分考虑原材料的性能与特点,以提高混合料的性能和耐久性。

在混合料的施工过程中,需要考虑到不同的施工方法与要求。

例如,热拌混合料需要在混合料厂内进行预制,然后在施工现场进行铺装。

而冷拌混合料则可以在施工现场进行混合与铺装。

对于不同类型的混合料,需要选择合适的施工方法与工艺,以确保混合料具有良好的密实性和耐久性。

另外,在混合料的施工过程中,需要注意控制施工的温度与湿度。

特别是对于热拌混合料,需要控制混合料的管理温度与铺装温度,以确保混合料的质量。

此外,在混合料的压实过程中,也需要注意控制温度与湿度,以确保混合料的良好密实性。

混合料的质量检验是保证混合料质量的重要环节。

混合料的质量检验需要对骨料、沥青和混合料进行全面的检测,以确保混合料具有良好的性能和耐久性。

沥青及沥青混合料复习知识点

沥青及沥青混合料复习知识点

沥青及沥青混合料复习知识点沥青是一种由石油或沥青矿石经过加工制得的胶状物质,广泛应用于道路建设、防水材料、屋顶覆盖等领域。

而沥青混合料(ACM)则是将沥青与骨料、添加剂等混合制成的一种复合材料,常用于道路基层、面层和修补层的施工。

1.沥青的性质和特点:-黑色、胶状的物质,可软化、溶解于温度较高的条件下。

-耐水、耐酸碱,不易受化学腐蚀。

-具有良好的黏附性和可塑性,能与骨料等材料紧密结合。

-具有较高的抗变形和耐磨损性能。

-高温时有一定的流动性,可通过压实和冷却形成坚实的结构。

2.沥青混合料的组成:-骨料:常用的骨料有沥青砂、石粉、碎石等,用于提供沥青混合料的强度和稳定性。

-沥青:作为胶结剂,用于粘合骨料并形成坚固的结构。

-添加剂:如胶粘剂、改性剂、增粘剂等,用于改善沥青混合料的性能和工艺特性。

-矿质填料:如石粉、轻骨料等,用于填充骨料之间的空隙,提高沥青混合料的致密性和抗开裂性能。

3.沥青混合料的分类:-按骨料粒径分类:粗骨料、中骨料、细骨料。

-按沥青用量分类:富沥青混合料、贫沥青混合料。

-按沥青稠度分类:厚层沥青混合料、薄层沥青混合料。

4.沥青混合料的制备工艺:-骨料干燥:将骨料经过筛分、清洗后,通过加热和干燥去除水分,确保沥青能够与骨料粘结。

-沥青加热:将固态的沥青加热至液态,以便与骨料充分混合。

-混合配比:根据设计要求,确定沥青、骨料和添加剂的配比,以保证沥青混合料的性能。

-混合搅拌:将沥青和骨料加入搅拌设备中,通过搅拌使其均匀混合,形成沥青混合料。

-施工铺设:将混合料铺设在路面上,通过压实和冷却使其形成坚实的道路结构。

5.沥青混合料的性能研究:-抗剪强度:用于评估沥青混合料的强度和抗剪切能力。

-动态稳定性:用于评估沥青混合料在交通荷载下的变形能力和稳定性。

-抗老化性能:用于评估沥青混合料在长期使用过程中的性能稳定性。

-密度和空隙率:用于评估沥青混合料的致密性和抗水损害能力。

-显微结构分析:通过显微镜等手段观察沥青混合料的内部结构,了解其性能和变形机制。

沥青混凝土质量控制

沥青混凝土质量控制

沥青混凝土质量控制引言概述:沥青混凝土是一种常用于道路铺设的材料,其质量控制对于保证道路的耐久性和安全性至关重要。

本文将从五个方面详细介绍沥青混凝土质量控制的要点。

一、原材料选择与质量控制1.1 沥青的选择:应选择符合国家标准的沥青,具有合适的黏度和软化点,以确保混凝土的稳定性和耐久性。

1.2 骨料的选择:骨料应符合规定的粒径要求,并具有适当的强度和稳定性,以确保混凝土的强度和耐久性。

1.3 添加剂的选择:根据混凝土的具体要求,选择适当的添加剂,如增粘剂、改性剂等,以提高混凝土的性能和稳定性。

二、混合比设计与控制2.1 混合比设计:根据道路的使用条件和要求,进行混合比设计,确定沥青、骨料和添加剂的配比,以保证混凝土的强度和耐久性。

2.2 混合过程控制:在混合过程中,应控制好沥青和骨料的加热温度、混合时间和搅拌速度,以确保混合物的均匀性和稳定性。

2.3 配合比调整:根据实际施工情况,及时调整混合比中沥青和骨料的比例,以适应不同的施工条件和要求。

三、施工工艺控制3.1 预热骨料:在施工前,对骨料进行预热处理,以提高沥青的附着性和混凝土的稳定性。

3.2 摊铺厚度控制:根据设计要求,控制摊铺机的速度和厚度,确保沥青混凝土的厚度均匀一致。

3.3 压实控制:在摊铺后,采用合适的压实设备和方法,对沥青混凝土进行压实,以提高其密实度和稳定性。

四、质量检测与监控4.1 原材料检测:对沥青、骨料和添加剂进行质量检测,确保其符合标准要求。

4.2 混合料检测:对混合料进行采样和试验,检测其沥青含量、骨料粒径分布等指标,以确保混合料的质量稳定。

4.3 施工质量检测:对摊铺后的沥青混凝土进行密实度、厚度、平整度等方面的检测,以确保施工质量符合要求。

五、质量控制记录与总结5.1 质量控制记录:对每一批次的沥青混凝土进行质量控制记录,包括原材料检测报告、混合比设计、施工工艺参数等,以备查证和追溯。

5.2 质量控制总结:对施工过程中的质量操纵情况进行总结和分析,及时发现问题并提出改进措施,以提高沥青混凝土的质量和施工效率。

沥青混合料质量控制要点

沥青混合料质量控制要点

向来以来,各施工项目的质量控制工作大多只是偏重于如何达到规范要求,而忽视工程质量的稳定,不少轻易达到质量标准的工程实体,在完工很短期内就浮现各种质量问题。

施工中的试验检测结果并不能彻底、真正的代表工程实体质量,施工中更需要的是对生产过程的监控,从保证过程质量上实现工程质量的稳定。

所以,应加强施工过程的质量控制,对施工过程进行“实时监控”,努力改变我们以往只对产品质量进行事后检查的思路,在生产、使用过程中采取各种有效措施提前规避,减少变异性,提高质量稳定性。

沥青混合料的生产工艺复杂,采用的原材料种类多且性状较难掌握,生产过程中有问题难以发现,发现了却又找不许原因,而在质量控制中,试验检测项目多且用时较长,往往检测出问题时却为时已晚,因此,及时有效的控制沥青混合料的质量是非常重要的,应从以下方面进行沥青混合料质量控制:2.1严格控制进场原材料质量,消除因材料差异引起的沥青混合料配合比波动。

原材料的变异是造成混合料质量波动的重要因素之一,因此必须认真做好材料选择。

原材料在满足力学性质(单轴抗压强度、压碎值、磨耗率、磨光值等试验项目满足规范要求) 的前提下,优先考虑碎石料的几何形状,以粒形接近正方体、表面粗糙且有棱角、针片状含量低以及吸水率低为优。

在材料批量进场中要做好验收工作,进场检测应做到及时、全面、准确,初期应提高监测频率,尽可能将质量控制从源头抓起,从材料的开采或者加工生产环节开始控制,注意料源特性与生产工艺。

2.2 合理进行沥青混合料的配合比设计。

沥青混合料配合比设计分三阶段,即目标配合比设计阶段、生产配合比设计阶段和生产配合比验证阶段,三阶段设计合格后方可开展大规模施工。

首先,目标配合比设计是沥青混合料质量控制的核心工作,是混合料生产与控制的基础,合理、可行的配合比设计应满足以下 3 个要求:“必须符合设计和规范规定的质量要求;必须有利于生产和施工要求;必须有良好的成本经济效益”。

目标配合比应作为生产控制的依据和质量检验的标准,一旦确定就不应随便更改,惟独当材料发生变化时才进行必要的调整。

沥青混合料组成设计

沥青混合料组成设计

前苏联k 前苏联k法
如以D1表示矿料最大粒径,当矿料粒径按1/2递减时, 如以D1表示矿料最大粒径,当矿料粒径按1/2递减时,其相 D1表示矿料最大粒径 1/2递减时 应的各级粒径尺寸为:D1 :D1、 应的各级粒径尺寸为:D1、
n为粒径尺寸数
为第一档(D1/0.5D1)粒径的重量百分率, 设a1为第一档(D1/0.5D1)粒径的重量百分率,则相应其 余各档的重量百分率为: 余各档的重量百分率为: ……a a2=a1k,a3=a1k2……am=a1km-1, 其中m为粒料分档数目,m=n其中m为粒料分档数目,m=n-1
连续开级配 粗骨料含量增加,混合料可以形成骨架作用, 粗骨料含量增加,混合料可以形成骨架作用,细集料含量 较少, 较少,不能充分填充粗骨料之间的空隙而有较大的空隙 形成一种骨架空隙结构 骨架空隙结构。 率,形成一种骨架空隙结构。 材料的强度主要取决于内摩阻力 粘结力相对是次要的, 强度主要取决于内摩阻力, 材料的强度主要取决于内摩阻力,粘结力相对是次要的, 其热稳性可以显著提高。 其热稳性可以显著提高。 空隙率太大而使路面耐久 性受到影响。 性受到影响。
2.连续级配理论 2.连续级配理论
1)最大密度曲线理论 1)最大密度曲线理论 最大密度曲线是通过试验提出的一种理想曲线。 最大密度曲线是通过试验提出的一种理想曲线。 W.B.Fuller等的研究认为 等的研究认为: W.B.Fuller等的研究认为:固体颗粒按粒度大小有规则地 组合排列,粗细搭配,可以得到密度最大、 组合排列,粗细搭配,可以得到密度最大、空隙最小的混合 料。 初期研究:细集料以下的颗粒级配为椭圆形曲线, 初期研究:细集料以下的颗粒级配为椭圆形曲线,粗集料 为与椭圆曲线相切的直线, 为与椭圆曲线相切的直线,由这两部分曲线组成的级配曲 线可以达到最大密度。 线可以达到最大密度。 简化的“抛物线最大密度理想曲线” 简化的“抛物线最大密度理想曲线”。

沥青和沥青混合料试验检测方法(新)

沥青和沥青混合料试验检测方法(新)

第五章:沥青混合料试验检测技术作为高等级道路路面的主要结构形式之一,沥青混合料路面以其表面平整、坚实、无接逢、行车平稳、舒适、噪音小等优点,在国内外得到广泛的应用。

为了保证高等级公路在高速、安全、经济和舒适四个方面的功能要求,沥青混合料除了要具备一定的力学强度,还要具备高温稳定性、低温抗裂性、耐久性、抗滑性、抗渗性等各项技术要求。

因此道路工程建设过程中,对沥青混合料的各项性能进行准确的检测,以确保沥青路面的工程质量。

本章简略介绍沥青混合料的组成结构和技术性能,重点介绍沥青混合料组成设计方法和技术性能指标的检测方法,同时介绍SMA的设计及检测方法第一节沥青混合料的分类及其技术要求沥青混合料是由适当比例的粗集料、细集料及填料组成的矿质混合料与粘结材料沥青经拌和而成的混合材料,一般我们将沥青混凝土和沥青碎石通称为沥青混合料。

一、沥青混合料的分类(一)按结合料分类1.石油沥青混合料:以石油沥青为结合料的沥青混合料。

2.煤沥青混合料:以煤沥青为结合料的沥青混合料。

(二)按施工温度分类1.热拌热铺沥青混合料:简称热拌沥青混合料。

沥青与矿料在热态拌和、热态铺筑的混合料。

2.常温沥青混合料:以乳化沥青或稀释沥青与矿料在常温状态下拌制、铺筑的混合料。

(三)按矿质混合料级配类型分类1.连续级配沥青混合料:沥青混合料中的矿料是按级配原则,从大到小各级粒径都有,按比例相互搭配组成的混合料,称为连续级配沥青混合料。

2.间断级配沥青混合料:连续级配沥青混合料矿料中缺少一个或两个档次粒径的沥青混合料称为间断级配沥青混合料。

(四)按混合料密实度分类1.密级配沥青混凝土混合料:按密实级配原则设计的连续型密级配沥青混合料,但其粒径递减系数较小,设计空隙率3%-6%。

2.半开级配沥青混凝土混合料:按级配原则设计的连续型级配混合料,但其粒径递减系数较大,设计空隙率6%-12%。

3.开级配沥青混凝土混合料:按级配原则设计的连续型级配混合料,但其粒径递减系数较大,设计空隙率大于18%。

沥青混合料质量控制要点简洁范本

沥青混合料质量控制要点简洁范本1.原材料质量控制确保沥青混合料的原材料质量达到设计要求。

包括沥青、骨料、添加剂等。

(1)沥青的质量控制:要检查沥青的外观、颜色、粘度、密度等指标,确保沥青没有明显的氧化、污染等问题。

(2)骨料的质量控制:检查骨料的颗粒形状、粒度分布、硬度等指标,确保骨料符合设计要求。

(3)添加剂的质量控制:检查添加剂的含量、稳定性等指标,确保添加剂的质量稳定。

2.混合料比例控制根据设计要求,控制沥青混合料中各成分的比例,确保混合料的性能稳定。

(1)确定混合料比例:根据设计要求和试验数据确定沥青、骨料、添加剂的比例,确保混合料的性能满足标准要求。

(2)比例控制:在搅拌过程中,严格控制各原材料的加入比例,确保混合料的配方准确。

3.搅拌均匀度控制确保混合料在搅拌过程中的均匀度,防止出现骨料分离、沥青聚集等问题。

(1)搅拌设备的选择:选择质量良好的搅拌设备,确保混合料能够均匀搅拌。

(2)搅拌时间控制:控制搅拌时间,确保混合料的搅拌均匀,避免出现区域性过度搅拌或不足搅拌的问题。

4.温度控制混合料在施工前后的温度控制对其性能影响很大,需要合理控制温度。

(1)混合料温度控制:控制混合料的搅拌温度,确保搅拌温度适宜,不得过高或者过低。

(2)施工温度控制:控制混合料在施工前后的温度,避免混合料在高温环境下损失黏结力,或者在低温环境下凝固不均匀等问题。

5.施工过程质量控制在沥青混合料施工过程中,需要严格控制施工质量,确保混合料的性能不受损。

(1)施工设备控制:确保施工设备的质量合格,运行稳定,避免设备故障对混合料质量造成影响。

(2)施工工艺控制:严格按照施工工艺要求进行施工,包括摊铺、压实、表面处理等过程的控制。

(3)质量检验控制:对施工过程中的混合料进行质量检验,确保混合料的性能达到标准要求。

综上所述,沥青混合料质量控制要点主要包括原材料质量控制、混合料比例控制、搅拌均匀度控制、温度控制和施工过程质量控制。

沥青混合料原材料技术要求

沥青混合料原材料技术要求1.沥青:沥青是沥青混合料的主要成分,要求具有良好的黏附性、可塑性和耐久性。

沥青的粘度应适中,既要保证热混合过程中的流动性,也要保证铺设后的黏附力。

沥青应具有足够的可塑性,以便能够与骨料充分结合,形成均匀的混合料。

同时,沥青要具有良好的耐久性,能够抵抗日晒、雨淋和车辆的压力。

2.骨料:骨料是沥青混合料的主要填充材料,要求具有良好的强度、稳定性和耐久性。

骨料应具有足够的抗压强度,以承受道路上车辆的压力和荷载。

骨料粒径分布应合理,以保证沥青混合料的密实性和稳定性。

另外,骨料也应具有良好的耐久性,能够抵抗水分和紫外线的侵蚀。

3.助剂:助剂是为了改善沥青混合料的性能而加入的辅助材料。

常见的助剂包括增黏剂、改性剂和防水剂等。

增黏剂可以提高沥青的粘度,增强其与骨料的粘附力。

改性剂可以改善沥青的弹性模量和温度敏感性,提高沥青混合料的柔性和抗龟裂性。

防水剂可以提高混合料的耐水性和抗湿滑性。

4.沥青混合料配合比:沥青混合料的配合比是指原材料的比例和用量。

合理的配合比能够保证混合料的性能和质量。

配合比应考虑到沥青的粘度、骨料的粒径分布、混合料的工程要求等因素。

一般来说,沥青的用量应使整个混合料均匀润湿骨料,保证混合料的质量;骨料的用量应使混合料具有足够的强度和稳定性;助剂的用量应根据具体要求进行合理调配。

5.搅拌和施工温度:沥青混合料的搅拌和施工温度对于混合料的质量和性能也是非常重要的。

搅拌温度应根据沥青的粘度和骨料的特性进行合理调节,保证混合料充分混合和均匀分布。

施工温度应考虑到天气条件和混合料的特性,尽量保持在适宜的温度范围,以保证混合料的质量和施工效率。

总之,沥青混合料原材料的技术要求包括沥青、骨料、助剂、配合比以及搅拌和施工温度等方面。

合理选择和配置原材料,控制好搅拌和施工温度,能够保证沥青混合料的质量和使用寿命,提高道路铺设工程的稳定性和耐久性。

沥青混合料质量控制要点

沥青混合料质量控制要点沥青混合料质量控制要点概述沥青混合料是常用的道路建设材料之一,其质量直接影响道路的耐久性、安全性和舒适性。

为了确保沥青混合料的质量,需要进行严格的质量控制。

本文档将着重介绍沥青混合料质量控制的要点,包括原材料选择、配合比设计、施工过程控制等方面。

1. 原材料选择原材料的选择对沥青混合料的质量至关重要。

以下是原材料选择的要点:- 沥青:选择符合规范要求的沥青,并进行必要的,如针入度、软化点等指标。

- 骨料:骨料应具有良好的力学性能和稳定性,选择合适的骨料种类和规格。

- 添加剂:添加剂的使用应符合规范要求,并进行相应的试验。

2. 配合比设计配合比的设计是沥青混合料质量控制的核心。

以下是配合比设计的要点:- 粗骨料比例:根据道路用途和设计要求确定混合料中粗骨料的比例,以满足强度和稳定性的要求。

- 沥青含量:根据混合料的级配曲线和设计要求确定合适的沥青含量,以保证混合料的黏结性和耐久性。

- 稠度:通过控制稠度,调整沥青的流动性,以获得适当的挤压密实性和工作性能。

- 添加剂控制:根据需要,在设计中合理使用添加剂,并控制其用量和添加时间。

3. 施工过程控制沥青混合料的施工过程也是质量控制的重要环节。

以下是施工过程控制的要点:- 温度控制:沥青和混合料的温度应在规定范围内,以确保混合料的工作性能和质量。

- 混合料摊铺厚度:掌握正确的摊铺厚度,避免出现厚度不均匀、过厚或过薄的情况。

- 摊铺温度:根据沥青类型和环境条件,控制摊铺温度,确保沥青的黏结性和密实性。

- 环境保护:保持施工现场的良好环境,防止杂物或泥土等进入混合料中。

4. 质量检验与评价沥青混合料的质量检验与评价是保证施工质量的重要手段。

以下是质量检验与评价的要点:- 稠度:混合料的稠度,判断沥青含量是否合适,以及混合料的流动性和工作性能。

- 压实度:混合料的压实度,以评估混合料的密实性和稳定性。

- 断面质量检查:对摊铺好的混合料进行断面质量检查,监测沥青含量、骨料分布和密实度等指标。

第五章 沥青混合料

1-2 1-3 1-4 1000 2800 2-1 600 2000 800 2400
2.夏热区 ( 20~30)
2-2 2-3 2-4 800 2400
3.夏凉区 (< 20)
3-2 600 1800
1500
3000 1500(一般交通路段)、3000(中交通量路段)
我国沥青混合料设计方法
气候条件与技术指标 气候分区及 年降雨量(mm) 普通沥青混合料 改性沥青混合料
⑶ 浸水劈裂强度试验 ⑷ 浸水车辙试验等
劈裂强度测试
抗滑性 1)影响因素 • 集料的表面构造(粗糙度) • 集料的级配组成 评价方法与指标 构造深度——铺砂 法 摩阻系数——摆式 摩阻仪
抗滑性改善措施
• 选用坚硬、耐磨(磨光值高)、抗冲击性好的碎石 或破碎砾石 • 对酸性集料采取抗剥措施 • 严格控制沥青含量
SMA 混合料
普通沥青 改性沥青
冻融劈裂试验的残留强度比(%),不小于 普通沥青混合料 改性沥青混合料 SMA 混合料 普通沥青
改性沥青
80
我国沥青混合料设计方法
沥青混合料低温弯曲试验破坏应变(με )技术要求 (JTG F40-2004)
气候条件与技术 指标 相应下列气候分区所要求的破坏应变( με )
VMA
——矿料间隙率,%; ——试件的沥青体积百分率,%; VA VV VMA
VA
VV
——试件空隙率,%。
试件的体积参数指标
三、沥青饱和度VFA
沥青体积百分率VA
VA VFA 100% VMA
油石比:VA P s 100% 100 Pa b w
a
Pb s 沥青用量:VA 100 % b w
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第五章普通沥青混合料本章着重阐述了热拌沥青兴混合料的组成结构、强度形成原理、沥青混合料的体积特征参数、应具有的技术性质、影响因素及评价方法,重点介绍了热拌沥青混合料的马歇尔设计方法,包括组成材料的选择和配合比设计方法,同时对Superpave与GTM沥青混合料设计方法进行了简要介绍。

通过学习,要求掌握沥青混合料的组成结构、强度形成原理、技术性质和技术要求,并能按马歇尔法设计沥青混合料的配合组成,同时对Superpave与GTM设计法有一定了解。

5.1 沥青混合料组成及结构5.1.1沥青混合料的定义⑴沥青混合料⑵沥青混凝土混合料⑶沥青碎石混合料⑷沥青玛蹄脂碎石混合料5.1.2沥青混合料的分类⑴按结合料分类石油沥青混合料煤沥青混合料石油沥青混合料又包括粘稠石油沥青、乳化石油沥青及液体石油沥青混合料⑵按矿料的级配类型划分①连续级配沥青混合料②间断级配沥青混合料⑶按矿料级配组成及空隙率大小划分①密级配沥青混合料设计空隙率为3%~6%密级配沥青混凝土混合料(AC)密级配沥青稳定碎石混合料(ATB)沥青玛蹄脂碎石混合料(SMA)② 半开级配沥青混合料 剩余空隙率在6%~12% 沥青碎石(AM )③ 开级配沥青混合料 设计空隙率为18%的混合料排水式沥青磨耗层(OGFC) 排水式沥青基层(ATPB)⑷按矿料公称最大粒径划分① 特粗式沥青混合料 等于或大于31.5mm② 粗粒式沥青混合料 公称最大粒径等于或大于26.5mm③ 中粒式沥青混合料:集料公称最大粒径为16mm 或19mm 的沥青混合料。

④ 细粒式沥青混合料:集料公称最大粒径为9.5mm 或13.2mm 的沥青混合料。

⑸按制造工艺划分① 热拌热铺沥青混合料② 冷拌沥青混合料③再生沥青混合料5.1.3沥青混合料的组成结构⑴ 表面理论⎧⎧⎪⎪⎨⎪⎨⎪⎩⎪⎪⎩粗集料矿质骨架细集料沥青混合料填料结合料--沥青⑵ 胶浆理论① 粗分散系。

以粗集料为分散相,分散在沥青砂浆的介质中。

② 细分散系。

以细集料为分散相,分散在沥青胶浆的介质中。

③ 微分散系。

以矿粉填料为分散相,分散在高稠度的沥青介质中。

⎧⎪⎧⎪⎪⎪⎧⎪⎪⎨⎪⎪⎨⎨⎪⎪⎪⎪⎩⎪⎪⎪⎪⎩⎩分散相--粗集料分散相--细集料分散相--填料沥青混合料分散介质--砂浆分散介质--沥青胶结料分散介质--沥青(微分散系)(细分散系)(粗分散系)5.1.4沥青混合料的组成结构类型图5-1 3种类型矿质混合料级配曲线⑴悬浮一密实结构特点是粘聚力较高,混合料的密实性与耐久性较好,但内摩阻力较小,高温稳定性较差。

我国传统的AC型沥青混凝土是典型的悬浮一密实结构。

⑵骨架一空隙结构特点:内摩擦角较高,高温稳定性较好,但粘聚力较低,耐久性差。

沥青碎石混合料(AM)及排水式沥青磨耗层混合料(OGFC)是典型的骨架-空隙结构。

⑶密实-骨架结构这种结构的沥青混合料不仅具有较高的密实度、粘聚力和内摩擦角,同时具有较好的高温稳定性,但施工和易性较差。

SMA沥青玛蹄脂碎石混合料即属于密实-骨架结构。

5.2 沥青混合料强度及影响因素5.2.1沥青混合料的强度形成原理沥青混合料在常温和较高温度下,由于沥青的粘结力不足而产生变形或由于抗剪切强度不足而破坏,一般采用库仑理论来分析其强度和稳定性。

tan C τσϕ=+图5-3 沥青混合料三轴试验确定C 、ψ值的摩尔-库仑圆5.2.2影响沥青混合料抗剪强度的因素⑴ 沥青的性质对粘结力C 的影响⑵ 矿质混合料级配、颗粒形状和表面特性对内摩阻角ϕ的影响⑶ 矿料与沥青交互作用能力的影响⑷ 矿料比面积与沥青用量的影响⑸ 温度和变形速率的影响5.3沥青混合料路用性能5.3.1高温稳定性高温稳定性是指沥青混合料在高温条件下,能够抵抗车辆荷载的反复作用,不发生显著永久变形,保证路面平整度的特性。

这种特性是导致沥青路面产生车辙、波浪 及拥包等病害的主要原因。

在交通量大、重车比例和经常变速路段的沥青路面上,车辙是最严重、最有危害的破坏形式之一。

⑴ 高温稳定性的评价方法及指标① 马歇尔稳定度试验马歇尔稳定度试验方法是由美国密西西比州公路局布鲁斯·马歇尔(Brue Marshall )提出的,迄今已经历了半个多世纪。

马歇尔试验设备简单、操作方便,被世界上许多国家所采用,是目前我国评价沥青混合料的高温性能的主要试验之一。

② 车辙试验目前我国的车辙试验是采用标准方法成型的沥青混合料板块状试件,在规定的温度条件下,试验轮以42±1次/min 的频率,沿着试件表面同一轨迹上反复行走,测试试件表面在试验轮反复作用下所形成车辙深度,见图7-11。

以产生1mm 车辙变形所需要的行走次数,即动稳定度指标评价沥青混合料的抗车辙能力,动稳定度由式(1-2)计算。

()21122142t t DS c c d d -=- (1-2)式中: DS ——沥青混合料动稳定度(次/mm);d 1,d 2—— 时间t 1和t 2的变形量(一般t 1=45min 、t 2=60min)(mm );42—— 每分钟行走次数(次/min);c 1,c 2—— 试验机与试样的修正系数。

⑵ 高温稳定性的主要影响因素采用表面粗糙、多棱角、颗粒接近立方体的碎石集料提高沥青的高温粘度粗集料嵌锁骨架结构沥青用量。

5.3.2低温抗裂性低温收缩开裂主要有两种形式:材料低温收缩、低温收缩疲劳裂缝⑴ 低温抗裂性的评价方法和评价指标评价方法可以分为三类:预估沥青混合料的开裂温度;评价沥青混合料的低温变形能力或应力松驰能力;评价沥青混合料断裂能① 预估沥青混合料的开裂温度② 低温蠕变试验蠕变变形曲线可分为三个阶段,第一阶段为蠕变迁移阶段,第二阶段为蠕变稳定阶段,第三阶段为蠕变破坏阶段。

蠕变速率越大,沥青混合料在低温下的变形能力越大,松弛能力越强,低温抗裂性能越好。

1221speed 0()/()t t εεεσ--= (1-3)式中:speed ε-沥青混合料的低温蠕变速率,1/s·MPa ;0σ-沥青混合料小梁试件跨中梁底的蠕变弯拉应力,MPa ;t 1和t 2-分别为蠕变稳定期的初始时间和终止时间,s ;1ε和2ε-分别与时间t 1和t 2对应的跨中梁底应变。

③ 低温弯曲试验低温弯曲试验也是评价沥青混合料低温变形能力的常用方法之一。

在试验温度-10℃±0.5℃的条件下,以50mm/min 速率,对沥青混合料小梁试件跨中施加集中荷载至断裂破坏,记录试件跨中荷载与挠度的关系曲线。

沥青混合料在低温下破坏弯拉应变越大,低温柔韧性越好,抗裂性越好。

26B hd L ε= (1-4)式中:B ε-试件破坏时的最大弯拉应变;h -跨中断面试件的高度,mm ;d -试件破坏时的跨中挠度,mm ;L -试件的跨径,mm 。

沥青混合料在低温下的极限变开通,反映了粘弹性材料的低温粘性和塑性性质,极限应变越大,低温柔韧性越好,抗裂性越好。

我国《公路沥青路面设计规范》(JTG D50-2006)中规定,采用低温弯曲试验的破坏应变指标作为评价改性沥青混合料的低温抗裂性能。

④ 约束试件的温度应力试验该法是美国公路战略研究计划(SHRP )推荐的评价沥青混合料低温抗裂性能的方法。

测定在降温冷却过程中试件内部的温度应力变化曲线,直至试件断裂破坏。

试验结束后,分析冻断温度、试验时反映冷却过程中的温度应力变化过程曲线如图5-15所示。

由图5-15可以得到4个指标:冻断温度、破坏强度、温度应力曲线斜率和转折点温度。

冻断强度是试件达到破坏断裂时的最大应力,反映混合料在温度收缩过程中的强度。

转折点温度将温度应力曲线分为两个部分,前一部分反映应力松弛(曲线部分),后一部分应力松(直线部分)消失。

温度应力曲线斜率主要是指温度应力曲线后一部分直线增长斜率,反映温度应力增长的速度。

冻断温度与沥青性能、沥青路面抗裂性能的相关性最好,冻断强度也有较好的相关性。

温度应力试验模拟现场条件较好,表达直观。

⑵低温抗裂性能的主要影响因素一般情况下,沥青针入度数值越大,其感温性越低,低温劲度模量越小,沥青的低温柔韧性就越好,其抗裂性能越好。

在寒冷地区,可采用稠度低、低温轻度低的沥青,或选择松弛性能较好的橡胶类改性沥青来提高沥青的低温抗裂性。

通常,密级配沥青混合料的低温抗拉强度高于开级配的沥青混合料,但是粒径大、空隙率大的沥青混合料内部微空隙发达,应力松弛能力略强,温度应力有所减小,两方面的影响相互抵消,故沥青混合料的这两种级配与沥青路面开裂程度之间没有显著关系。

同时环境因素对沥青混合料的开裂也有一定影响。

5.3.3水稳定性水稳定性是沥青混合料抵抗由于水侵蚀而逐渐产生沥青膜剥离、松散、坑散等破坏的能力。

水稳定性差的沥青混合料在有水存在的情况下,会发生沥青与矿料颗粒表面的局部分离,同时在车辆荷载作用下加剧沥青和矿料的剥落,形成松散薄弱块,飞转的车轮带走局部剥离的矿粒或沥青,从而造成路面的缺失,并逐渐形成坑槽,即所谓的沥青路面“水损害”。

当沥青混合料的压实空隙率较大,路面排水系统不完善时,会加速沥青路面的“水损害”。

⑴水稳定性的评价方法与评价指标①沥青与集料的粘附性试验沥青与集料粘附性的试验方法有:水煮法、水浸法、光电比色法及搅动水净吸附法等。

②浸水试验浸水试验是根据浸水前后沥青混合料的物理、力学性能的降低程度来表征其水稳定性的一类试验,常用的方法有浸水马歇尔试验、浸水车辙试验、浸水劈裂强度试验和浸水抗压强度试验等。

以浸水前后的马歇尔稳定度比值、车辙深度比值、劈裂强度比值和抗压强度比值的大小评价沥青混合料的水稳定性。

③ 冻融劈裂试验按照《公路工程沥青及沥青混合料试验规程》(JTJ 052-2000)中的方法,在冻融劈裂试验中,将沥青混合料试件分为二组,一组试件用于测定常规状态下的劈裂强度,另一组试件首先进行真空饱水,然后置于-18℃条件下冷冻16h ,再在60℃水中浸泡24h ,最后进行劈裂强度测试。

12TSR σσ= (1-5) 式中:TSR -沥青混合料试件的冻融劈裂强度比,%;1σ-试件在常规条件下的劈裂强度,MPa ;2σ-试件经一次冻融循环后在规定条件下的劈裂强度,MPa 。

⑵ 水稳定性的影响因素沥青路面的水损坏通常与沥青的剥落有关,而剥落的发生与沥青和集料的粘附性有关。

沥青与集料的粘附性在很大的程度上取决于集料的化学组成, SiO 2含量较高的花岗岩集料与沥青的粘附性明显低于碱性集料石灰岩与沥青的粘附性,也明显低于中性集料玄武岩与沥青的粘附性,通过掺加剥落剂可以显著改善酸性集料或中性集料与沥青的粘附性。

沥青混合料的水稳定性除了与沥青的粘附性有关外,还受沥青混合料压实空隙率大小及沥青膜厚度的影响。

成型温度与压实度对沥青混合料的抗水损害性能也有较大影响。

相关文档
最新文档