风电叶片的雷击损坏维修及防雷改造
风力发电机叶片损伤原因及维修措施

风力发电机叶片损伤原因及维修措施邮编:650200摘要:风力发电机在长期的运行过程中,由于受到了复杂化以及多变性自然环境因素的影响,从而造成了不同形式的损伤以及故障问题,且部分损伤在通常情况下难以得到有效避免,导致风力发电机叶片在运行的过程中,由于受到了机械传动的干扰,使其逐渐出现了断裂以及折断等情况,从而带来了停机问题。
现阶段针对风力发电机叶片在运行过程中所受到的损伤原因进行全面化的分析,并及时的找出完善的维修措施,提高风力发电机叶片损伤问题维修工作的整体水平,充分的满足社会生产以及日常生活的用电需求。
关键词:风力发电机;叶片损伤;产生原因;诊断措施;维修方法风力发电机叶片在运行的过程中,由于受到的恶劣环境因素的影响,并且遭受了较大的风力荷载,并且随时都有可能出现故障问题,从而对风力发电机带来严重的损害,通过对相关维修技术和管理措施的有效使用,采用先进的诊断技术,明确造成风力发电机叶片损伤问题的相关原因,及时对相应的故障区域进行有效处理,保障叶片的正常使用。
1. 风力发电机叶片在运行过程中出现损伤的相关原因1.1天气等方面的影响首先,雷击属于风力发电机叶片损伤问题的主要诱因,若叶片当中的留设空间受到了堵塞等问题的影响,则会在下雨天形成严重的积水情况,若遭遇到雷击等问题时,其内部的水分会瞬间蒸发,此时所产生的蒸汽压力会导致叶片出现爆裂等情况。
若无法针对叶片的连接点进行加固处理,并难以及时的清除叶片当中的杂质,不仅无法保障流水孔的畅通性,也会对由于雷击对风力发电机叶片所造成的损伤;若无法对风力发电机的防雷系统进行全面化的检查,则不利于保障系统运行的通畅性。
其次,风力发电机叶片在转动的过程中,由于超过了额定的风速限制,那么风力发电机会直接对叶片实施顺浆操作,避免叶片的荷载能力过大而受到损伤,但由于风速和风向具有不确定性,导致叶片受到了较大的剪切力,使叶片的荷载量超过了设计方案当中的荷载限制,导致叶片受到损伤。
风电场雷击事故原因分析与改进建议

◎陈珊珊风电场雷击事故原因分析与改进建议一、雷击对风机影响概述从世界范围来看,各国风力发电系统都存在一定的雷灾问题。
随着风电单机容量和风电场建设规模的的逐年增加,风机的安全稳定性问题尤为突出,影响风机安全稳定运行的原因众多,其中雷电是风机最为重要的影响因素之一。
一方面,风电场所处的自然环境通常比较空旷也极其恶劣,比如风能资源充足的山区,近海和戈壁,这种自然环境可能存在高温、高盐雾程度、高湿度等问题。
与此同时该种环境中风机的接地条件很复杂,风电场场址的土壤电阻率普遍很高,通过一般的接地设计很难将风机的接地电阻控制在安全标准范围内。
其次,风机自身结构高大,现今世界范围内新装设的风机,主用机型的容量通常在2.0-5.0MW 之间,大部分新装风机高度已达100~160m,加之风电机组在运行时桨叶的旋转作用,使得风机易被雷击。
再次,风机叶片、发电机、电控系统等各部分构造复杂,元器件灵敏度高,易受感应过电压的危害,由于内部空间有限,与建筑物防雷类别,设备的安装难以达到建筑物中所规定的最低的雷电安全距离,这对风机内部电子设备的防雷提出了更高的要求。
关于雷击导致的风电机组损坏问题,不同的机构发布的数据略有差异,但是都表明雷电是导致风电机组损坏的主要原因之一,统计数据表明雷击事故占风电场自然事故中的3/5以上,严重威胁风电场的安全稳定运行。
1995年,国际电工委员会就制定了IEC-61662标准。
2006年,国际电工委员会重新修订颁布雷电灾害风险评估标准,更名为IEC-62305。
其主要内容包括建筑物与服务设施的分类、雷电灾害与雷电损失、雷灾风险、防护措施的选择以及建筑物与服务设施防护的基本标准等。
同时IEC/TR-61400-24中也给出了防雷需要考虑的因素,主要内容包括风力发电系统的雷击灾害资料统计、雷击灾害风险评估、风电设施和人员安全的雷电防护、风机接地系统等内容。
二、直击雷对的风机结构的危害风电机组遭受雷击的过程实际上就是带电雷云与风电机组间的放电过程。
风机叶片防雷方案

风机叶片防雷方案随着现代工业的发展,风机在工业生产中扮演着重要的角色。
然而,由于环境中存在雷电活动,风机在运行过程中可能会受到雷击的影响,给设备带来损坏甚至事故风险。
因此,为了保证风机的安全稳定运行,我们需要采取一系列的防雷措施,特别是对风机叶片进行防雷处理。
在防雷方案中,我们需要对风机叶片进行良好的接地处理。
通过将叶片与地面建立良好的接触,能够有效地将雷电击中叶片的电流引导到地面,避免电流对叶片造成损坏。
为了实现良好的接地效果,可以采用压接式接地装置,将叶片与风机主体的金属结构连接起来,形成一个低阻抗的接地回路。
在风机叶片的设计和制造过程中,我们需要考虑雷电的冲击和电压的分布情况。
在叶片的设计中,可以采用导电材料或导电涂层来增加叶片的导电性,以提高叶片对雷电的耐受能力。
此外,叶片的形状和结构也应该合理设计,以减少雷电对叶片的冲击和压力,降低叶片损坏的风险。
为了进一步提高风机叶片的防雷能力,我们可以在叶片表面覆盖一层防雷涂层。
防雷涂层具有较高的导电性能,能够有效地将叶片表面的雷电电荷引导到地面,避免电荷积累和放电。
防雷涂层应该具有耐腐蚀、耐磨损和耐高温等特性,以确保其长期有效地保护叶片不受雷电的影响。
为了提高风机叶片的防雷能力,我们还可以在叶片表面安装雷电防护装置。
雷电防护装置可以通过改变雷电的传播路径,减少雷电对叶片的冲击和破坏。
常见的雷电防护装置包括避雷针、避雷网和避雷线等,可以根据具体情况选择合适的装置进行安装。
在实际应用中,为了确保风机叶片的防雷效果,我们需要定期对防雷装置进行检测和维护。
定期检查叶片接地装置的接触情况,保证接地导体和地面的良好接触;检查防雷涂层的磨损和老化情况,及时更换和修复;检查雷电防护装置的安装和接地情况,确保其正常运行。
此外,在雷电活动频繁的地区,还可以考虑增加防雷装置的数量和密度,以提高风机叶片的防雷能力。
风机叶片防雷方案是保证风机安全运行的重要措施。
通过合理的接地处理、设计和制造、防雷涂层和雷电防护装置的应用,能够有效地保护风机叶片免受雷电的影响。
风电叶片的雷击损坏维修及防雷改造

风电叶片的雷击损坏维修及防雷改造庄严全国风力机械标准化技术委员会IEC TC88/SAC TC50前言:随着风电整机出质保的比例不断增加,机组、叶片因雷损失的比例也不断扩大。
2014年业主统计发下按有200余只叶片损坏,其中因雷损失比例高达80%。
造成目前叶片因雷损失比例增高的主要原因是叶片防雷设计基本没有进行雷击设计验证、叶片防雷系统有效接闪率低、接闪器设计冗余不足导致的。
本文将对叶片的因雷损失进行分析,并提出一种针对既有叶片的防雷改造方案。
关键词:叶片防雷有效接闪率雷击导流器1.叶片防雷系统的缺陷叶片防雷是一个近年逐渐被提及的问题,早期对于叶片厂、业主而言很少会提及叶片的防雷问题,主要原因在于装机总量低,因雷导致的叶片损坏比例小。
而随着全国装机总量的不断突破,装机密度的不断增加,雷电灾害引起的防雷问题,逐渐得到了业主、叶片厂和行业的重视。
早期的叶片主要被国外企业所控制,对于国外企业的叶片防雷系统设计耐受水平较低,并不适用与高雷暴活动区域。
主要原因在于:以欧洲为代表的叶片制造企业所处的为主均泉流雷电活动较低的地区,年均雷暴活动密度不足每平方公里5个闪电(地闪),这个数据从德国和丹麦多年雷击统计可以发现,在德国和丹麦多年统计的雷击数据总量不如我国一年发生雷击总量;在这种气候条件背景下,国外的叶片防雷设计一直处于较低的耐受水平。
而对于国内,我国多数地区属于强雷暴活动区域,加之装机密度高,单位区域的雷电活动比例远远高于国外,因此,采用较低防雷耐受水平的产品在国内必然会出现水土不服的问题,叶片因雷损坏率高就说明了这个问题。
其次,从技术从面上看,早期的叶片防雷系统并没有进行防雷系统的实验验证。
无法从叶片的出厂报告中获知叶片防雷系统的有效接闪率是多少,叶片可耐受的超值雷电流峰值是多少。
任何应用于风电行业的产品都是经过试验验证的,而最为重要部件的叶片防雷系统却很少听到有那个厂家做过叶片的雷击试验验证。
这就导致了行业中叶片防雷系统有效接闪率低下、防雷系统无效的现状。
风力发电机组叶片雷击损伤及防护措施

风力发电机组叶片雷击损伤及防护措施马磊(三峡新能源施甸发电有限公司云南保山678200)摘要:近几年新建的风电场大多数都选址在高山上,地形复杂,雷暴日较多,随之而来的是风力发电机组叶片受雷击的风险也进一步加大。
叶片在风电机组中位置最高,是雷击的首要目标,是最容易受到雷击损伤的部件,因此叶片是整个风电机组防雷保护的重点。
对此,该文就风力发电机组叶片雷击损伤的机理及防护措施进行简单的分析,并提出一些可供参考的意见与措施。
关键词:风力发电机组叶片雷击防护中图分类号:TM315文献标识码:A文章编号:1672-3791(2022)01(a)-0051-04 Lightning Damage of Wind Turbine Blade and Its ProtectiveMeasuresMA Lei(Three Gorges New Energy Shidian Power Generation Co.,Ltd.,Baoshan,Yunnan Province,678200China) Abstract:In recent years,most of the newly-built wind farms are located on high mountains,with complex terrain and more thunderstorm days,followed with the further increase of the risk of lightning stroke on the blades of wind turbines.The blade is the highest position in the wind turbine,which is the primary target of lightning stroke and the component most vulnerable to lightning damage.Therefore,the blade is the focus of lightning protection of the whole wind turbine.In this paper,the mechanism and protective measures of lightning damage to wind turbine blades are briefly analyzed,and some suggestions and measures for reference are proposed.Key Words:Wind turbine;Blade;Lightning strike;Protect雷击是对风电机组安全稳定运行危害最大的一种自然灾害。
风机叶片防雷方案

风机叶片防雷方案一、引言风机叶片是风力发电系统中非常重要的组成部分,其主要功能是将风的动能转化为机械能,推动发电机转子产生电能。
然而,在雷电活动频繁的地区,风机叶片容易成为雷击的目标,造成严重的损坏甚至破坏整个风机系统。
因此,采取一系列的防雷措施对于确保风机叶片的安全运行至关重要。
二、风机叶片防雷方案1. 金属导电材料覆盖在风机叶片表面覆盖一层金属导电材料,如铝板或铜板,可以有效地分散雷电的能量。
这样一来,当雷电击中风机叶片时,金属导电材料能够迅速将雷电能量传导到地面,减小雷击对风机叶片的损害。
2. 接地系统建立良好的接地系统是防雷的重要措施之一。
通过将风机叶片与地面建立良好的导电连接,可以将雷电能量迅速地引导到地面,保护风机叶片免受雷击的破坏。
为了确保接地系统的效果,需要定期对接地系统进行检测和维护,确保接地电阻符合要求。
3. 轴向封闭设计采用轴向封闭设计可以有效地减少雷电击中风机叶片的可能性。
轴向封闭设计是指在风机叶片的轴向方向上设置避雷装置,将雷电能量引导到地面,避免雷电直接击中叶片表面,从而减小雷击对叶片的影响。
4. 导电涂层在风机叶片表面涂覆一层导电涂层,可以增加风机叶片的导电性能,进一步分散雷电能量。
导电涂层通常采用导电聚合物或导电涂料制成,能够有效地吸收和分散雷电能量,保护风机叶片不受雷击的损害。
5. 避雷针在风机叶片的高处设置避雷针,可以有效地吸引雷电,保护风机叶片免受雷击的破坏。
避雷针通常采用尖锐的金属材料制成,能够在雷电来临时迅速释放电荷,将雷电引导到地面,减小雷击对风机叶片的影响。
6. 雷电监测系统安装雷电监测系统可以实时监测风机叶片周围的雷电活动情况,及时预警并采取相应的防护措施。
雷电监测系统通常由雷达、传感器和监测设备组成,能够准确地监测雷电的强度、距离和方向,为风机叶片的防雷提供有效的数据支持。
7. 定期检查和维护定期对风机叶片进行检查和维护是确保其防雷效果的重要环节。
风力发电机叶片雷击损害机理及有效防护

风力发电机叶片雷击损害机理及有效防护【摘要】各种家电的使用和购买量不断的增加,人们对电能的需求也不断的增加。
风电机组的容量不断的扩大,风力发电的规模也不断的扩大,但是随之而来的是风力发电机的叶片遭受雷击的风险也不断的提高,叶片是整个的发电机中最容易受到伤害的组件。
我国目前对于如何有效的对风力发电机的叶片进行防雷方面的研究还比较的稀少,研究的进展也不够多,。
所以本研究主要的分析了风力发电机的叶片受损的几种情况,以及受损的机理。
并且根据国内外的经验整理出了几种对叶片的保护措施,以期对我国的风力发电的叶片防护起到一定的积极作用。
【关键词】风力发电机;雷击损害;叶片防护引言风力发电机组的容量不断的增大,轮毂高度也从原来的50m左右升高到目前的150m多,一般的叶片的高度就长达30多m,由于一般的风力发电机都安装在比较开阔的低于,所以,风力发电机组遭受雷击的风险和概率就比较的高,在一般的雷击事件中,因为雷电的巨大功率而释放的能量能够使得风机的叶片发生爆裂、电机组的自动化控制和通信原件被烧坏以及电气绝缘被击穿等现象。
在电机组遭受雷击的事件中,一般风机遭受损害最严重的是控制系统,占50%左右,叶片被损害的概率将近20,电气系统的占有25%左右,其他的发电机身等占有5%左右。
目前我国在控制系统等的防护方面已经取得一定的进展,但是在叶片的防护方面却比较的落后。
1、风力发电机叶片结构和损害机理1.1叶片结构风力发电机的叶片是由一种复合材料制造成的薄壳结构。
一般有根部、外壳和龙骨三个部分。
常见的有尖头型、钩头型、平头型以及带襟翼等类型。
根部的材料一般是金属制物,外壳的材料主要是玻璃钢,龙骨的材料一般是玻璃纤维增强型的符合材料或者是碳纤维的增强型复合材料。
风力发电机组的设备昂贵,若叶片遭受损害会产生巨大的损失。
据不完全统计,全球每年将近有2%的风机叶片遭受到雷电的袭击,一般的雷击只发生的叶尖部分,修理的费用比较的少,但是在很多的情况下,雷击会使得叶片发生爆裂的情况,这样就会使得要更换整个的叶片。
风电机组叶片防雷检查

关于叶片防雷及接地的避免措施和检查方法整理如下,希望有所帮助。
一、目前叶片雷击基本为:雷电释放巨大能量,使叶片结构温度急剧升高,分解叶片内部气体高温膨胀,压力上升造成爆裂破坏(更有叶片内存在水分而产生高温气体,爆裂)。
叶片防雷系统的主要目标是避免雷电直击叶片本体而导致叶片损害。
经过统计:不管叶片是用木头或玻璃纤维制成,或是叶片包导电体,雷电导致损害的范围取决于叶片的形式。
叶片全绝缘并不减少被雷击的危险,而且会增加损害的次数。
多数情况下被雷击的区域在叶尖背面(或称吸力面)。
根据以上叙述,叶片防雷设计一般在叶尖装有接闪器捕捉雷电,再通过敷设在叶片内腔连接到叶片根部的导引线使雷电导入大地,约束雷电,保护叶片。
二、按IEC61400-24标准的推荐值,叶片防雷击铜质电缆导线截面积最小为50平方毫米。
如果为高发区,可适当增加铜质电缆导线截面积。
三、我集团近期刚出的一个检查标准:1、叶片吊装前,逐片检查叶片疏水孔通畅。
2、叶片吊装前,逐片检查叶片表面是否存在损伤。
3、叶片吊装前,应逐片检查叶片防雷引下线连接是否完好、防雷引下线截面是否损伤,检测叶片接闪器到叶片根部法兰之间的直流电阻,并做好检测记录。
若叶片接闪器到叶片根部法兰之间的直流电阻值高于20 mΩ,应仔细检查防雷引下线各连接点联接是否存在问题。
叶片接闪器到叶片根部法兰之间直流电阻测量采用直流微欧计、双臂电桥或直流电阻测试仪(仪器分辨率不低于 1 mΩ),采用四端子法测量,检查叶片叶尖及叶片上全部接闪点与叶片根部法兰之间直流电阻,每点应测三次取平均值。
4、机组吊装前后,应检查变桨轴承、主轴承、偏航轴承上的泄雷装置(碳刷、滑环、放电间隙等)的完好性,并确认塔筒跨接线连接可靠。
表1 防雷检查及测试验收清单。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风电叶片的雷击损坏维修及防雷改造
庄严
全国风力机械标准化技术委员会IEC TC88/SAC TC50
前言:随着风电整机出质保的比例不断增加,机组、叶片因雷损失的比例也不断扩大。
2014年业主统计发下按有200余只叶片损坏,其中因雷损失比例高达80%。
造成目前叶片因雷损失比例增高的主要原因是叶片防雷设计基本没有进行雷击设计验证、叶片防雷系统有效接闪率低、接闪器设计冗余不足导致的。
本文将对叶片的因雷损失进行分析,并提出一种针对既有叶片的防雷改造方案。
关键词:叶片防雷有效接闪率雷击导流器
1.叶片防雷系统的缺陷
叶片防雷是一个近年逐渐被提及的问题,早期对于叶片厂、业主而言很少会提及叶片的防雷问题,主要原因在于装机总量低,因雷导致的叶片损坏比例小。
而随着全国装机总量的不断突破,装机密度的不断增加,雷电灾害引起的防雷问题,逐渐得到了业主、叶片厂和行业的重视。
早期的叶片主要被国外企业所控制,对于国外企业的叶片防雷系统设计耐受水平较低,并不适用与高雷暴活动区域。
主要原因在于:以欧洲为代表的叶片制造企业所处的为主均泉流雷电活动较低的地区,年均雷暴活动密度不足每平方公里5个闪电(地闪),这个数据从德国和丹麦多年雷击统计可以发现,在德国和丹麦多年统计的雷击数据总量不如我国一年发生雷击总量;在这种气候条件背景下,
国外的叶片防雷设计一直处于较低的耐受水平。
而对于国内,我国多数地区属于强雷暴活动区域,加之装机密度高,单位区域的雷电活动比例远远高于国外,因此,采用较低防雷耐受水平的产品在国内必然会出现水土不服的问题,叶片因雷损坏率高就说明了这个问题。
其次,从技术从面上看,早期的叶片防雷系统并没有进行防雷系统的实验验证。
无法从叶片的出厂报告中获知叶片防雷系统的有效接闪率是多少,叶片可耐受的超值雷电流峰值是多少。
任何应用于风电行业的产品都是经过试验验证的,而最为重要部件的叶片防雷系统却很少听到有那个厂家做过叶片的雷击试验验证。
这就导致了行业中叶片防雷系统有效接闪率低下、防雷系统无效的现状。
第三,作为叶片防雷系统中最为重要的接闪器、引下线均没有做过任何电流载荷测试。
在一个标称为可耐受首次雷击200KA的叶片上我们发现,在通过40KA雷电流的时候接铝合金闪器就已经出现了严重金属升华,造成叶片表面蒙皮因高温造成开裂及损伤。
2.叶片雷击损伤的特点
风电叶片根据其损伤的特点可以分为机械性损伤与电气性损伤两种,而机械性损伤又可以根据损伤程度的不同分为功能性损伤和可修复性损伤;电气性损伤可以分为功能性损伤和可修复性损伤。
以下我们进行详细的阐述。
首先,机械性损伤是指叶片因雷电接闪造成了叶片表面及结构发生机械性的损坏,如:叶尖炸开、蒙皮开裂、叶片断裂等问题,那么根据损伤的严重程度,严重的叶片炸裂(断裂)就属于功能性损伤是不具有修复性的,而类似于蒙皮开裂、轻度的由于引下线电磁力导致的叶尖开裂则属于可修复性的损伤。
械性损伤中还有很大一部分属于可修复的热效应损伤,例如叶片表面的雷击孔、条状蒙皮开裂
图1表面雷击孔及蒙皮开裂
图2由于引下线电磁力引起的叶片开裂
图3雷击孔
其次,叶片的电气性损伤与机械性损伤不同。
电气性损伤有些情况是很难去修复的,例如在叶尖部分的导线熔断问题;电气性损伤主要指接闪器无法耐受超值电流,导致接闪器严重损坏结合叶片镶嵌未至发生开裂、高温膨胀等问题,;因此对于叶片的电气性损伤主要数以工艺材料问题。
3叶片的接闪原理与改造
叶片的接闪主要是由于在高电场条件下,地表任何物体表面都存在静电电荷,晴天条件下大气电场强度为120V/m,在雷雨发生前的电器电场强度为3.4Kv/m.风力发电机组表面及叶片表面都会存在静电电荷。
当大气电场强度不断变化时,由于叶片属于非金属物体,在晴天条件下叶片表面只有很少的静电电荷。
叶片作为一种空腔结构,在晴天时属于非导体空腔,腔内引下线表面附着有静电电荷;当下雨打雷时叶片表面受到水膜作用实质变性为导体空腔,受到高电场作用,叶片内部的引下线会产生大量的感应正电电荷,在静电平衡的作用下,叶片内部底层带等电量的负电荷,在叶片表面水膜层带等量正电荷,在水膜运行的作用下电荷从叶根向叶尖流动。
由于叶片表面的电荷量的增加,在叶片表面和叶尖接闪器(全金属叶尖接闪器)上都会形成上行先导,上行先导的数量由叶片所处电场强度决定。
当叶片表面形成的上行先导与雷雨云形成的下行先导贯通时,形成接闪通道。
图4叶片表面上行先导分布
3.1叶片表面接闪通道的选择性
在雷雨时叶片整体变形为导电腔体,叶片表面受到叶片内部引下线感应的同步等量的电荷,在水膜作用下流动,在单位面积内形成与叶片引下线及人工定位放电装置相同的上行先导,这时叶片上行先导与雷云下行先导之间会存在击穿选择性。
雷电先导(如图5)在击穿空气时会选择阻抗更低的通道继续下行,其击穿空气传导的速度为20-50m/us。
按照其最快的传导50m/us 的速度计算,下行先导与上行先导在最短击距350m的时间约为6us,考虑到无法判定叶片在接闪瞬间时是处于脱网、满发或其它运行工况,因此假定在17转/min的满发工况条件下,来计算叶片在5-6us时间的行进弧度。
同时,由于叶片的长度不同,在相同时间内叶片行进弧度同样也会存在差异,因此,我们以叶片人工定位放电装置所形成的先导为主要的参考量(叶片人工定位放电装置按照5cm直径考虑)。
假定在雷雨时,叶片表面及人工定位放电装置存在多个上行先导,且人工定位放电装置上的上行先导1与雷云下行先导在第1us时存在导通趋势。
在第6us雷云下行先导与上行先导将导通时,由于此时叶片已经发生偏转,人工定位放电装置上的上行先导1也随之发生位移(如图5),此时可能是叶片表面的上行先导2反而处于优势位置,最终叶片表面的上行先导2与雷云下行先导贯通,形成主放电通道,人工定位放电装置反而并未有效接闪如图6的实验室的试验也表明了这种情况发生的可能。
图5上行先导、下行先导与雷电传导速度
图6叶片运行5-6us的行程
3.2叶片的防雷改造
以上我们了解到,叶片的有效接闪率较低的一个重要原因在于叶片表面可以提供接地通道的上行先导数量较少,更多的上行先导是基于叶片表面触发生成的,而叶片接闪器所形成的上行先导不具有绝对优势,因此,造成接闪器所形成的上行先导有效导通率低下,造成叶
片的损坏率提高。
在国外,我们很成功的将应用于航空领域的雷电分流器引入风电行业。
应用于航空领域的雷电分流器组要原理是在飞机表面(玻璃钢结构)形成上行先导,用于引导雷电附着点,将雷电流定向的引至泄放点或接地点。
图7飞机导流罩的雷电分流器
图8遭受雷击的雷电分流器
应用于风电的雷电分流器是在航空产品的基础上进行升级改造的全新一代产品,这种结构机械镶嵌结构与国内普通表面粘贴导体的结构相比,具有更稳定的表面风蚀、雨蚀及更强的抗盐雾性能。
通过对多个项目的应用于改造均取得了良好的使用效果。
图9雷电导流条
雷电导流条的工作原理是基于高频电流的集肤效应,雷电流属于高频电流的范畴;在正常工况下,叶片表面导流条行程上行先导并成功导通后,雷电流会沿导流条表面导体传导至接闪器位置并击穿放电,在实验室验证证明该产品可以有效通过230KA,10MJ的能量冲击。
图10工作原理
在工程改造方面,雷电导流条具有的简单、低成本的改造方案赢得了用户的亲睐,我们成功的在国内的多个高雷暴活动区的机组上成功安装并运行。
雷电导流条的应用在提高叶片的有效接闪率的同时压缩了叶片因雷的损失比例,保障了机组在雷雨季节的安全运行。
图11导流条的安装
2015全国风电后市场运维会议论文集
图12导流条的安装
图13导流条的安装。