电力系统暂态分析—同步发电机的基本电磁关系
电力系统暂态分析第二章

虚构电势 EQ|0|。
& &&
&
&&
&
&
Eq|0| U |0| jI d|0| xd jI q|0| xq U |0| jI d|0| xq jI q|0| xq jI d|0| (xd xq )
&&
&
&
U |0| jI|0| xq jI d|0| (xd xq ) EQ|0| jI d (xd xq )
各相磁链波形图如下:
7、定子电流表达式及波形
各相短路电流的一般表达式,当 0 为任意角度时
二、突然短路后转子励磁绕组中的电流分量
1、强制励磁电流分量 i f |0| 2、非周期自由分量 i f 3、周期自由分量 i fp
三、突然短路后转子阻尼绕组的电流分量
1、d轴阻尼绕组 (1)非周期自由分量 (2)周期自由分量
交流分量的幅值是衰减的,说明电势或阻抗是变化 的。
励磁回路电流也含有衰减的交流分量和非周期分量, 说明定子短路过程中有一个复杂的电枢反应过程。
同步发电机三相短路电流
❖ 实际电机绕组中都存在电阻,因此所有绕组的磁链都随时间变化,形 成电磁暂态过程。 ❖ 周期分量,其幅值将从起始次暂态电流逐渐衰减至稳态值; ❖ 非周期分量和倍频周期分量,它们将逐渐衰减至零。 ❖ 短路电流计算一般指起始次暂态电流或稳态短路电流计算;而其它任 意时刻短路电流工频周期分量有效值计算工程上采用运算曲线方法。
四、发电机空载情况下短路电流的表达式
1、定子绕组阻抗变化过程 2、定子电流变化过程 3、短路周期电流电流表达式
X d X d X d
I I I
t
电力系统暂态分析总结

《电力系统暂态分析》要点总结目录知识结构图 (2)1.电力系统故障分析 (2)1.1PARK变换 (2)1.2标么值下的磁链方程和电压方程 (3)1.3同步发电机各种电势的表达式 (3)1.4发电机阻抗的概述 (4)1.5(次)暂态电抗和(次)暂态电势 (5)1.6发电机三相短路电流 (6)1.7对称分量法 (7)1.8叠加定理 (7)1.9电力系统简单故障分析 (8)2.电力系统稳定性 (11)2.1电力系统稳定性概述 (11)2.2同步发电机的机电模型 (11)2.3同步发电机电磁转矩和电磁功率 (11)2.4简单电力系统的静态稳定 (12)2.5简单电力系统的暂态稳定 (13)12知识结构图1.电力系统故障分析1.1PARK 变换正变换:逆变换:PARK 变换的作用和意义:派克变化是一种线性变换,将定子abc 坐标变换到转子同步旋转的dqo 坐标。
在d 、q 、o 坐标系中,磁链方程成为线性代数方程,电压方程成为线性微分方程。
从而使得同步电机的数学模型成为常系数方程,或者说将abc 坐标下“理想电机”的时变数学模型转化为非时变数学模型。
派克变换是电机模型取得的一次巨大的突破。
⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+----+-=212121)120sin()120sin(sin )120cos()120cos(cos 32 θθθθθθP ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+-+----=-1120120112012011)sin()cos()sin()cos(sin cos Pθθθθθθ31.2标么值下的磁链方程和电压方程Ψd =−x d i d +x ad i f +x ad i D Ψq =−x q i q +x aq i Q Ψ0=−x 0i 0Ψf =−x ad i d +x f i f +x ad i D ΨD =−x ad i d +x ad i f +x D i D ΨQ =−x aq i q +x Q i Q u d =dΨd dt −ωΨq −ri d u q =dΨq dt +ωΨd −ri q u 0=dΨ0dt −ri 0 u f =dΨf dt+r f i f0=dΨD dt +r D i D 0=dΨQ dt+r Q i Q其中x ad 称为纵轴电枢反应电抗,描述电枢(定子)电流产生的磁场对主磁极磁场(励磁)的影响,x d 称为定子纵轴同步电抗,x q 称为定子横轴同步电抗。
电力系统暂态分析-第2章 同步发电机突然三相短路分析

10
电力系统暂态分析
2.2 同步发电机空载下三相短路后物理内部过程及短路电流分析
三、短路后各绕组的磁链及电流分量
1、定子绕组磁链和短路电流分量 (1)、励磁主磁通交链定子三相绕组的磁链
励磁绕组电压
励磁电流
励磁电流 i f 0 漏磁通 f 主磁路的主磁通 0
漏磁通只匝链励磁绕组,主磁通穿过气隙与定子三 相绕组匝练。
11
电力系统暂态分析
2.2 同步发电机空载下三相短路后物理内部过程及短路电流分析
(2)、短路前各相磁链
cos t 0 0 a0 ° cos t 120 b0 0 0 ° cos t 120 0 0 c0
17
电力系统暂态分析
2.2 同步发电机空载下三相短路后物理内部过程及短路电流分析
三相短路电流的表达式及波形
(7)、关于直流分量中存在倍频分量的说明
18
电力系统暂态分析
2.2 同步发电机空载下三相短路后物理内部过程及短路电流分析
2、励磁绕组磁链和短路电流分量 (1)、强制励磁电流 i f |0| 产生的磁链 短路前励磁回路中有恒定的励磁电流 i f |0| ,它由励 磁电源强制产生,定子短路后依然存在; (2)、定子三相交流电流的电枢反应 定子绕组中的三相交流电流可合成一个与转子同步旋 转的电枢反应磁动势,若忽略定子绕组电阻,该磁动势为 纯去磁的,即它穿入励磁绕组,且与主磁通方向相反,我 们用 ad 来表示,其值为常数。
电力系统暂态分析 ( 第1次 )

第1次作业一、单项选择题(本大题共20分,共 20 小题,每小题 1 分)1. 电力系统中发生概率最多的短路故障是( )。
A. 三相短路B. 两相短路C. 两相短路接地D. 单相接地短路2. 具有阻尼绕组的凸极式同步发电机,机端发生三相短路时,电磁暂态过程中定子绕组中存在( )。
A. 基频交流分量、倍频分量和非周期分量 B. 基频交流分量和非周期分量 C. 非周期分量和倍频分量 D. 倍频分量和周期分量3. 理想同步发电机ABC坐标系下,定子绕组间的互感系数的变化周期( )。
A. 常数B. π C. 2π D. 3π4. 电力系统暂态分析研究的是()。
A. 电力系统稳态运行 B. 电磁暂态和机电暂态过程 C. 电磁暂态过程和波过程 D. 机电暂态过程和波过程5. 理想同步发电机突然发生三相短路瞬间,定子三相绕组的初始磁链()。
A. 增大B. 减小C. 不变D. 不确定6. 短路电流最大有效值出现在()。
A. 短路发生后约半个周期时 B. 短路发生瞬间 C. 短路发生后约1/4周期时 D. 短路发生后约一个周期时7. 无限大电源供电情况下突然发生三相短路时,各相短路电流中非周期分量的关系是()。
A. 三相相等B. 三相可能相等,也可能不相等C. 不相等D. 以上均错误8. 在发电机稳态运行状态中,机械功率与电磁功率相比,将( )。
A. 大 B. 小 C. 相等 D. 无关系9. 关于同步发电机机端三相短路情况下的短路电流周期分量,下面说法中正确的是()。
A. 负载情况下发生短路与空载情况下发生短路两种情况下,短路电流周期分量的起始有效值相等 B. 负载情况下发生短路与空载情况下发生短路两种情况下,短路电流周期分量的稳态有效值相等 C. 负载情况下发生短路与空载情况下发生短路两种情况下,短路电流周期分量的衰减时间常数是相同的 D. 负载情况下发生短路与空载情况下发生短路两种情况下,短路电流周期分量的衰减时间常数是不相同的10. 冲击系数kim的数值变化范围是( )。
电力系统稳态与电磁暂态分析

电力系统稳态与电磁暂态分析电力系统是现代社会中不可或缺的基础设施之一,它负责将发电厂产生的电能送达各个终端用户。
为了确保电能的稳定供应,电力系统必须经历稳态与电磁暂态分析。
稳态分析是电力系统的基本分析方法之一,它主要用于研究系统各个节点之间的电压、电流和功率等参数的平衡状态。
稳态分析主要包括节点电压计算、潮流分析和功率平衡等。
首先,节点电压计算是通过给定的负荷和发电机容量,根据节点电压的平衡条件来计算系统各个节点的电压值。
其次,潮流分析是基于节点电压计算结果,通过网络拓扑和传输线路参数等,计算系统中各个节点之间的电流、功率和电压损耗等。
最后,功率平衡是通过对发电机出力和负荷功率消耗进行计算,确保系统总功率的平衡。
电磁暂态分析是电力系统的另一个关键分析方法,它研究的是电力系统在突发故障或大幅度负荷变化等情况下的电磁暂态过程。
电磁暂态通常分为两个阶段,即前期暂态和后期暂态。
前期暂态是指故障刚刚发生时,系统中电流和电压等参数的快速变化过程。
在前期暂态分析中,我们需要关注故障瞬态稳定性和故障电流的计算等。
随着时间的推移,系统逐渐恢复到新的平衡状态,进入后期暂态阶段。
后期暂态分析主要关注系统电压的恢复过程和发电机的重新同步等。
为了准确分析电力系统的稳态与电磁暂态,并保证其可靠运行,需要采用一些数学模型和计算工具。
在稳态分析中,常用的方法包括节点电压平衡方程、潮流方程和功率平衡方程等。
这些方程可以通过牛顿-拉夫森法等数值计算方法进行求解。
在电磁暂态分析中,常用的方法包括短路电流计算、阻抗匹配和时间域仿真等。
这些方法可以通过潮流数据和系统参数计算得到。
在实际应用中,稳态与电磁暂态分析对电力系统的设计、规划、运行和维护等都具有重要意义。
首先,稳态分析能够帮助工程师了解系统的潮流分布、节点电压偏差、功率损耗等情况,为电网设计和规划提供有价值的数据。
其次,电磁暂态分析可以帮助工程师评估系统在故障情况下的稳定性,为系统保护和自动装置的设计提供参考。
电力系统暂态分析:第六章 电力系统稳定性问题概述

M E max
2M E max S Scr
Scr S
• 四、自动调节励磁系统包括: • 1、自动调节励磁系统包括: • 主励磁系统和自动调节励磁装置
• 主励磁系统是从励磁电源到发电机励磁绕组的励 磁主回路:
• 自动调节励磁装置根据发电机的运行参数,如端 电压、电流等,自动地调节主励磁系统的参数。
➢两机系统
PE1 E12G11 E1E2 Y12 sin(12 12 ) PE12 E22G22 E1E2 Y12 sin(12 12 )
PE1 PE2 δ12
• 三、异步电动机转子运动方程和电磁转矩
• 异步电动机组的转子运动方程为
TJ
0
d*
dt
(M E
Mm)
• TJ 为异步电动机组的惯性时间常数,一般约为
Re
E i
n
Eˆ
jYˆij
j1
n
n
Ei E j (Gij cos ij Bij sin ij ) Ei2Gii Ei Ej Yij sin( ij ij )
j 1
j 1
ji
导纳角 ij
tg1
Gij Bij
➢任一台发电机的功率角的改变,将引起全系统各机 组电磁功率的变化。稳定分析是全系统的综合问题。
➢ 机电暂态过程主要是电力系统的稳定性问题。电力系 统稳定性问题就是当系统在某一正常运行状态下受到某种干 扰后,能否经过一定的时间后回到原来的运行状态或者过渡 到一个新的稳态运行状态的问题。
如果能够,则认为系统在该正常运行状态下是稳定
的。
反之,若系统不能回到
原来的运行状态或者不能建
立一个新的稳态运行状态,
J02 SB
Wk
第10章电力系统电磁暂态过程分析(研究生2020年)
第十章电力系统电磁暂态过程分析第一节概述电力系统电磁暂态过程分析的主要目的是分析和计算故障或操作后可能出现的暂态过电压或过电流,以便对电力设备进行合理设计,确定已有设备能否安全运行,并研究相应的限制和保护措施。
此外,研究新型快速继电保护装置的动作原理、故障点探测原理以及电磁干扰等问题,也需要进行电磁暂态分析。
由于电磁暂态过程变化很快,一般需要分析和计算持续时间在毫秒级以内的电压、电流瞬时值变化情况。
因此,分析中需要考虑元件的电磁耦合,计及输电线路分布参数所引起的波过程,甚至要考虑线路三相结构的不对称、线路参数的频率特性以及电晕等因素的影响。
电磁暂态过程的分析方法分为两类。
一类是应用暂态网络分析仪TNA (Transient Network Analyzer)的物理模拟方法;另一类是数值计算(或称数字仿真)方法,即列写描述各元件的全系统暂态过程的微分方程,应用数值方法进行求解。
数值计算方法具有代表性的成熟产品是H.W.Dommel 创建的电磁暂态程序EMTP (Electromagnetic Transient Program),它具有很强的计算功能和良好的计算精度,并包括了发电机、轴系和控制系统动态过程模拟,除了用于电磁暂态过程分析外,还可用于分析次同步振荡及轴系扭振等。
该程序已在世界上得到普遍承认和广泛应用,并仍在继续发展。
本章主要介绍EMTP 的基本数学模型和计算方法,重点阐述其基本原理,为读者使用和进一步深入了解这一程序和其他有关程序,乃至研究和开发新程序打下基础。
第二节电磁暂态过程数值计算的基本方法对描述电力系统元件和全系统暂态过程的微分方程进行求解,采用的是数值积分方法。
隐式梯形积分法比较简单且具有相当好的精度和良好的数值稳定性,并能较好适应刚性微分方程组,因此EMTP 和其他一些电磁暂态程序大多采用这种积分方法。
对于常微分方程)(d d x f t x =(10-1)隐式梯形积分公式为{})]([)]([2)()(t t x f t x f t t t x t x ∆-+∆+∆-=(10-2)式中:t ∆为积分步长。
电力系统暂态分析要点与分析
电力系统电磁暂态分析Ch11.电力系统暂态指电力系统受突然的扰动后,运行参数发生较大的变化即引起电磁暂态、机电暂态过程。
电磁暂态是电压电流等电气运行参数的快速变化过程。
机电暂态是角速度等机械运行参数的慢速变化。
电力系统电磁暂态分析是研究交流电力系统发生短路(断线)后电压电流的变化。
2.元件参数指发电机、变压器、线路的属性参数,运行参数指反映电力系统运行状态的电气、机械参数。
3.故障类型:短路(三相短路、两相短路、两相短路接地、单相短路接地)、断线(一相断线、两相断线)。
对称故障(三相短路)、不对称故障(不对称短路、断线故障)。
短路故障(横向故障)、断线故障(纵向故障、非全相运行)。
简单故障:指电力系统中仅有一处发生短路或断线故障,复杂故障:指电力系统中有多处同时发生不对称故障。
4.短路危害:短路电流大使设备过热并产生一定的电动力、故障点附件电压下降、功率不平衡失去稳定、不对称故障产生不平衡磁通影响通信线路。
短路计算目的:电气设备选型、继电保护整定、确定限制短路电流措施、电气接线方式的选择。
短路解决措施:继电保护快速隔离、自动重合闸、串联电抗器。
5.无限大功率电源指短路点距离电源的电气距离较远时,短路导致电源输出功率的变化量远小于电源所具有的功率的电源。
6.无限大功率电源的三相突然短路电流:1.短路电流含有二种分量:基频稳态分量、直流暂态分量。
2.基频稳态分量比短路前电流大,其大小受短路后回路的阻抗值决定。
3.直流暂态分量其大小由短路前电流和短路后电流的交流稳态值决定,并按短路后回路的时间常数Ta 衰减为0(出现原因:短路前后电感电流不能突变)。
7.最大短路电流条件:短路前线路空载、短路后回路阻抗角90°、电压初始角为0°或180°。
出现时间:在短路后0.01秒时刻出现。
短路冲击电流:指在短路时可能达到的最大短路电流瞬时值。
三相电流中那相的直流分量起始值越大,则其短路电流越大。
电力系统暂态分析
t 0
i(0 ) Im sin( ) i(0 ) I pm sin( ) c
由于电感电流不能突变,因此有:
i(0 ) i(0 )
代入通解得到:
c iap.0 Im sin( ) I pm sin( )
第三节 无限大功率电源供电的三相短路分析
从而,短路全电流:
t
i I pm sin(t ) Im sin( ) I pm sin( ) e
绪论
4、本门课程的学习的难度和重要意义 1)与多门课程相关 高等数学 大学物理 电路原理 电机学
绪论
2)重要意义
电力系统运行中基本的概念、表现
稳态运行-
故障分析 设计(设计部门)
保护整定计算(调度,保护)
事故分析 (运行)
绪论
主要参考书目:
1:李光琦主编 社 2006年
《电力系统暂态分析》 中国电力出版
xL
SB
U
2 B
x0
SB
U
2 B
第二节 标幺值
四、由变压器联结的不同电压等级的各 元件参数、标幺值及短路电流的计算
k12 UN1 /UN2
k 23 UN 2 / UN 3
x1 , x2 , x3 ——电抗各值(含变压器电抗 在内)
第二节 标幺值
1、计算步骤(准确计算) 1)选待计算电流段为基本段。
E* X *
6)基本段电流有名值
I1 I1*
SB 3U B1
第二节 标幺值
7)其他段电流
I2 k12 I1 I1*
SB 3UB1 / k12
I1*
I3 I1*I B3
可记为: I1* I*
SB 3U B 2
I1* IB2
电力系统暂态分析(讲义)
→ ① 回路阻抗减小,电流大幅增加。 Z ↓ I ↑↑ 短路点离电源越近,短路电流越
大。机端短路,短路电流可达额定值的 10~15 倍。 ② 引起故障点及邻近区域的电压大幅降低。 ③ 引起电网的结构变化,并导致发电机功率不平衡。
后果: ① 短路点的高电流电弧烧毁电气设备;或使设备发热严重,甚至受损。 ② 电动力大幅增加,使导体弯曲、变形、断裂。 ③ 异步电机的电磁转矩与电压平方成正比,转矩降低可导致停机。 ④ 发电机电磁功率减小,而输入功率变化不大时,导致转子加速失步,甚至导致
电机输入输出功率不平衡,使机组失去同步。 ③ 保护误动作引起(短路电流引起热效应)。 暂态分析的目的:掌握暂态过程的本质,充分了解系统的暂态特性,为系统的稳定 性评估、控制设备及保护设备的参数整定等提供依据。最终目标是确保电力系统的稳定 运行。 暂态故障导致大停电事故的例子: 1)1982 年 8 月 7 日华中电网湖北区大停电: 2)1996 年 8 月 10 日美国西部电网大停电:高温-〉无序跳开-〉电压失稳-〉连锁 反应 3)2003 年 8 月 14 日美加大停电事故:高温、短路、跳闸、过载、再跳闸。
三相电路中,有两个基本关系
U = 3ZI
线电压= 3 ×相阻抗×相电流
S = 3UI 若基准值选为:
U B = 3ZB IB SB = 3U B IB
三相功率= 3 ×线电压×相电流
则
U*
=U UB
=
3ZI 3ZB IB
= Z*I* ,
S* = U*I*
即标幺制中,三相电路的关系式与单相电路类似。
四个基准值UB , IB , ZB , SB 中,有两个可任选,如UB , SB 选定,则另外两个基
SB ΩB
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§10-2 三相同步发电机的电枢反应
➢三、不同ψ角时的电枢反应
1. I 与 E0 同相位时的电枢反应-交轴电枢反应
d轴 q轴 F Ff 1 Fa
AБайду номын сангаасt
f
F
E 0
称为励磁磁动势和励磁磁场。
图10-1 同步发电机的空载磁路
§10-2 三相同步发电机的电枢反应
➢一、基本概念
旋转电机实现机电能量转换的基本条件:同步电机的电枢磁 动势的基波与励磁磁动势转速相同,转向一致,因此它们在 空间保持相对静止。正由于这种相对静止,才使它们之间的 相互关系保持不变,从而建立稳定的气隙磁场和产生平均电 磁转距,实现机电能量转换。实际上,定转子磁动势相对静 止是一切电磁感应型旋转电机正常运行的基本条件。
方向与电流正方向一致时,A相感电动势为正的最大,所以 E0
位于时间轴线上。如图(b)所示。电动势相量的角频率与转子旋
转的角速度都是ω。
A
电枢电流 I 也是时间相量,它 的相位决定于电机内部的阻抗
和负载的性质。电机内部的阻
抗和负载的性质决定了电枢电 Ff 1 N
t
E0
I
流和空载电动势之间的相位差
角ψ, ψ称为内功率因数角。
N
B0
图10-6 时空相矢图
3.时空相矢图:
结论:在时空相矢图上E0 总是落后于 Ff1 以90度,Fa 总是与I 重 合。E0与 I 之间相位差 随着负载的性质不同而改变。而 Fa 与Ff1 之间相对位置又完全取决于ψ角 (它们之间的空间相位差为90 角),所以电枢反应的性质是由ψ角决定的,也就是说单机运行 时电枢反应的性质是由负载的性质决定的。
➢三、不同ψ角时的电枢反应
2. I 落后E0 以90 时的电枢反应-去磁性质的直轴电枢反应 直轴电枢反应的作用:
1)对主磁场而言,直轴电枢反应磁动势起去磁作用,使得气 隙合成磁场减小。
2)由于合成磁动势投有扭斜现象( 0),此时直轴电枢
反应磁场与励磁磁场正对着,不产生切向力,所以不产生电 磁转距,因而也不能进行机电能量转换。
A
Y C
A Ff 1
N
S
B0
X
Z
n1
B
图10-3 励磁磁动势空间矢量
1.空间矢量:凡是沿空间按正弦分布的量都可表示为空间矢量。
电枢磁动势 Fa也为空间矢量,它的位置可以这样来确定,即当 某相电流达到最大时,电枢磁动势 Fa刚好转到该相绕组的轴线 上,它的指向与绕组中的电流方向符合右手螺旋定则,而且转 向与转子的一致,并以同步速旋转,
fa
f f1
Fa I
N
S
n1
Ff 1
N
Y AZ BX C
图10-7 0时的电枢反应
§10-2 三相同步发电机的电枢反应
➢三、不同ψ角时的电枢反应
1.I 与 E0 同相位时的电枢反应-交轴电枢反应 交轴电枢反应的作用:
1)对主磁极而言,交轴电枢反应磁动势在前极端(顺转向看、 极靴的前都) 起去磁作用,在后极端(顺转向看,极靴的后部) 起加磁作用。定子合成磁动势 较 扭斜了 角,幅值也有所增 加,从而使气隙磁场的大小也有所增加。 2)同步电机的电磁转矩和能量转换与交轴电枢反应密切相关。 只有具有交轴电枢反应,定子合成磁动势和主磁极之间才会形 成一定的 角,从而才能实现机、电能量转换,所以交轴电枢 反应是实现机、电能量转换的必要条件。
图10-5 空载电动势相位的确定
3.时空相矢图:由于空间矢量和时间相量旋转的角
速度都是ω,把空间轴线+A与时间轴线+t重合在一
起,空间矢量和时间相量就画在同一张图里,称为
时间相量和空间矢量统一图,简称为“时空相矢
图”。
A
Y
Fa
C
A
Z
n1
X IC
B
t E0 IA (I)
IB
A t
E0
Fa
I
Ff 1
同步发电机的基本电磁关系
§10-1 同步发电机的空载运行
➢基本概念
空载运行:同步发电机被原动机拖到同步转速,转子绕组通入
直流励磁电流而电枢绕组开路,这种运行状态称为空载运行或
无载运行 。
主磁通
漏磁通
励磁磁动势:同步发电机空
载运行时电枢电流为零,电
机气隙中只有转子励磁电流
if 产生的磁动势Ff 和磁场,
§10-2 三相同步发电机的电枢反应
➢二、时空相矢图-分析电枢反应时采用时间相量和空间矢量 统一图,这种图简称为“时空相矢图”
1.空间矢量:凡是沿空间按正弦分布的量都可表示为空间矢量。 基波励磁磁动势Ff 1 及其磁密B0 为一空间矢量。该矢量位于转
子的极轴线上,方向为N极指向,以同步速旋转,如图所示。
3. I 超前E0 以90 时的电枢反应-加磁性质的直轴电枢反应
直轴电枢反应的作用: 1)对主磁场而言,直轴电枢反应磁动势起加磁作用,使得气 隙合成磁场增强。
2)由于合成磁动势投有扭斜现象( 0),所以也不会产
生电磁转距,也不能进行机电能量转换。
➢三、不同ψ角时的电枢反应
4.一般情况下的电枢反应 0 90
§10-2 三相同步发电机的电枢反应
➢三、不同ψ角时的电枢反应
3. I 超前E0 以90 时的电枢反应-加磁性质的直轴电枢反应
A t E0
Ff 1 Fa I
F
90
d轴 q轴
f
f f1
N
S
n1
fa
Y AZ BX C
图10-9 90 时的电枢反应
§10-2 三相同步发电机的电枢反应
➢三、不同ψ角时的电枢反应
§10-2 三相同步发电机的电枢反应
➢三、不同ψ角时的电枢反应
2. I 落后E0 以90 时的电枢反应-去磁性质的直轴电枢反应
A t E 0
Fa F 90
Ff 1
B0
I Fa
d轴 q轴
N
S
n1
Y AZ BX C
f
fa
f f1
图10-8 90时的电枢反应
§10-2 三相同步发电机的电枢反应
如图10-4所示。图 中A相电流最大,所 以Fa 刚好转到A相轴 线上。(电流的规定 正首方端)向。仍由末端流向IC
A t
Y
IA
n1
Fa
C
A
IB
Z
X
n1 B
图10-4 电枢磁动势空间矢量
2.时间相量:凡是随时间按正弦规律变化的量
同步电机的空载电动势(励磁电动势)E0 是时间向量,该相量
的相位由转子的位置决定,如转子处于图(a)位置,当电动势正
式中
Fa Fad Faq
Fad=Fa sin Faq=Fa cos
直轴电枢反应磁动势 交轴电枢反应磁动势 A