高中数学 椭圆及其标准方程(二)导学案 新人教A版选修2-1
2019_2020学年高中数学第2章2.2.2第2课时椭圆的标准方程及性质的应用学案新人教A版选修2_1

第2课时椭圆的标准方程及性质的应用1.点与椭圆的位置关系点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 20b2>1.2.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y 2b2=1,消去y 得一个关于x 的一元二次方程.思考:(1)(2)直线y =kx +1与椭圆x 24+y 23=1有怎样的位置关系?[提示] (1)根据椭圆的对称性知,两交点关于原点对称.(2)直线y =kx +1恒过定点(0,1),点(0,1)在椭圆x 24+y 23=1的内部,因此直线与椭圆相交.1.直线y =x +1与椭圆x 2+y 22=1的位置关系是( )A .相离B .相切C .相交D .无法确定C [联立⎩⎪⎨⎪⎧y =x +1,x 2+y 22=1,消去y ,得3x 2+2x -1=0,Δ=22+12=16>0,∴直线与椭圆相交.]2.直线x +2y =m 与椭圆x 24+y 2=1只有一个交点,则m 的值为( )A .2 2B .± 2C .±2 2D .±2C [由⎩⎪⎨⎪⎧x +2y =m ,x 2+4y 2=4,消去y 并整理得 2x 2-2mx +m 2-4=0.由Δ=4m 2-8(m 2-4)=0,得m 2=8. ∴m =±2 2.]3.若点A (a ,1)在椭圆x 24+y 22=1的内部,则a 的取值范围是________.(-2,2) [∵点A 在椭圆内部, ∴a 24+12<1,∴a 2<2,∴-2<a < 2.] 4.如果椭圆x 236+y 29=1的一条弦被点(4,2)平分,那么这条弦所在直线的斜率是________.-12 [设此弦的两端点坐标分别为(x 1,y 1),(x 2,y 2),则有x 2136+y 219=1,x 2236+y 229=1, 两式相减,得(x 1+x 2)(x 1-x 2)36+(y 1+y 2)(y 1-y 2)9=0,又x 1+x 2=8,y 1+y 2=4, ∴y 1-y 2x 1-x 2=-12, 即此弦所在直线斜率为-12.]【例1】 对不同的实数值m ,讨论直线y =x +m 与椭圆4+y 2=1的位置关系.思路探究:联立两个方程―→消去y 得到关于x 的一元二次方程―→求Δ―→讨论Δ得结论[解] 联立方程组⎩⎪⎨⎪⎧y =x +m , ①x 24+y 2=1. ② 将①代入②得:x 24+(x +m )2=1, 整理得:5x 2+8mx +4m 2-4=0.③Δ=(8m )2-4×5(4m 2-4)=16(5-m 2).当Δ>0,即-5<m <5时,方程③有两个不同的实数根,代入①可得两个不同的公共点坐标,此时直线与椭圆相交;当Δ=0,即m =±5时,方程③有两个相等的实数根,代入①得一个公共点坐标,此时直线与椭圆相切;当Δ<0,即m <-5或m >5时,方程③无实根,此时直线与椭圆相离.代数法判断直线与椭圆的位置关系判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切; Δ<0⇔直线与椭圆相离.提醒:注意方程组的解与交点个数之间的等价关系.1.(1)若直线y =kx +2与椭圆x 23+y 22=1相切,则斜率k 的值是( )A.63 B .-63 C .±63 D .±33C [由⎩⎪⎨⎪⎧y =kx +2,x 23+y 22=1得(3k 2+2)x 2+12kx +6=0,由题意知Δ=144k 2-24(3k 2+2)=0, 解得k =±63.] (2)直线y =kx -k +1(k ∈R )与焦点在x 轴上的椭圆x 25+y 2m=1总有公共点,则m 的取值范围是________.⎣⎢⎡⎭⎪⎫54,5 [直线y =k (x -1)+1恒过定点P (1,1),直线与椭圆总有公共点等价于点P (1,1)在椭圆内或在椭圆上.所以125+12m ≤1,即m ≥54,又0<m <5,故m ∈⎣⎢⎡⎭⎪⎫54,5.]【例2】 过椭圆16+4=1内一点M (2,1)引一条弦,使弦被M 点平分.(1)求此弦所在的直线方程; (2)求此弦长.思路探究:(1)法一:联立方程,消元后利用根与系数的关系和中点坐标公式求解. 法二:点差法.(2)设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),利用弦长公式求解.[解] (1)法一:设所求直线方程为y -1=k (x -2).代入椭圆方程并整理,得 (4k 2+1)x 2-8(2k 2-k )x +4(2k -1)2-16=0. 又设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2), 则x 1,x 2是方程的两个根, 于是x 1+x 2=8(2k 2-k )4k 2+1. 又M 为AB 的中点,∴x 1+x 22=4(2k 2-k )4k 2+1=2, 解得k =-12.故所求直线的方程为x +2y -4=0.法二:设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2). 又M (2,1)为AB 的中点,∴x 1+x 2=4,y 1+y 2=2. 又A ,B 两点在椭圆上, 则x 21+4y 21=16,x 22+4y 22=16. 两式相减得(x 21-x 22)+4(y 21-y 22)=0.于是(x 1+x 2)(x 1-x 2)+4(y 1+y 2)(y 1-y 2)=0. ∴y 1-y 2x 1-x 2=-x 1+x 24(y 1+y 2)=-12, 即k AB =-12.又直线AB 过点M (2,1), 故所求直线的方程为x +2y -4=0.(2)设弦的两端点分别为A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧x +2y -4=0,x 216+y 24=1,得x 2-4x =0,∴x 1+x 2=4,x 1x 2=0,∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=1+⎝ ⎛⎭⎪⎫-122·42-4×0=2 5.1.直线与椭圆相交弦长的求法(1)直接利用两点间距离公式:当弦的两端点的坐标易求时,可直接求出交点坐标,再用两点间距离公式求弦长.(2)弦长公式:当弦的两端点的坐标不易求时,可用弦长公式.设直线与椭圆交于A (x 1,y 1),B (x 2,y 2)两点,则有|AB |= (x 1-x 2)2+(y 1-y 2)2=(1+k 2)(x 1-x 2)2=1+k 2·(x 1+x 2)2-4x 1x 2 =⎝ ⎛⎭⎪⎫1+1k 2(y 1-y 2)2 =1+1k2·(y 1+y 2)2-4y 1y 2(k 为直线斜率).提醒:如果直线方程涉及斜率,要注意斜率不存在的情况. 2.解决椭圆中点弦问题的两种方法(1)根与系数的关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;(2)点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A (x 1,y 1),B (x 2,y 2)是椭圆x 2a 2+y 2b2=1(a >b >0)上的两个不同的点,M (x 0,y 0)是线段AB 的中点,则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y 22b 2=1,①②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB=-b 2x 0a 2y 0.2.(1)已知点P (4,2)是直线l 被椭圆x 236+y 29=1所截得的线段的中点,则直线l 的方程为________.x +2y -8=0 [由题意可设直线l 的方程为y -2=k (x -4),而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k (4k -2)x +4(4k -2)2-36=0.设直线l 与椭圆的交点为(x 1,y 1),(x 2,y 2), 所以x 1+x 2=8k (4k -2)4k 2+1=8,所以k =-12.所以直线l 的方程为y -2=-12(x -4),即x +2y -8=0.](2)已知点P (4,2)是直线l :x +2y -8=0被焦点在x 轴上的椭圆所截得的线段的中点,则该椭圆的离心率为________.32 [设椭圆方程为x 2a 2+y2b2=1(a >b >0), 直线x +2y -8=0与椭圆交于A ,B 两点,且A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y22b 2=1, ②①-②得(x 1-x 2)(x 1+x 2)a 2+(y 1-y 2)(y 1+y 2)b2=0, 即y 1-y 2x 1-x 2=-b 2(x 1+x 2)a 2(y 1+y 2). 因为k AB =-12,AB 中点为(x 0,y 0),x 0=4,y 0=2,所以-12=-2b 2a 2,即a 2=4b 2.所以该椭圆的离心率为e =1-b 2a 2=32.] (3)已知动点P 与平面上两定点A (-2,0),B (2,0)连线的斜率的积为定值-12.①试求动点P 的轨迹方程C ;②设直线l :y =kx +1与曲线C 交于M ,N 两点,当|MN |=423时,求直线l 的方程.[解] ①设动点P 的坐标是(x ,y ),由题意得,k PA ·k PB =-12.∴y x +2·yx -2=-12,化简整理得x 22+y 2=1.故P 点的轨迹方程C 是x 22+y 2=1(x ≠±2).②设直线l 与曲线C 的交点M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +1,x 22+y 2=1,得(1+2k 2)x 2+4kx =0. ∴x 1+x 2=-4k 1+2k2,x 1·x 2=0.|MN |=1+k 2·(x 1+x 2)2-4x 1·x 2=423, 整理得k 4+k 2-2=0, 解得k 2=1或k 2=-2(舍). ∴k =±1,经检验符合题意.∴直线l 的方程是y =±x +1,即x -y +1=0或x +y -1=0.与椭圆有关的综合问题1.直线y =kx +1表示过点(0,1)且斜率存在的直线,即不包含直线x =0,那么直线x =ky +1表示什么样的直线?[提示] 直线x =ky +1,表示过点(1,0)且斜率不为0的直线,即不包含直线y =0. 2.如果以线段AB 为直径的圆过点O ,那么可以得到哪些等价的条件? [提示] (1)设AB 的中点为P ,则|OP |=12|AB |.(2)OA →·OB →=0.【例3】 如图所示,已知椭圆E :x 2a 2+y 2b2=1(a >b >0)过点(0,2),且离心率e =22. (1)求椭圆E 的方程;(2)设直线l :x =my -1(m ∈R )交椭圆E 于A ,B 两点,判断点G ⎝ ⎛⎭⎪⎫-94,0与以线段AB 为直径的圆的位置关系,并说明理由.思路探究:(1)由椭圆经过的一点及离心率公式,再结合a 2=b 2+c 2即可求出a ,b ,c 的值,从而可得椭圆E 的方程.(2)法一:判断点与圆的位置关系,只需把点G 与圆心的距离d 与圆的半径r 进行比较,若d >r ,则点G 在圆外;若d =r ,则点G 在圆上;若d <r ,则点G 在圆内.法二:只需判断GA →·GB →的符号,若GA →·GB →=0,则点G 在圆上;若GA →·GB →>0,则点G 在圆外;若GA →·GB →<0,则点G 在圆内.[解] (1)由已知得,⎩⎪⎨⎪⎧b =2,c a =22,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =2,c = 2.所以椭圆E 的方程为x 24+y 22=1.(2)法一:设点A (x 1,y 1),B (x 2,y 2),AB 的中点为H (x 0,y 0).由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而y 0=mm 2+2.所以|GH |2=⎝ ⎛⎭⎪⎫x 0+942+y 20=⎝⎛⎭⎪⎫my 0+542+y 20=(m 2+1)y 20+52my 0+2516.|AB |24=(x 1-x 2)2+(y 1-y 2)24=(1+m 2)(y 1-y 2)24=(1+m 2)[(y 1+y 2)2-4y 1y 2]4=(1+m 2)(y 20-y 1y 2),故|GH |2-|AB |24=52my 0+(1+m 2)y 1y 2+2516=5m 22(m 2+2)-3(1+m 2)m 2+2+2516=17m 2+216(m 2+2)>0, 所以|GH |>|AB |2.故点G ⎝ ⎛⎭⎪⎫-94,0在以线段AB 为直径的圆外. 法二:设点A (x 1,y 1),B (x 2,y 2),则GA →=⎝ ⎛⎭⎪⎫x 1+94,y 1,GB →=⎝ ⎛⎭⎪⎫x 2+94,y 2.由⎩⎪⎨⎪⎧x =my -1,x 24+y 22=1得(m 2+2)y 2-2my -3=0,所以y 1+y 2=2m m 2+2,y 1y 2=-3m 2+2, 从而GA →·GB →=⎝ ⎛⎭⎪⎫x 1+94⎝ ⎛⎭⎪⎫x 2+94+y 1y 2=⎝⎛⎭⎪⎫my 1+54⎝ ⎛⎭⎪⎫my 2+54+y 1y 2=(m 2+1)y 1y 2+54m (y 1+y 2)+25 16=-3(m2+1)m2+2+52m2m2+2+2516=17m2+216(m2+2)>0,所以cos〈GA→,GB→〉>0.又GA→,GB→不共线,所以∠AGB为锐角.故点G⎝⎛⎭⎪⎫-94,0在以线段AB为直径的圆外.解决与椭圆有关的综合问题的思路直线与椭圆的综合问题常与不等式、三角函数、平面向量以及函数的最值问题等知识联系在一起综合考查,解决这类问题常需要挖掘出题目中隐含的数量关系、垂直关系等,然后利用方程根与系数的关系构造等式或函数关系式进行合理的转化,这其中要注意利用根的判别式来确定参数的限制条件.3.椭圆的两个焦点坐标分别为F 1(-3,0)和F 2(3,0),且椭圆过点⎝ ⎛⎭⎪⎫1,-32. (1)求椭圆方程;(2)过点⎝ ⎛⎭⎪⎫-65,0作不与y 轴垂直的直线l 交该椭圆于M ,N 两点,A 为椭圆的左顶点,试判断∠MAN 的大小是否为定值,并说明理由.[解] (1)由题意设椭圆方程x 2a 2+y 2b2=1(a >b >0),由c =3,a 2=b 2+c 2,代入方程x 2b 2+3+y 2b2=1,又∵椭圆过点⎝ ⎛⎭⎪⎫1,-32, 得1b 2+3+34b 2=1, 解得b 2=1,∴a 2=4. 椭圆的方程为x 24+y 2=1.(2)设直线MN 的方程为x =ky -65,联立直线MN 和曲线C 的方程可得⎩⎪⎨⎪⎧x =ky -65,x 24+y 2=1,得(k 2+4)y 2-125ky -6425=0,设M (x 1,y 1),N (x 2,y 2),A (-2,0),y 1y 2=-6425(k 2+4),y 1+y 2=12k5(k 2+4), 则AM →·AN →=(x 1+2,y 1)·(x 2+2,y 2) =(k 2+1)y 1y 2+45k (y 1+y 2)+1625=0,即可得∠MAN =π2.解决直线与椭圆的位置关系问题,经常利用设而不求的方法,解题步骤为: (1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2); (2)联立直线与椭圆的方程;(3)消元得到关于x 或y 的一元二次方程; (4)利用根与系数的关系设而不求;(5)把题干中的条件转化为x 1+x 2,x 1·x 2或y 1+y 2,y 1·y 2,进而求解.1.已知点(2,3)在椭圆x 2m 2+y 2n2=1上,则下列说法正确的是( )A .点(-2,3)在椭圆外B .点(3,2)在椭圆上C .点(-2,-3)在椭圆内D .点(2,-3)在椭圆上D [由椭圆的对称性知,点(2,-3)在椭圆上,故选D.] 2.椭圆x 2+4y 2=16被直线y =12x +1截得的弦长为________.35 [由⎩⎪⎨⎪⎧x 2+4y 2=16,y =12x +1,消去y 并化简得x 2+2x -6=0.设直线与椭圆的交点为M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-2,x 1x 2=-6. ∴弦长|MN |=1+k 2|x 1-x 2| =54[(x 1+x 2)2-4x 1x 2]=54(4+24)=35.] 3.已知P (1,1)为椭圆x 24+y 22=1内一定点,经过P 引一条弦,使此弦被P 点平分,则此弦所在的直线方程为________.x +2y -3=0 [易知此弦所在直线的斜率存在,所以设斜率为k ,弦的端点坐标为(x 1,y 1)、(x 2,y 2),则x 214+y 212=1①,x 224+y 222=1②,①-②得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)2=0,∵x 1+x 2=2,y 1+y 2=2, ∴x 1-x 22+y 1-y 2=0,∴k =y 1-y 2x 1-x 2=-12. ∴此弦所在的直线方程为y -1=-12(x -1),即x +2y -3=0.]4.焦点分别为(0,52)和(0,-52)的椭圆截直线y =3x -2所得椭圆的弦的中点的横坐标为12,求此椭圆方程.[解] 设y 2a 2+x 2b2=1(a >b >0).依题意,有a 2-b 2=(52)2=50.①由⎩⎪⎨⎪⎧y 2a 2+x 2b 2=1,y =3x -2,消去y 并整理,得(a 2+9b 2)x 2-12b 2x +4b 2-a 2b 2=0. 因为x 1+x 22=12,所以6b 2a 2+9b 2=12.所以a 2=3b 2.②由①②,得a 2=75,b 2=25. 经检验,此时Δ>0. 所以椭圆方程为y 275+x 225=1.。
高中数学 椭圆的简单几何性质教案(2) 新人教A版选修2-1

§2.2.2 椭圆的简单几何性质(2)●教学目标1.熟悉椭圆的几何性质;2.利用椭圆几何性质求椭圆标准方程; 3.了解椭圆在科学研究中的应用. ●教学重点:椭圆的几何性质应用 ●教学过程:Ⅰ、复习回顾:利用椭圆的标准方程研究了椭圆的几何性质. Ⅱ、讲授新课:例6.点 ),(y x M 与定点 )0,4(F 的距离和它到定直线 425:=x l 的距离的比是常数54,求点的轨迹.解:设 是点 直线 的距离,根据题意,如图所求轨迹就是集合⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧==54d MF M P 由此得54425)4(22=-+-x y x .将上式两边平方,并化简得 22525922=+y x即192522=+y x所以,点M 的轨迹是长轴、短轴分别是10、6的椭圆说明:椭圆的一个重要性质:椭圆上任意一点与焦点的距离和它到定直线的距离的比是常数(e 为椭圆的离心率)。
其中定直线叫做椭圆的准线。
对于椭圆 ,相应于焦点 的准线方程是 .根据椭圆的对称性,相应于焦点 的准线方程是,所以椭圆有两条准线.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.【典例剖析】 [例1]已知椭圆2222by a x +=1(a >b >0)的焦点坐标是F 1(-c ,0)和F 2(c ,0),P (x 0,y 0)是椭圆上的任一点,求证:|PF 1|=a +ex 0,|PF 2|=a -ex 0,其中e 是椭圆的离心率.[例2]已知点A (1,2)在椭圆121622y x +=1内,F 的坐标为(2,0),在椭圆上求一点P 使|PA |+2|PF |最小.[例3]在椭圆92522y x +=1上求一点P ,使它到左焦点的距离是它到右焦点距离的两倍. Ⅲ、课堂练习: 课本P52,练习 5 再练习:已知椭圆上一点 到其左、右焦点距离的比为1:3,求 点到两条准线的距离.(答案: 到左准线的距离为 ,到右准线的距离为.)思考: 已知椭圆 内有一点 ,是椭圆的右焦点,在椭圆上有一点 ,使的值最小,求的坐标.(如图)分析:若设,求出 ,再计算最小值是很繁的.由于 是椭圆上一点到焦点的距离,由此联想到椭圆的第二定义,它与到相应准线的距离有关.故有如下解法. 解:设在右准线 上的射影为.由椭圆方程可知,,.根据椭圆的第二定义,有 即.∴.显然,当 、、 三点共线时,有最小值.过 作准线的垂线.由方程组 解得 .即 的坐标为.【随堂训练】1.椭圆2222ay b x +=1(a >b >0)的准线方程是( )A .y =±222b a a + B.y =±222b a a -C.y =±222ba b - D.x =±222ba a -2.椭圆4922y x +=1的焦点到准线的距离是( )A .554和559 B .559和5514 C .554和5514 D .5514 3.已知椭圆2222by a x +=1(a >b >0)的两准线间的距离为3316,离心率为23,则椭圆方程为( ) A .3422y x +=1 B .31622y x +=1 C .121622y x +=1 D .41622y x +=14.两对称轴都与坐标轴重合,离心率e =0.8,焦点与相应准线的距离等于49的椭圆的方程是( )A .92522y x +=1或92522x y +=1B .92522y x +=1或162522y x +=1C .162x +92y =1 D .162522x y +=15.已知椭圆2222by a x +=1(a >b >0)的左焦点到右准线的距离为337,中心到准线的距离为334,则椭圆的方程为( ) A .42x +y 2=1 B .22x +y 2=1C .42x +22y =1D .82x +42y =16.椭圆22)2()2(-+-y x =25843++y x 的离心率为( )A .251 B .51 C .101 D .无法确定【强化训练】1.椭圆2222by a x +=1和2222by a x +=k (k >0)具有( )A .相同的离心率B .相同的焦点C .相同的顶点D .相同的长、短轴2.椭圆92522y x +=1上点P 到右焦点的最值为( )A .最大值为5,最小值为4B .最大值为10,最小值为8C .最大值为10,最小值为6D .最大值为9,最小值为13.椭圆的一个顶点与两个焦点构成等边三角形,则此椭圆的离心率是( )A .51 B .43 C .33 D .214.若椭圆两准线间的距离等于焦距的4倍,则这个椭圆的离心率为( )A .41 B .22 C .42 D .215.椭圆m y m x 21322++=1的准线平行于x 轴,则m 的取值范围是( )A .m >0B .0<m <1C .m >1D .m >0且m ≠16.椭圆92522y x +=1上的点P 到左准线的距离是2.5,则P 到右焦点的距离是________.7.椭圆103334)1()1(22--=-++y x y x 的长轴长是______.8.AB是过椭圆4522y x +=1的一个焦点F 的弦,若AB 的倾斜角为3π,求弦AB 的长.9.已知椭圆的一个焦点是F (1,1),与它相对应的准线是x +y -4=0,离心率为22,求椭圆的方程.10.已知点P在椭圆2222bx a y +=1上(a >b >0),F 1、F 2为椭圆的两个焦点,求|PF 1|·|PF 2|的取值范围.【学后反思】椭圆的离心率是焦距与长轴的比,椭圆上任意一点到焦点的距离与这点到相应..准线的距离的比也是离心率,这也是离心率的一个几何性质.椭圆的离心率反映了椭圆的扁平程度,它也沟通了椭圆上的点的焦半径|PF|与到相应准线距离d之间的关系.左焦半径公式是|PF1|=a+ex0,右焦半径公式是|PF2|=a-ex0.焦半径公式除计算有关距离问题外还证明了椭圆上离焦点距离最远(近)点实a2,但必须注意这是椭圆的为长轴端点.椭圆的准线方程为x=±c中心在原点,焦点在x轴上时的结论.。
人教A版高中数学高二版选修2-1 《椭圆及其标准方程》导学案

2.1.1《椭圆及其标准方程》导学案一、【学习目标】1、知识与技能:理解椭圆的定义,掌握求椭圆的方程.2、过程与方法:通过亲身操作加深定义的认识.3、情感、态度与价值观:让学生在发现中学习,提高学生的积极性。
培养解析法的思想。
二、【重点难点】【重点难点】椭圆的定义和标准方程。
三、【教学过程】【回顾知识,提出问题】(一) 新课复习:(1)圆是如何定义的?(2)到两定点距离之和为定值的点的集合又是什么曲线呢?(二)问题导学:问题1:根据课本上椭圆的定义,制作教具,画椭圆问题2:写出椭圆上的点满足的关系式________________________________________问题3:这两个定点叫做椭圆的_______。
两个定点的距离用______表示。
常数用______表示【合作探究】:椭圆的定义为什么要满足2a >2c呢?(1)当2a >∣F1F2∣时,轨迹是_____(2)当2a =∣F1F2∣时,轨迹是_____(3)当2a <∣F1F2∣时轨迹是. _____【小试牛刀】动点P到两定点F1(-4,0),F2(4,0)的距离和是8,则动点P 的轨迹为()(A)椭圆(B)线段F1F2(C)直线F1F2(D)不能确定。
问题5:建立坐标系后,利用问题2的关系式,写出推导椭圆方程的过程问题6:椭圆的标准方程是:___________________________问题7:上面的a,b,c三个量满足的关系式为:___________问题8:如何判断焦点在何轴?【小试牛刀】根据下列方程,分别求出a 、b 、c(1)椭圆标准方程为161022=+y x ,则a = ,b = , =c ; (2)椭圆标准方程为1522=+y x ,则a = ,b = , =c ; (3)椭圆标准方程为8222=+y x ,则a = ,b = , =c .四、【例题讲解】 例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.变式题:1.已知椭圆的焦点在y 轴上,且椭圆经过点P(-2,2)和Q(0,-3),求此椭圆的标准方程.变式题:2.已知椭圆经过两个点P(-2,2)和Q(0,-3),求此椭圆的标准方程.【规律方法总结】五、【课堂检测】1.如果椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6,那么点P 到另一个焦点F 2的距离是_____.2.写出适合下列条件的椭圆的标准方程:(1) 1,4==b a ,焦点在x 轴上; (2)15,4==c a ,焦点在x 轴上.六、【归纳总结】1.椭圆的定义2.椭圆的标准方程.3.会根据条件求椭圆的标准方程,掌握其方法.附答案:1.14 2. 2222(1)116(2)116x y y x +=+=。
人教新课标版数学高二高二数学新人教版选修2-1导学案 椭圆的简单几何性质(一)

椭圆的简单几何性质(一)导学案【学习要求】1.理解椭圆的简单几何性质.2.利用椭圆的简单几何性质解决一些简单问题.【学法指导】通过几何图形观察,代数方程验证的学习过程,体会数形结合的数学思想.通过几何性质的代数研究,养成辩证统一的世界观.【知识要点】1.椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程范围顶点轴长短轴长=,长轴长=焦点(±a2-b2,0)(0,±a2-b2)焦距|F1F2|=2a2-b2对称性对称轴:对称中心:离心率e=ca∈准线2.离心率的作用当椭圆的离心率越,则椭圆越扁;当椭圆离心率越,则椭圆越接近于圆.【问题探究】探究点一 椭圆的简单几何性质问题1 观察椭圆x 2a 2+y 2b2=1 (a >b >0)的形状,你能从图中看出它的范围吗?它具有怎样的对称性?椭圆上哪些点比较特殊?问题2 如何用椭圆的标准方程(代数方法)研究你观察到的几何性质?问题3 观察不同的椭圆,椭圆的扁平程度不一样,怎样刻画椭圆的扁平程度呢?问题4 (1)b a 或c b的大小能刻画椭圆的扁平程度吗?为什么? (2)你能运用三角函数的知识解释:为什么e =c a 越大,椭圆越扁?e =c a越小,椭圆越圆吗?问题5 比较下列各组中椭圆的形状,哪一个更圆,哪一个更扁?为什么?(1)4x 2+9y 2=36与x 225+y 220=1; (2)9x 2+4y 2=36与x 212+y 216=1.例1 求椭圆m 2x 2+4m 2y 2=1 (m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 跟踪训练1 已知椭圆方程为4x 2+9y 2=36,求椭圆的长轴长、短轴长、焦点坐标、顶点坐标和离心率.探究点二 由椭圆的几何性质求方程例2 椭圆过点(3,0),离心率e =63,求椭圆的标准方程. 跟踪训练2 求适合下列条件的椭圆的标准方程.(1)长轴在x 轴上,长轴的长等于12,离心率等于23; (2)长轴长是短轴长的2倍,且椭圆过点(-2,-4).探究点三 求椭圆的离心率例3 如图所示,椭圆的中心在原点,焦点F 1,F 2在x 轴上,A ,B 是椭圆的顶点,P 是椭圆上且PF 1⊥x 轴,PF 2∥AB ,求此椭圆的离心率.跟踪训练3 如图,A 、B 、C 分别为椭圆x 2a 2+y 2b2=1 (a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为 ( )A .-1+52B .5-1C .2+12D .2+1【当堂检测】1.椭圆25x 2+9y 2=225的长轴长、短轴长、离心率依次是 ( )A .5、3、0.8B .10、6、0.8C .5、3、0.6D .10、6、0.6 2.已知椭圆的中心在坐标原点,焦点在x 轴上,且长轴长为12,离心率为13,则椭圆的方程是 ( )A .x 2144+y 2128=1 B .x 236+y 220=1 C .x 232+y 236=1 D .x 236+y 232=1 3.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是 ( )A .45B .35C .25D .154.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为______.【课堂小结】1.已知椭圆的方程讨论性质时,若不是标准形式要先化成标准形式,再确定焦点的位置,找准a 、b .2.利用椭圆的几何性质求标准方程通常采用待定系数法.3.求离心率e 时,注意方程思想的运用.【拓展提高】1.已知F 1、F 2为椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,过F 2作椭圆的弦AB ,若△AF 1B 的周长为16,椭圆离心率e =32,则椭圆的方程是( )A .x 24+y 23=1B .x 216+y 24=1C .x 216+y 212=1D .x 216+y 23=1 2.椭圆1145222=++a y a x 的焦点在x 轴上,则它离心率的取值范围是 3.椭圆M :2222x y a b+=1 (a >b >0) 的左、右焦点分别为F 1、F 2,P 为椭圆M 上任一点,且12PF PF ⋅ 的最大值的取值范围是[2c 2,3c2],其中c =则椭圆M 的离心率e 的取值范围是( ) A .⎥⎦⎤⎢⎣⎡22,33 B.[C .D .11[,)32 4.已知椭圆)0(12222>>=+b a by a x 的左、右顶点分别为B A 、,右焦点是F ,过F 作直线与长轴垂直,与椭圆交于Q P 、两点(1)若060=∠PBF ,求椭圆的离心率(2)求证:APB ∠一定为钝角5.在平面直角坐标系内,已知点)0,2()0,2(-B A 、,P 是平面内一动点,直线PB PA 、的斜率之积为43- (1)求动点P 的轨迹C 的方程(2)过点)0,21(作直线l 与轨迹C 交于F E 、两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围。
高中数学 2.1.1椭圆及其标准方程导学案新人教版选修2-1

第二章 圆锥曲线与方程 §2.1 椭 圆2.1.1 椭圆及其标准方程 课时目标 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、椭圆标准方程的推导与化简过程.2.掌握椭圆的定义、标准方程及几何图形.1.椭圆的概念:平面内与两个定点F 1,F 2的距离的和等于________(大于|F 1F 2|)的点的轨迹叫做________.这两个定点叫做椭圆的________,两焦点间的距离叫做椭圆的________.当|PF 1|+|PF 2|=|F 1F 2|时,轨迹是__________,当|PF 1|+|PF 2|<|F 1F 2|时__________轨迹.2.椭圆的方程:焦点在x 轴上的椭圆的标准方程为________________,焦点坐标为________________,焦距为________;焦点在y 轴上的椭圆的标准方程为________________.一、选择题1.设F 1,F 2为定点,|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则动点M 的轨迹是( )A .椭圆B .直线C .圆D .线段2.椭圆x 216+y 27=1的左右焦点为F 1,F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为( ) A .32 B .16 C .8 D .43.椭圆2x 2+3y 2=1的焦点坐标是( ) A.⎝⎛⎭⎪⎫0,±66 B .(0,±1) C .(±1,0) D.⎝ ⎛⎭⎪⎫±66,0 4.方程x 2|a |-1+y 2a +3=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( ) A .(-3,-1) B .(-3,-2)C .(1,+∞)D .(-3,1)5.若椭圆的两焦点为(-2,0),(2,0),且该椭圆过点⎝ ⎛⎭⎪⎫52,-32,则该椭圆的方程是( ) A.y 28+x 24=1 B.y 210+x 26=1 C.y 24+x 28=1 D.y 26+x 210=1 6.设F 1、F 2是椭圆x 216+y 212=1的两个焦点,P 是椭圆上一点,且P 到两个焦点的距离之差为2,则△PF 1F 2是( )A .钝角三角形B .锐角三角形C .斜三角形D .直角三角形二、填空题7.椭圆x 29+y 22=1的焦点为F 1、F 2,点P 在椭圆上.若|PF 1|=4,则|PF 2|=________,∠F 1PF 2的大小为________.8.P 是椭圆x 24+y 23=1上的点,F 1和F 2是该椭圆的焦点,则k =|PF 1|·|PF 2|的最大值是______,最小值是______.9.“神舟六号”载人航天飞船的运行轨道是以地球中心为一个焦点的椭圆,设其近地点距地面n 千米,远地点距地面m 千米,地球半径为R ,那么这个椭圆的焦距为________千米.三、解答题10.根据下列条件,求椭圆的标准方程.(1)两个焦点的坐标分别是(-4,0),(4,0),椭圆上任意一点P 到两焦点的距离之和等于10;(2)两个焦点的坐标分别是(0,-2),(0,2),并且椭圆经过点⎝ ⎛⎭⎪⎫-32,52.11.已知点A (0,3)和圆O 1:x 2+(y +3)2=16,点M 在圆O 1上运动,点P 在半径O 1M 上,且|PM |=|PA |,求动点P 的轨迹方程.能力提升12.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP ·FP →的最大值为( )A .2B .3C .6D .813.如图△ABC 中底边BC =12,其它两边AB 和AC 上中线的和为30,求此三角形重心G 的轨迹方程,并求顶点A 的轨迹方程.。
人教A版高中数学选修2-1《2.2椭圆》复习教案

1. 一、知识要点: 椭圆、双曲线、抛物线的标准方程与椭圆、双曲线、抛物线的标准方程与几何几何性质 椭圆椭圆 双曲线双曲线 抛物线抛物线定义定义 1.到两定点F 1,F 2的距离之和为定值2a(2a>|F 1F 2|)的点的轨迹轨迹 1.到两定点F 1,F 2的距离之差的绝对值为定值2a(0<2a<|F 1F 2|)的点的轨迹的点的轨迹2.与定点和直线的距离之比为定值e 的点的轨迹.(0<e<1) 2.与定点和直线的距离之比为定值e 的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹. 图形图形方程 标准方程方程 12222=+b y a x (b a >>0) 12222=-by a x (a>0,b>0) y 2=2px 参数方程 为离心角)参数q q q (sin cos îíì==b y a x 为离心角)参数q q q (tan sec îíì==b y a x îíì=y pt x 22(t 为参数) 范围范围 ─a £x £a ,─b £y £b |x| ³ a,y ÎR x ³0 中心中心 原点O (0,0) 原点O (0,0) 顶点 (a,0), (─a,0), (0,b) , (0,─b) (a,0), (─a,0) (0,0) 对称轴x 轴,y 轴;轴; 长轴长2a,短轴长2b x 轴,y 轴; 实轴长2a, 虚轴长2b. x 轴 焦点焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0) )0,2(p F 焦距 2c (c=22b a -) 2c (c=22b a +)离心率 )10(<<=e a c e )1(>=e a c ee=1 准线准线x=c a 2± x=ca 2±2p x -=渐近线y=±abx 焦半径 ex a r ±= )(a ex r ±±=2px r += 通径通径a b 22 a b 22 2p 焦参数焦参数ca 2ca 2P (1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -. (2))0(12222>>=+b a a y b x ,焦点:F 1(0,-c),F 2(0,c),其中以标准方程)0(12222>>=+b a by a x 为例: ①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(A(a,0),A′(--a,0),B(0,b),B′(0,a,0),B(0,b),B′(0,-b);-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=ac,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点. 二、基本训练1.设一动点P 到直线3x =的距离与它到点A (1,0)的距离之比为3,则动点P的轨迹方程是的轨迹方程是 ( )()A 22132x y += ()B 22132x y -=()C 22(1)132x y ++=()D 22123x y +=2.与曲线)9(192522<=-+-k ky k x 之间具有的等量关系之间具有的等量关系( )()A 有相等的长、短轴有相等的长、短轴 ()B 有相等的焦距有相等的焦距()C 有相等的离心率有相等的离心率()D 有相同的准线有相同的准线3.已知椭圆的长轴长是短轴长的3倍,长、短轴都坐标上,且过点(3,0)A ,则椭圆的方程是圆的方程是 ,1.椭圆的定义: 第一种定义:平面内与两个定点F 1、F 2的距离之和等于的距离之和等于常数常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距焦距. 第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线. 2.椭圆的标准椭圆的标准方程方程: c=22b a -. 3.椭圆的参数方程:îíì==q qsin cos b y a x ,(参数θ是椭圆上任意一点的是椭圆上任意一点的离心率离心率). 4.椭圆的几何性质:曲线192522=+y x .4.底面.底面直径直径为12cm 的圆柱被与底面成30的平面所截,的平面所截,截口是一个椭圆,这个椭圆的长截口是一个椭圆,这个椭圆的长y xOF 1F 2P αβyO x1lF 2 F 1 A 2 A 1 PMl短轴长短轴长 221(0)x y a b a b +,+=>>,P 为椭圆上除长轴端点外的任一点,12,F F 为椭圆的两个焦点,(1)若a =Ð21F PF ,21PF F b Ð=,求证:离心率2cos2cosb a ba -+=e ;(2)若q 221=ÐPF F ,求证:21PF F D 的面积为2t a n b q ×.例4设椭圆2211x y m +=+的两个焦点是12(,0),(,0)(0)F c F c c ->,且椭圆上存在点P ,使得直线1PF 与直线2PF 垂直.(1)求实数m 的取值范围;(2)设l 是相应于焦点2F 的准线,直线2PF 与l 相交于点Q ,若22||23||QF PF =-,求直线2PF 的方程.程.,离心率 .5.已知.已知椭圆椭圆22=>>的离心率为35,若将这个椭圆绕着它的右焦点按逆时针方向逆时针方向旋转旋转2p后,所得新椭圆的一条准线后,所得新椭圆的一条准线方程方程是163y =,则原来的椭,则原来的椭圆方程圆方程是 ;新椭圆方程是;新椭圆方程是 . 三、例题分析 例1(05浙江) .如图,已知椭圆的中心在坐标原点,焦点F 1,F 2在x 轴上,长轴A 1A 2的长为4,左准线l 与x 轴的轴的交点交点为M ,|MA 1|∶|A 1F 1|=2∶1. (Ⅰ)求椭求椭圆的方程圆的方程;(Ⅱ)若直线l 1:x =m (|m |>1),P 为l 1上的动点,使∠F 1PF 2最大的点P 记为Q ,求点Q 的坐标(用m 表示).例2设A B 是两个定点,且||2AB =,动点M 到A 点的距离是4,线段MB 的垂直平分线l 交MA 于点P ,求动点P 的轨迹方程.例3.已知椭圆22221(0)x y a b a bïîïíì³<<+)4(2)40(442b bbb ;(B) ïîïíì³<<+)2(2)20(442b bbb ;(C) 442+b ;(D) 2b2. P A 3316 ()B )32(4- ()C )32(16+ ()D 163.已知椭圆22221(0)x y a b a b+=>>的左焦点为的左焦点为 F ,(,0),(0,)A a B b -为椭圆的两个顶点,若F 到AB A 777- ()B 777+ ()C 12()D 454.(05天津卷)从集合{1,2,3…,11}例5(05上海)点A 、B 分别是分别是椭圆椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ^。
2.2.1椭圆及其标准方程 学案-人教版高中数学选修2-1
作图,作图后学生回答引出课题。
学生口述后在投影展示,教师再根据投影进行强调。
引生入境听1、师:移动笔尖,画出的轨迹是什么图形?2、师:笔尖在移动的过程中,笔尖到两个定点F1和F2的距离之和是一个定值吗?3、师:观察教材P33-图2.1-2.设M(x,y),F1(-c,0),F2(c,0),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?4、师:观察教材P34“思考”.设M(x,y),F1(0,-c),F2(0,c),且|MF1|+|MF2|=2a(a>c),则M点的轨迹方程是什么?5.师:定义中,将“大于|F1F2|”改为“等于|F1F2|”或“小于|F1F2|”的常数,其他条件不变,点的轨迹是什么?1、生:椭圆.2、生:是.其距离之和始终等于线段的长度.3生:.4、生:5.生:当距离之和等于|F1F2|时,动点的轨迹就是线段F1F2;;_当距离之和小于|F1F2|时,动点的轨迹不存在.1.通过教师的引导,由于坐标系选择的灵活性与根式运算的复杂性,在寻求方程的过程中,培养学生战胜困难的意志品质并体会数学的简洁美、对称美。
2.通过这些实物和图片,让学生从感性上认识椭圆.板书设计导学反思课题:椭圆及其标准方程一、定义二、标准方程三、例题(文字表述) (符号表述)四。
变式训练。
五。
课堂检测。
六。
作业布置。
1.数形结合的思想开展我的教学;在整个教学过程中采用了“引导发现、讨论交流”的方法来进行教学,最大限度的挖掘学生的潜力;同时让学生通过动手作图亲身经历椭圆的形成过程,培养了学生的观察、分析、概括能力,从而激发学生学习数学的兴趣。
2.根据学生思讲练的反馈信息,在后面的教学中及时的进行小结和点评,并针对学生的反馈情况分层次组织引导学生解决存在问题,进行教学调节。
3.在设计过程遇到很多我无法解决的问题,比如如何将圆锥曲线背景知识融入到课堂;如何用几何画板将图形的翻折更形象的演示等,如何加以改进,这是在后续教学中需要思考的问题。
高中数学人教A版选修2-1导学案:2.2.1椭圆及其标准方程(学生版)
安阳县实验中学“四步教学法”导学案
Anyangxian shi yan zhongxue sibujiaoxuefa daoxuean
课题:2.2.1椭圆及其标准方程(1)
制单人: 审核人:高二数学组
班级:_________ 组名:_________姓名:_________ 时间:_________
一、自主学习 (10分钟)
1、学习目标
1.从具体情境中抽象出椭圆的模型;
2.掌握椭圆的定义;
3.掌握椭圆的标准方程.
2、学习指导
阅读教材回答下面问题:
取一条定长的细绳,
把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .
如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?
思考:移动的笔尖(动点)满足的几何条件是什么?
经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.
新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .
反思:若将常数记为2a ,为什么122a F F >?
当122a F F =时,其轨迹为 ;
当122a F F <时,其轨迹为 .
P
F 2F 1。
河北省唐山市开滦第二中学高中数学 2.2.2椭圆及其标准
河北省唐山市开滦第二中学高中数学 2.2.2椭圆及其标准方程二学案新人教A版选修2-1课题选修_2-1_ 第二章:执稿人杨秀江审阅人杨秀江讲课日期一、学习目标:1、理解椭圆的几何定义;2、了解轨迹的求法;二、学习过程:1、课前复习:①椭圆的定义:②当焦点在x轴上时,椭圆的标准方程为:_________________________________. 当焦点在y轴上时,椭圆的标准方程为:_________________________________.其中a、b、c的关系为___________________。
2、研究课本例题:(是对基本知识的体验)再做一遍例题如下例2:如图,在圆x2+y 2=4上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹是什么?为什么?题后反思:①你能发现椭圆与圆的关系吗?②通过此题,你能体会求轨迹方程的方法吗?例3、如图,设点A ,B 的坐标分别为(-5,0),(5,0),直线AM ,BM 相交于点M ,且它们的斜率之积是- 49,求点M 的轨迹方程.题后反思:①通过此题,你能体会求轨迹方程的方法吗?3、师生共同研讨例题:(补充例题,以对知识更牢固的掌握)先做后讨论,老师答疑 例4:如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动,点Q 的轨迹是什么?为什么?并建立适当的坐标系求出动点Q 的轨迹方程。
题后反思:①通过此题,你能体会求轨迹方程的方法吗?探究题:例5:如图,两同心圆O 的半径分别为定长a 、b (a >b ),P 是大圆O 上一个动点,OP 与小圆交点为Q ,过P 作x 轴的垂线AM ,再过点Q 作AM 的垂线交PM 于M ,当点P 在圆上运动,点M 的轨迹是什么?为什么?并建立适当的坐标系求出动点M 的轨迹方程。
2019年高中数学 2.3第03课时 椭圆第二定义学案 理 新人教A版选修2-1
2019年高中数学 2.3第03课时椭圆第二定义学案理新人教A版选修2-1学时:03课型:新受课学习目标:椭圆第二定义、准线方程;探究过程:复习回顾1.椭圆的长轴长为,短轴长为,半焦距为,离心率为,焦点坐标为,顶点坐标为,(准线方程为。
2.短轴长为8,离心率为的椭圆两焦点分别为、,过点作直线交椭圆于A、B两点,则的周长为。
引入课题【习题4(教材P50例6)】椭圆的方程为,M1,M2为椭圆上的点①求点M1(4,2.4)到焦点F(3,0)的距离 .②若点M2为(4,y0)不求出点M2的纵坐标,你能求出这点到焦点F(3,0)的距离吗?问题1:你能将所得函数关系叙述成命题吗?(用文字语言表述)问题2:你能写出所得命题的逆命题吗?并判断真假?(逆命题中不能出现焦点与离心率)【引出课题】椭圆的第二定义当点与一个定点的距离和它到一条定直线的距离的比是常数时,这个点的轨迹是椭圆.定点是椭圆的焦点,定直线叫做椭圆的准线,常数是椭圆的离心率.对于椭圆,相应于焦点的准线方程是.根据对称性,相应于焦点的准线方程是.对于椭圆的准线方程是.可见椭圆的离心率就是椭圆上一点到焦点的距离与到相应准线距离的比,这就是离心率的几何意义.由椭圆的第二定义焦半径公式:由椭圆的第二定义推导典型例题例1、求椭圆的右焦点和右准线;左焦点和左准线;小结:求椭圆的准线方程一定要化成标准形式,然后利用准线公式即可求出例2、椭圆上的点到左准线的距离是,求到左焦点的距离为 .变式:求到右焦点的距离为 .小结:椭圆第二定义的应用和第一定义的应用例1:点P与定点A(2,0)的距离和它到定直线的距离的比是1:2,求点P的轨迹;解法一:解法二:变式:点P与定点A(2,0)的距离和它到定直线的距离的比是1:2,求点P的轨迹;解法一:解法二:问题1:求出椭圆方程和的长半轴长、短半轴长、半焦距、离心率;问题2:求出椭圆方程和长轴顶点、焦点、准线方程;例4、设AB 是过椭圆右焦点的弦,那么以AB 为直径的圆必与椭圆的右准线( )A.相切B.相离C.相交D.相交或相切例5、已知点为椭圆的上任意一点,、分别为左右焦点;且求的最小值变式1:的最小值;变式2:的最小值;巩固练习1.已知 是椭圆 上一点,若 到椭圆右准线的距离是 ,则 到左焦点的距离为_____________.2.若椭圆 的离心率为 ,则它的长半轴长是______________.教学反思1.椭圆第二定义、焦半径公式、准线方程;2.椭圆定义的简单运用;3.离心率的求法以及焦半径公式的应用;课后作业1.例题5的两个变式;2. 已知A ,B 为椭圆 上的两点, 是椭圆的右焦点.若 , 的中点到椭圆左准线的距离是 ,试确定椭圆的方程.课后思考:1.方程|2|)1()1(222++=-+-y x y x 表示什么曲线?2.、如图把椭圆的长轴AB 分成8等分,过每个等分点作轴的垂线交椭圆的上半部分于七个点,F 是椭圆的一个焦点,则||||||721F P F P F P +++ =答案提示:例5:解:左准线:,作于点D ,记由第二定义可知: ⇒ ⇒ 故有||||||||35||1MD MA d MA MF MA +=+=+ 所以有当A 、M 、D 三点共线时,|MA|+|MD|有最小值:即的最小值是变式1:的最小值; 解:283283)||35||(3||5||311=⨯=+=+MF MA MF MA 变式2:的最小值; 解:52832853|)|35|(|53||||5311=⨯=+=+MF MA MF MA 巩固练习答案:1. 2.1或2课后作业:解:由椭圆方程可知 、两准线间距离为 .设 , 到右准线距离分别为 , ,由椭圆定义有 ,所以,则 , 中点 到右准线距离为 ,于是 到左准线距离为 , ,所求椭圆方程为 .课后思考: 1.解:222|2|)1()1(22=++-+-y x y x ;即方程表示到定点的距离与到定直线的距离的比常数(且该常数小于1)方程表示椭圆2.解法一:,设的横坐标为,则不妨设其焦点为左焦点 由得i i ex a c a x e F P i i i 432)455(535)(||2+=+-⋅+=+=+= 35)721(4372||||||721=++++⨯=+++ F P F P F P 解法二:由题意可知和关于轴对称,又由椭圆的对称性及其第一定义可知,同理可知,,故357||||||721==+++a F P F P F P2019年高中数学 2.3第04课时 椭圆的简单几何性质学案 理 新人教A版选修2-1学时:04课型:新受课学习目标:了解椭圆的第二定义,准线及焦半径的概念理解椭圆的范围、对称性及对称轴,对称中心、离心率、顶点的概念;(1) 复习和预习:知道对椭圆的标准方程的讨论来研究椭圆的几何性质.提问:研究曲线的几何特征有什么意义?从哪些方面来研究?通过对曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点及其它特征性质来研究曲线的几何性质.(2)椭圆的简单几何性质①范围:由椭圆的标准方程可得,,进一步得:,同理可得:,即椭圆位于直线和所围成的矩形框图里;②对称性:由以代,以代和代,且以代这三个方面来研究椭圆的标准方程发生变化没有,从而得到椭圆是以轴和轴为对称轴,原点为对称中心;③顶点:先给出圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此椭圆有四个顶点,由于椭圆的对称轴有长短之分,较长的对称轴叫做长轴,较短的叫做短轴;④离心率: 椭圆的焦距与长轴长的比叫做椭圆的离心率(),⎩⎨⎧→→→椭圆图形越扁时当01a ,,b ,c e ;⎩⎨⎧→→→椭圆越接近于圆时当a ,b ,c e 00 . (3)例题讲解与引申、扩展例4: 求椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标.扩展:已知椭圆的离心率为,求的值.解法剖析:例5: 如图,一种电影放映灯的反射镜面是旋转椭圆面的一部分.过对对称的截口是椭圆的一部分,灯丝位于椭圆的一个焦点上,片门位于另一个焦点上,由椭圆一个焦点发出的光线,经过旋转椭圆面反射后集中到另一个焦点.已知,,.建立适当的坐标系,求截口所在椭圆的方程.例6:如图,设与定点的距离和它到直线:的距离的比是常数,求点的轨迹方程.分析:若设点,则,到直线:的距离,则容易得点的轨迹方程.引申:(用《几何画板》探究)课堂练习:第49页6、7、8课学小结:课后作业:第50页1、2、3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
椭圆及其标准方程(二)导学案 新人教A 版选修2-1
【学习要求】
加深理解椭圆定义及标准方程,能熟练求解与椭圆有关的轨迹问题. 【学法指导】
通过例题的学习,进一步用运动、变化的观点认识椭圆,感知数学与实际生活的联系,通过生成椭圆的不同方法,体会椭圆的几何特征的不同表现形式. 【双基检测】
1.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件|PF 1|+|PF 2|=a +9
a
(a >0),则点P 的轨迹是 ( )
A .椭圆
B .线段
C .不存在
D .椭圆或线段
2.已知椭圆5x 2+ky 2
=5的一个焦点坐标是(0,2),那么k 的值为 ( ) A .-1 B .1 C . 5
D .- 5
3.“m >n >0”一定是“方程mx 2+ny 2
=1表示焦点在y 轴上的椭圆”吗?
4.椭圆x 212+y 2
3=1的焦点为F 1和F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,那
么|PF 1|是|PF 2|的_____倍.
【问题探究】
探究点一 定义法求轨迹方程
例1 如图,P 为圆B :(x +2)2+y 2
=36上一动点,点A 坐标为(2,0),线段AP 的垂直平分线交直线BP 于点Q ,求点Q 的轨迹方程.
跟踪训练1 已知圆A :100)3(2
2
=++y x ,圆A 内一定点B (3,0),圆P 过B 且
与圆A 内切,求圆心P 的轨迹方程
探究点二 相关点法求轨迹方程
例2 如图,在圆x 2+y 2
=4上任取一点P ,过点 P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?为什么?
问题 从例2你能发现椭圆与圆之间的关系吗?
跟踪训练2 如图,设P 是圆x 2+y 2
=25上的动点,点D 是P 在x 轴上的投影,
M 为PD 上一点,且|MD |=45
|PD |.当P 在圆上运动时,求点M 的轨迹C 的方程,
并判断此曲线的类型.
探究点三 直接法求轨迹方程
例3 如图,设点A ,B 的坐标分别为(-5,0),(5,0).直线AM ,BM 相交于点M ,
且它们的斜率之积是-4
9
,求点M 的轨迹方程.
问题 若将例3中的-4
9
改为a (a <0),曲线形状如何?
跟踪训练3 已知M (4,0),N (1,0),若动点P 满足MN →·MP →=6|NP →
|.求动点P 的轨迹C 的方程. 【当堂检测】
1.已知椭圆x 2m +y 2
16
=1上的一点P 到椭圆一个焦点的距离为3,到另一焦点距离为7,则m 等于 ( )
A .10
B .5
C .15
D .25
2.椭圆x 2m +y 2
4
=1的焦距等于2,则m 的值为 ( )
A .5
B .8
C .5或3
D .16 3.设B (-4,0),C (4,0),且△ABC 的周长等于18,则动点A 的轨迹方程为 ( ) A .x 225+y 2
9
=1 (y ≠0) B .y 225+x 29=1 (y ≠0) C .x 216+y 216=1 (y ≠0) D .y 216+x 2
9
=1 (y ≠0) 4.椭圆x 2
9
+y 2
=1上有动点P ,F 1,F 2是椭圆的两个焦点,求△PF 1F 2的重心M 的轨迹方程.
【课堂小结】
1.解答与椭圆有关的求轨迹问题的一般思路是
2.注意题目要求中求轨迹和求轨迹方程的区别. 【拓展提高】
1.已知椭圆x 29+y 2
4=1的左、右焦点分别是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使|PQ |=|PF 2|,
那么动点Q 的轨迹方程为________
2.设F 1、F 2为椭圆22
194
x y +=的两个焦点,P 为椭圆上一点,已知P 、F 1、F 2是一个直角三角形的三个顶点,且21PF PF >,求
2
1PF PF 的值。