上海数学高二知识点总结

合集下载

上海市高二数学知识点总结

上海市高二数学知识点总结

上海市高二数学知识点总结一、函数与方程1. 一元二次函数1. 定义:y = ax² + bx + c (a≠0)2. 顶点坐标:(-b/2a, f(-b/2a))3. 对称轴:x = -b/2a4. 开口方向:a的符号决定5. 判别式:Δ = b²-4ac- Δ>0:两个不同实根- Δ=0:一个实根- Δ<0:无实根6. 轨迹:抛物线2. 幂函数1. 定义:y = x^a (a为实数)2. a>0时,增函数;a<0时,减函数3. 指数为偶数时,有最小值;指数为奇数时,无最小值4. x轴正半轴上的图像在a>0时有渐近线y=0,a<0时有渐近线y=+∞5. 与坐标轴交点:(0,0)和(1,1)3. 指数函数1. 定义:y = a^x (a>0且a≠1)2. a>1时,增函数;0<a<1时,减函数3. 指数为奇数时,有一个与x轴相切的最小值点;指数为偶数时,有最小值点4. 与x轴交点:(0,1)4. 对数函数1. 定义:y = logₐx (a>0且a≠1,x>0)2. 特殊值:log₁ x = 0;logₐa = 13. a>1时,增函数;0<a<1时,减函数4. 与y轴交点:(0,logₐ1) = (0,0)5. 与x轴交点:(1,0)5. 三角函数1. 正弦函数:y = sinx2. 余弦函数:y = cosx3. 正切函数:y = tanx4. 周期性:y = sinx, y = cosx 的周期均为2π;y = tanx 的周期为π5. 对称性:y = sinx 是奇函数,y = cosx 是偶函数二、解析几何1. 直线与平面1. 点到直线的距离公式2. 直线的斜率与倾斜角3. 直线与直线的位置关系:平行、垂直、相交4. 平面与平面的位置关系:平行、垂直、相交2. 圆与球1. 圆的标准方程:(x-a)² + (y-b)² = r²2. 圆的一般方程3. 圆与直线的位置关系:相离、相切、相交4. 球的标准方程:(x-a)² + (y-b)² + (z-c)² = r²3. 空间几何1. 空间直线的方程2. 空间平面的方程3. 空间直线与平面的位置关系三、概率与统计1. 概率1. 事件与样本空间2. 古典概型3. 条件概率与独立性4. 事件的概率运算:并、交、差5. 贝叶斯定理2. 统计1. 数据的收集与整理2. 描述统计量:均值、中位数、众数、标准差、方差3. 随机变量与概率分布4. 正态分布四、数列与数列1. 等差数列1. 通项公式:aₙ = a₁ + (n-1)d2. 前n项和公式:Sₙ = (a₁ + aₙ) × n ÷ 22. 等比数列1. 通项公式:aₙ = a₁ × r^(n-1)2. 前n项和公式:Sₙ = a₁ × (1 - r^n) ÷ (1 - r)3. 递推数列1. 通项公式:aₙ = aₙ₋₁ + d (等差数列)2. 通项公式:aₙ = aₙ₋₁ × r (等比数列)五、导数与微分1. 导数的定义与性质1. 导数表示函数的变化率2. 导数的计算:求极限、四则运算、复合函数求导、反函数求导2. 函数的极值与最值1. 极值点的判定:导数变号法、二阶导数法2. 最值的判定:端点、极值点、无界区间上的最值3. 微分1. 微分的定义与计算2. 微分近似计算与应用六、三角函数与导数1. 三角函数的导数1. y = sinx 的导数:y' = cosx2. y = cosx 的导数:y' = -sinx3. y = tanx 的导数:y' = sec²x2. 反三角函数的导数1. y = arcsinx 的导数:y' = 1/√(1-x²)2. y = arccosx 的导数:y' = -1/√(1-x²)3. y = arctanx 的导数:y' = 1/(1+x²)七、几何应用1. 几何证明1. 相似三角形的证明2. 同余三角形的证明3. 图形的对称性证明2. 几何计算1. 长方体、正方体、圆柱体、圆锥体、球体的计算2. 三角形的计算:面积、周长、三角函数以上是上海市高二数学重要知识点的总结,掌握了这些知识,相信你会在数学学习中取得更好的成绩!。

上海高二下数学知识点总结

上海高二下数学知识点总结

上海高二下数学知识点总结数学是一门抽象而精确的科学学科,是人们思考和解决各种实际问题的有效工具。

在高二下学期的数学学习中,我们接触了许多重要的知识点,下面是对这些知识点的总结。

一、函数与方程1. 一次函数:一次函数的标准形式为y = kx + b,其中k为斜率,b为截距。

我们可以通过斜率和截距来确定一次函数的图像和性质。

2. 二次函数:二次函数的标准形式为y = ax² + bx + c,其中a、b、c为常数且a ≠ 0。

二次函数的图像是一个抛物线,通过顶点、轴对称轴和其他特征点可以确定二次函数的图像和性质。

3. 高次函数:高次函数包括三次函数、四次函数等等,它们的图像形状和性质与二次函数类似,但更加复杂。

4. 指数函数与对数函数:指数函数的标准形式为y = a^x,对数函数的标准形式为y = loga(x)。

指数函数和对数函数是互为反函数的关系,它们在实际问题中的应用非常广泛。

5. 三角函数:三角函数包括正弦函数、余弦函数和正切函数等等,它们与三角比的关系有关。

我们可以通过三角函数的图像和性质来解决与三角函数相关的问题。

二、几何与向量1. 平面几何:平面几何研究平面上的图形和性质,包括点、线、面、角等基本概念。

我们可以通过平面几何的知识来解决直角三角形、相似三角形、等腰三角形等几何问题。

2. 空间几何:空间几何研究三维空间中的图形和性质,包括点、直线、平面、立体等基本概念。

我们可以通过空间几何的知识来解决与空间图形相关的问题,如球体的体积计算、三棱锥的形状等。

3. 向量与坐标:向量是具有大小和方向的量,可以用箭头表示。

我们可以通过向量的运算来解决与向量相关的问题,如向量的加减、数量积、向量积等。

坐标则是一种表示点在数学空间中位置的方式,我们可以通过坐标系来描述平面或空间中的点和图形。

三、概率与统计1. 概率:概率是研究随机事件发生可能性的数学理论。

我们可以通过概率的知识来解决与概率相关的问题,如事件的概率计算、概率的加法规则和乘法规则等。

上海高中高考数学知识点总结

上海高中高考数学知识点总结

上海高中高考数学知识点总结高中数学是高考重点科目之一,对于上海高中生来说,掌握数学知识点是取得高分的关键。

以下是上海高中高考数学知识点的详细总结。

一、数与代数1.数的性质和运算:-自然数、整数、有理数、实数、复数的概念、性质和运算法则;-科学记数法、比例、百分数;-绝对值及其性质。

2.代数式与方程式:-代数式与方程式的概念、性质和基本运算法则;-一元一次方程及一元一次不等式;-一元二次方程与一元二次不等式;-二次根式、双曲线函数及其应用。

3.数列与数学归纳法:-等差数列、等比数列及其求和公式;-递推数列的概念与性质。

二、函数与方程1.函数的概念与性质:-函数的定义、定义域、值域、图像与性质;-函数间的运算、复合函数、反函数;-奇偶函数、周期函数、映射函数。

2.一元函数的应用:-函数的最值、函数和方程的应用;-一元函数的模型建立与求解。

3.二元函数与平面几何:-二元函数的概念与性质;-点、线、面的几何性质与解析方法;-平面直角坐标系与空间直角坐标系。

三、三角函数1.三角函数的概念:-正弦函数、余弦函数、正切函数和它们的图像、性质;-三角函数间的基本关系式与诱导公式。

2.三角函数的应用:-三角函数在平面几何和立体几何中的应用;-三角函数的和差化积、倍角公式与积化和差公式。

四、数理统计与概率1.数据的收集与整理:-数据的概念与类型、频数分布;-统计图表的制作与分析。

2.统计量的计算:-平均数、中位数、众数、四分位数、标准差、方差;-累计频率与累计相对频率。

3.概率与统计:-概率的基本概念、性质和运算;-事件与样本空间、频率与古典概型;-条件概率与贝叶斯公式。

五、解析几何与立体几何1.平面解析几何:-平面上的点、直线和圆的方程;-解析几何与平面几何的应用。

2.空间解析几何:-空间直角坐标系、空间点、直线的方程与性质;-空间几何体的相交关系与计算。

六、数学思维与数学方法1.探索与证明:-数学问题的探索、发现与解决方法;-数学思维的培养与运用。

上海市高中数学知识点总结

上海市高中数学知识点总结

上海市高中数学知识点总结一、集合与函数概念1. 集合的含义、表示方法以及集合与集合之间的关系;2. 集合的运算,包括交集、并集、补集;3. 函数的概念、函数的性质、函数的运算;4. 函数的图像、函数的变换、反函数的概念;5. 常见函数类型,如一次函数、二次函数、指数函数、对数函数、三角函数等。

二、数列与数学归纳法1. 数列的概念、数列的通项公式;2. 等差数列与等比数列的性质、求和公式;3. 数列的极限概念及其计算;4. 数学归纳法的原理与应用。

三、排列组合与概率1. 排列组合的基本概念、公式及计算方法;2. 二项式定理及其应用;3. 事件的概率、条件概率、独立事件的概率;4. 随机事件的概率计算、期望值与方差。

四、三角函数与三角恒等变换1. 三角函数的定义、性质和图像;2. 三角函数的基本关系式、三角函数的和差公式;3. 三角函数的倍角公式、半角公式;4. 三角函数的积化和差公式、和差化积公式。

五、平面向量与解析几何1. 向量的基本概念、线性运算、数量积;2. 向量的几何意义、向量的坐标表示;3. 直线的方程、圆的方程;4. 圆锥曲线的方程及其性质。

六、立体几何1. 空间几何体的基本概念、性质;2. 空间直线与平面的位置关系;3. 立体图形的表面积与体积计算;4. 空间向量及其在立体几何中的应用。

七、微积分1. 导数的定义、性质、运算法则;2. 函数的极值与最值问题、导数的应用;3. 不定积分的概念、积分法则;4. 定积分的概念、性质、计算方法;5. 微积分在实际问题中的应用。

八、概率论与数理统计1. 随机变量的概念、分布律、期望与方差;2. 离散型随机变量与连续型随机变量;3. 多维随机变量及其分布;4. 大数定律与中心极限定理;5. 样本及其分布、参数估计、假设检验。

九、数学思维与方法1. 逻辑推理、数学归纳与演绎;2. 数学建模与问题解决策略;3. 创新思维在数学学习中的应用;4. 数学思想方法的历史发展与现代教育意义。

上海高二下数学知识点总结

上海高二下数学知识点总结

上海高二下数学知识点总结高二下学期是数学学习的重要阶段,掌握并巩固好这一学期的数学知识,对于高考的顺利备考和取得好成绩至关重要。

为了帮助同学们更好地回顾数学知识,本文将对上海高二下学期的数学知识点进行总结。

一、函数与导数1. 函数的概念和性质:自变量、函数值、定义域、值域、奇偶性等。

2. 基本初等函数:常数函数、幂函数、指数函数、对数函数、三角函数等。

3. 辅助函数:复合函数、反函数、方程与不等式的解等。

4. 导数的定义与计算:导数的定义、导数的几何意义、基本求导法则、高阶导数等。

5. 函数的单调性与极值:单调递增、单调递减、极大值、极小值、拐点等。

6. 增量与微分:增量的定义、微分的概念、微分近似计算等。

二、三角函数与向量1. 角度与弧度:角度的概念和度数制、弧度的概念和弧度制等。

2. 三角函数的基本关系:正弦函数、余弦函数、正切函数等。

3. 三角函数的性质与图像:函数图像、周期性、奇偶性、单调性等。

4. 三角函数的运算:和差化积、积化和差、倍角公式、半角公式等。

5. 向量的基本概念:向量的定义、向量的运算、向量的模、单位向量等。

6. 向量的夹角与投影:向量的夹角定义、向量的数量积、向量的数量积与夹角的关系等。

三、数列与数学归纳法1. 数列的基本概念:数列的定义、通项公式、前n项和、递归公式等。

2. 常见数列:等差数列、等比数列、等差数列的前n项和、等比数列的前n项和等。

3. 数学归纳法:数学归纳法的基本原理、数学归纳法的应用等。

四、平面向量与解析几何1. 平面向量的基本概念:平面向量的定义、平面向量的运算、平面向量的共线条件等。

2. 向量的数量积与向量的夹角:向量的数量积的定义、数量积的性质、数量积与向量夹角的关系等。

3. 平面向量的坐标表示:平面向量的坐标表示、平面向量的数量积的坐标表示等。

4. 解析几何中的图形问题:平面几何基础知识、平面上的直线、曲线、图形的性质等。

5. 解析几何中的方程问题:直线的方程、圆的方程等。

沪版高二上数学知识点总结

沪版高二上数学知识点总结

沪版高二上数学知识点总结高二上学期的数学知识点总结本文旨在总结高二上学期的数学知识点,以便帮助学生巩固知识并为考试做好准备。

总结内容按照数学课本中的章节顺序,包括了必备的基础知识和重要的解题技巧。

1. 函数与导数1.1 函数基础知识函数的定义、函数图像的性质、函数的分类与表示方法等基础知识。

1.2 导数与导数的应用导数的定义、导数的运算法则、导数与函数图像、导数的应用(极值、最值、图像研究)等重要内容。

2. 三角恒等变换与解三角形2.1 三角恒等变换常用的三角恒等变换(比如:倒数关系、和差化积、倍角公式等)以及它们的应用。

2.2 解三角形利用正弦定理、余弦定理、正切定理等解各类三角形问题。

3. 平面向量与解析几何3.1 平面向量平面向量的定义、加减法、数量积、向量的夹角等基本概念和常用性质。

3.2 解析几何平面直角坐标系、直线的方程、圆的方程、与圆相关的基本概念与性质等。

4. 概率4.1 随机事件与概率随机事件的定义、事件间的关系、事件的概率计算方法等基础知识。

4.2 条件概率与独立事件条件概率的定义、乘法定理、贝叶斯定理、独立事件的概念与性质等。

5. 数列与数列的极限5.1 等差数列与等比数列等差数列与等差数列的性质、求和公式等基础内容。

5.2 数列极限与数列极限计算数列极限的定义、有界数列的性质、夹逼定理等重要概念和计算方法。

6. 三角函数与二次函数6.1 三角函数与单位圆三角函数的定义、周期性与性质、三角函数与图像等内容。

6.2 二次函数二次函数的定义、图像性质、与二次函数相关的基本概念和解题技巧等。

以上是高二上学期数学课程的主要知识点总结。

希望同学们通过复习与实践,掌握这些知识,为更高的学习和考试打下坚实的基础!。

上海高中数学知识点全总结

上海高中数学知识点全总结一、代数与函数1. 集合与函数的概念集合的基本概念、表示法和运算;函数的定义、性质和运算;特殊函数(如一次函数、二次函数、幂函数、指数函数、对数函数、三角函数)的图像和性质。

2. 代数式的运算整式的加减乘除、因式分解;分式的约分和通分;多项式的根的求解;复数的基本概念和运算。

3. 不等式一元一次不等式和一元二次不等式的解法;不等式的证明;绝对值不等式的解集求解。

4. 函数的极限与连续性数列极限的概念和性质;函数极限的定义、性质和计算;无穷小量和无穷大量的概念;函数的连续性。

5. 导数与微分导数的定义、几何意义和物理意义;常见函数的导数;高阶导数;隐函数的求导;微分的概念和应用。

6. 函数的极值与最值问题极值存在的条件;最值的求解方法;实际问题中的最大值和最小值问题。

7. 函数的图像与性质函数的单调性、奇偶性、周期性;三角函数的图像和性质;指数函数和对数函数的图像;反函数的概念。

二、几何1. 平面几何点、线、面的基本性质;直线和圆的方程;圆锥曲线(椭圆、双曲线、抛物线)的方程和性质;多边形的面积和几何变换。

2. 空间几何空间直线和平面的方程;空间向量的基本概念和运算;立体几何图形(棱柱、棱锥、圆柱、圆锥、球)的体积和表面积计算;空间几何体的外接和内切问题。

3. 解析几何坐标系的建立和应用;曲线的参数方程;极坐标系和直角坐标系的转换;曲线的对称性。

三、概率与统计1. 概率论基础随机事件的概率;条件概率和独立事件;贝叶斯定理;随机变量及其分布;离散型和连续型随机变量的概率密度函数。

2. 统计学基础数据的收集和整理;平均数、中位数、众数、方差、标准差的概念和计算;数据的图形表示(如直方图、箱线图);线性回归分析。

四、数学分析1. 数列的极限数列极限的概念;数列极限的性质;无穷等比数列的极限;级数的概念和收敛性。

2. 函数的极限与连续性函数极限的ε-δ定义;连续函数的性质和分类;闭区间上连续函数的性质。

上海高二数学知识点总结

上海高二数学知识点总结数学是一门抽象而精密的学科,对于高中学生来说,数学课程占据着重要的位置。

作为上海高二学生,你需要掌握并理解各种数学知识点,以便在考试中取得好成绩。

以下是对上海高二数学考试中常见的知识点的总结。

一、函数与方程1.1 函数的定义和性质函数是一种特殊的关系,它将一个集合的每个元素映射到另一个集合的唯一元素上。

函数的基本性质包括定义域、值域、单调性、奇偶性等。

1.2 一次函数一次函数是指形如 y = kx + b 的函数表达式,其中 k 和 b 是常数。

理解一次函数的图像特征以及斜率的含义是重要的。

1.3 二次函数与图像二次函数的表达式为 y = ax^2 + bx + c,其中 a、b、c 是常数且a ≠ 0。

掌握二次函数的图像特征、顶点、对称轴等内容。

1.4 绝对值函数与图像绝对值函数的表达式为 y = |x|。

了解绝对值函数的图像特征、定义域、值域等。

二、数列与数列极限2.1 等差数列等差数列是指一个数列中任意两个相邻的项之差都相等。

掌握等差数列的通项公式、求和公式。

2.2 等比数列等比数列是指一个数列中任意两个相邻的项之比都相等。

了解等比数列的通项公式、求和公式。

2.3 数列极限数列极限是指数列中项随着索引的增大而趋于无穷大或无穷小的过程。

理解数列极限的概念、性质和计算方法。

三、三角函数与三角恒等式3.1 三角函数的定义与性质理解正弦函数、余弦函数、正切函数等的定义及其基本性质。

3.2 三角函数的图像与周期性掌握三角函数图像的基本特征、周期性及其变换。

3.3 三角恒等式三角恒等式是指等式两边的三角函数可以相互转化的恒等等式。

熟练掌握三角恒等式的推导和应用。

四、空间几何与立体几何4.1 点、直线与平面了解点、直线和平面的定义、性质以及它们之间的关系。

4.2 空间几何中的投影与距离学会计算点在直线或平面上的投影以及点到直线或平面的距离。

4.3 球与球面了解球的定义、性质以及球面的方程和性质。

上海数学高二知识点总结

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n =⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数列:1.数列的有关概念:(1) 数列:按照一定次序排列的一列数。

数列是有序的。

数列是定义在自然数N*或它的有限子集{1,2,3,…,n}上的函数。

(2) 通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。

如: 221na n =-。

(3) 递推公式:已知数列{a n }的第1项(或前几项),且任一项a n 与他的前一项a n-1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如: 121,2,a a ==12(2)n n n a a a n --=+>。

2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。

(3) 解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)nn n S n aS S n -=⎧=⎨-≥⎩(三)不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,ab bc a c >>⇒>; ③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1n na b a b n n >>⇒>∈N >;⑧)0,1a b n n >>>∈N >.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。

(完整)上海教材高中数学知识点总结(最全),文档

目录一、会集与常用逻辑二、不等式三、函数看法与性质四、根本初等函数五、函数图像与方程六、三角函数七、数列八、平面向量九、复数与推理证明十、直线与圆十一、曲线方程十二、矩阵、行列式、算法初步十三、立体几何十四、计数原理十五、概率与统计一、会集与常用逻辑1.会集看法元素:互异性、无序性2.会集运算全集U:如U=R交集: A B { x x A且 x B}并集: A B { x x A或x B}补集: C U A { x x U且x A}3.会集关系空集A子集 A B :任意x A x BA B A A B A B B A B注:数形结合 --- 文氏图、数轴4.四种命题原命题:假设p 那么 q抗命题:假设q 那么 p 否命题:假设p 那么q逆否命题:假设q 那么p原命题逆否命题否命题抗命题5.充分必要条件p 是 q 的充分条件:P qp 是 q 的必要条件:P qp 是 q 的充要条件:p? q6.复合命题的真值①q真〔假〕 ? “q〞假〔真〕②p、 q 同真 ? “ p∧ q〞真③p、 q 都假 ? “ p∨ q〞假7.全称命题、存在性命题的否认M, p(x 〕否认为 :M,p( X )M, p(x 〕否认为 :M,p( X )二、不等式1.一元二次不等式解法假设a0 , ax2bx c 0 有两实根 , () ,那么ax2bx c0解集 ( ,)ax 2bx c 0 解集 ( ,)(, )注:假设 a 0 ,转变为 a0 情况2.其他不等式解法 —转变x a a x ax 2 a 2x ax a 或 xax 2a2三、函数看法与性质1.奇偶性f(x) 偶函数f ( x)f ( x)f(x) 图象关于 y 轴对称f(x) 奇函数f ( x)f ( x)f(x) 图象关于原点对称注:① f(x) 有奇偶性定义域关于原点对称②f(x) 奇函数 , 在 x=0 有定义f(0)=0③“奇 +奇=奇〞〔公共定义域内〕2.单调性f(x) 增函数: x < x2 f(x ) <f(x2)11或 x > x2 f(x ) > f(x )112f (x)g( x)0 f ( x)g ( x) 0f ( x ) f ( x )或12a f ( x ) a g ( x )f ( x)g( x) 〔 a 1〕log a f ( x) log a g( x)f ( x) 00 a〔〕f ( x)g( x)13.根本不等式① a 2 b 2 2ab②假设 a,b R a b ab,那么2注:用均值不等式 ab 2 ab 、 ab (a b) 22求最值条件是“一正二定三相等〞f(x) 减函数:?注:①判断单调性必定考虑定义域② f(x) 单调性判断定义法、图象法、性质法“增 +增 =增〞③奇函数在对称区间上单调性相同偶函数在对称区间上单调性相反3.周期性T 是 f (x)周期 f (x T)f (x) 恒成立〔常数 T0 〕4.二次函数解析式: f(x)=ax2+bx+c , f(x)=a(x-h)2+kf(x)=a(x-x1)(x-x 2)对称轴: xb 极点: (b , 4 ac 2a2 a 4 a单调性: a>0,(b ] 递减, [,2 a当 xb, f(x) min4 acb22a 4 a奇偶性: f(x)=ax 2+bx+c 是偶函数b=0闭区间上最值:配方法、图象法、谈论法 ---注意对称轴与区间的地址关系注:一次函数 f(x)=ax+b 奇函数b=0b2log a b log a nbn 1)log b ab , ) 递加注:性质 log a 10 log a a 1 a log a N N常用对数 lg N log 10 N , lg 2 lg 5 12 a自然对数 ln N log e N , ln e13.指数与对数函数y=a x 与 y=log a x定义域、值域、过定点、单调性?xa图象关于 y=x 对称〔互为反函数〕注: y=a 与 y=log xy x 2 , yx 3, y 1x 1四、根本初等函数4.幂函数x 2 , ya n 1ny x 在第一象限图象以下:1.指数式a1 (a0)amm ana n2.对数式log a N ba bN 〔 a>0,a ≠ 1〕11log a MN log a M log a N log aMlog a M log a NNlog a M n n log a Mlog m b lg blog a blg alog m ay y五、函数图像与方程y=f(x)y=f(|x|) 1.描点法函数化简→定义域→谈论性质〔奇偶、单调〕取特别点如零点、最值点等2.图象变换平移:“左加右减,上正下负〞y f ( x)y f ( x h)伸缩: y f ( x)每一点的横坐标变为原来的倍y f ( 1 x)对称:“对称谁,谁不变,对称原点都要变〞y f (x)x轴y f ( x)y f (x)y轴y f ( x)y f (x)原点y f (x)直线x a注: y f (x)y f (2a x)翻折: y f ( x)y| f (x) |保存x轴上方局部,并将下方局部沿x 轴翻折到上方yy=f(x)yy=|f(x)|aob cxa o bc x3.零点定理假设 f ( a) f (b)0 ,那么y f ( x) 在( a, b)内有零点〔条件: f (x) 在[ a, b]上图象连续不中止〕注:① f ( x) 零点: f ( x)0 的实根②在 [ a, b] 上连续的单调函数 f (x) ,f (a) f (b)0那么 f (x) 在( a,b)上有且仅有一个零点③二分法判断函数零点--- f ( a) f (b) 0 ?六、三角函数1.看法第二象限角 (2k,2k) (k Z )22.弧长l r扇形面积S1lr23.定义siny xtanycosr xr其中 P( x, y) 是终边上一点, PO r4.符号“一正全、二正弦、三正切、四余弦〞5.引诱公式:“奇变偶不变,符号看象限〞a obc x a o b c x y f (x)y f (| x |) 保存 y 轴右边局部,并将右边局部沿y 轴翻折到左边如 Sin(2)sin,cos(/ 2)sin 6.特别角的三角函数值3 64322sin0123101 222cos13211 222tg0313/0/ 37.根本公式同角 sin 2cos21sin tancos和差 sin sin cos cos sin cos cos cos sin sintantan tan 1tan tan倍角 sin 22sin coscos22221 12 cos sin2cos2sin2tantan 21 tan 2降幂 cos 2α = 1 cos2sin2α=1cos222叠加 sin cos 2 sin()43 sin cos 2 sin()a sinb cos a2b2 sin()(tan a )b8.三角函数的图象性质y=sinx y=cosx y=tanx图象单调性:(,)增(0, )减( ,)增2 2 2 2sinx cosx tanx值域[-1 , 1][-1 , 1]无奇偶奇函数偶函数奇函数周期2π2ππ对称轴x k/ 2x k无中心k ,0/ 2k ,0k / 2,0注: k Z69.解三角形根本关系 :sin(A+B)=sinCcos(A+B)=-cosCtan(A+B)=-tanCsinA BcosC22正弦定理 :a=bcsin A =sin Csin Ba 2R sin Aa :b :c sin A : sin B : sin C余弦定理 : a 2=b 2+c 2-2bccosA 〔求边〕b 2c 2 a 2cosA=〔求角〕2bc面积公式 :S △= 1absinC2注:ABC 中, A+B+C=? A Bsin A sin Ba 2>b 2+c 2? ∠A >2七、数 列2、等比数列定义 : a n 1 ( 0)a n q q通项 : a n a 1q n 1na 1 (q 1)求和 : S na 1 (1 q n )1)1 (qq中项 : b 2ac 〔 a, b, c 成等比〕性质 :假设 m n p q那么 a m a n a pa q3、数列通项与前 n 项和的关系s 1a 1 (n 1)a ns n 1 (n2)s n4、数列求和常用方法公式法、裂项法、错位相减法、倒序相加法八、平面向量1、等差数列定义 : a n 1 通项 : a n求和 : S na n d a 1(n 1)dn(a 1a n ) 12na 1n( n 1)d21.向量 加减三角形法那么,平行四边形法那么AB BCAC 首尾相接, OBOC = CB 共始点中点公式: ABAC2 AD D 是BC 中点2. 向量 数量积a a bcosy 1 y 2b == x 1 x 2a c〔 a, b, c 成等差〕中项 : b2性质 :假设 m np q ,那么 a m a n a pa q注:① a , b 夹角:00≤θ≤1800② a, b 同向: a b a b3.根本定理a1e12e2〔 e1 ,e2不共线--基底〕平行: a // b a b x1 y2x2 y1〔 b0 〕垂直: a b a b 0x1 x2y1 y2 0模: a =x 2y22(a b) 2 a b夹角: cosa b| a || b |注:① 0 ∥ a② a b c a b c 〔结合律〕不成立③ a b a c b c 〔消去律〕不成立九、复数与推理证明1.复数看法复数: z a bi (a,b R) ,实部a、虚部b分类:实数〔 b 0 〕,虚数〔 b 0〕,复数集C注: z 是纯虚数 a 0 , b 0相等:实、虚局部别相等共轭: z a bi模: z a 2b2z z2z复平面:复数 z 对应的点(a, b)2.复数运算加减:〔 a+bi 〕± (c+di)= ?乘法:〔 a+bi 〕〔 c+di 〕 =?除法:abi =(a bi )(c di ) ==c di(c di )(c di )乘方:i2 1 ,i n i 4 k r i r3.合情推理类比:特别推出特别归纳:特别推出一般演绎:一般导出特别〔大前题→小前题→结论〕4.直接与间接证明综合法:由因导果比较法:作差—变形—判断—结论反证法:反设—推理—矛盾—结论解析法:执果索因解析法书写格式:要证 A 为真,只要证 B 为真,即证,这只要证 C 为真,而 C 为真,故 A 必为真注:常用解析法研究证明路子,综合法写证明过程5.数学归纳法:(1)考据当 n=1 时命题成立 ,(2) 假设当 n=k(k N*,k1) 时命题成立,证明当 n=k+1 时命题也成立由 (1)(2) 知这命题对所有正整数 n 都成立注:用数学归纳法证题时,两步缺一不可以,归纳假设必定使用十、直线与圆1、倾斜角范围 0,斜率y2y1 k tanx1x2注:直线向上方向与 x 轴正方向所成的最小正角倾斜角为 90 时,斜率不存在2、直线方程点斜式 y y0k (x x0 ) ,斜截式 y kx by y1x x1,截距式x y1两点式y2y1x2x1a b 一般式 Ax By C0注意适用范围:①不含直线 x x0②不含垂直 x 轴的直线③不含垂直坐标轴和过原点的直线3、地址关系〔注意条件〕平行k1k2且 b1b2垂直k1k21垂直A1 A2 B1B2 0 4、距离公式两点间距离: |AB|=( x1x2 ) 2( y1y2 ) 2圆一般方程: x2y 2Dx Ey F 0〔条件是?〕圆心 D ,ED 2E24F半径 r2226、直线与圆地址关系地址关系相切订交相离几何特色d rd r d r代数特色△ 0△ 0△ 0注:点与圆地址关系(x0a)2( y0b)2r 2点P x0, y0在圆外7、直线截圆所得弦长AB 2 r 2 d 2十一、圆锥曲线一、定义椭圆: |PF1|+|PF2|=2a(2a>|F1F2|)点到直线距离: d Ax0By0CA2B2双曲线: |PF 1|-|PF 2|= ± 2a(0<2a<|F 1F2|)抛物线:与定点和定直线距离相等的点轨迹5、圆标准方程:( x a)2( y b)2r 2圆心( a , b ),半径r二、标准方程与几何性质〔如焦点在x 轴〕椭圆 x2y 2 1( a>b>0)a 2b 2双曲线x 2 y 2 1(a>0,b>0)a 2b 2中心 原点 对称轴 ? 焦点 F 1(c,0) 、 F 2(-c,0)极点 : 椭圆 ( ± a,0),(0,± b) ,双曲线 ( ± a,0)范围 : 椭圆 -a x a,-b y b双曲线 |x| a ,y R焦距 :椭圆 2c 〔c= a 2b 2 〕双曲线 2c 〔 c=a2b 2〕2a 、 2b: 椭圆长轴、短轴长,双曲线实轴、虚轴长离心率 : e=c/a 椭圆 0<e<1, 双曲线 e>1注:双曲线x 2y 2 1渐近线 y b x a 2b 2 a方程 mx 2 ny 2 1 表示椭圆 m 0,n0.m n方程 mx 2ny 21 表示双曲线mn抛物线 y 2=2px(p>0)极点〔原点〕 对称轴〔 x 轴〕张口〔向右〕 范围 x 0离心率 e=1焦点 F ( p,0)准线 xp 22十二、矩阵、行列式、算法初步十、算法初步一.程序框图程序框名称 功能起止框初步和结束输入和输出的信息输入、输出框赋值、计算办理框判断某一条件可否成立判断框循环框重复操作以及运算二.根本算法语句及格式1 输入语句 : INPUT “提示内容〞 ;变量2 输出语句 : PRINT “提示内容〞 ;表达式3 赋值语句 :变量 =表达式4 条件语句“ IF —THEN — ELSE 〞语句“ IF — THEN 〞语句IF条件THEN IF条件THEN语句1语句ELSE END IF语句 2END IF5 循环语句当型循环语句直到型循环语句WHILE条件DO循环体循环体WEND LOOP UNTIL条件当型“先判断后循环〞直到型“先循环后判断〞三.算法案例1、求两个数的最大合约数辗转相除法:到达余数为0更相减损术:到达减数和差相等2、多项式 f(x)= a n x n+a n-1 x n-1+.+a1x+a 0的求值秦九韶算法: v1 =a n x+a n-1v2=v 1x+a n-2v3=v 2x+a n-3v n=v n-1x+a0注:递推公式v0=a n v k=v k-1X +a n-k(k=1,2,n)求 f(x) 值,乘法、加法均最多n 次3、进位制间的变换k 进制数变换为十进制数:a n a n 1 .....a1 a0 (k ) a n k n a n 1k n 1......... a1k a0十进制数变换成k 进制数:“ 除 k 取余法〞例 1辗转相除法求得123 和 48 最大合约数为 3例 2 f(x)=2x 5- 5x4- 4x3+3x2- 6x+7,秦九韶算法求 f(5) 123=2×48+ 27v0=248=1×27+ 21v1=2×5-5=527 =1×21+ 6v2=5×5-4=2121=3× 6+3v=21× 5+3=10836=2×3+0v4=108×5-6=534v5=534× 5+7=2677十三、立体几何1.三视图正视图、侧视图、俯视图' ''=452.直观图:斜二测画法X OY平行 X 轴的线段,保平行和长度平行 Y 轴的线段,保平行,长度变原来一半3.体积与侧面积V 柱 =S 底 h V锥 =1S 底 h V球 =4πR333S圆锥侧 =rl S圆台侧= (R r )l S球表 =4 R2 4.公义与推论确定一个平面的条件:①不共线的三点②一条直线和这直线外一点③两订交直线④两平行直线公义:平行于同一条直线的两条直线平行定理:若是两个角的两条边分别对应平行,那么这两个角相等或互补。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n =⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数列:1.数列的有关概念:(1) 数列:按照一定次序排列的一列数。

数列是有序的。

数列是定义在自然数N*或它的有限子集{1,2,3,…,n }上的函数。

(2) 通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。

如:221n a n =-。

(3) 递推公式:已知数列{a n }的第1项(或前几项),且任一项a n 与他的前一项a n -1(或前几项)可以用一个公式来表示,这个公式即是该数列的递推公式。

如:121,2,a a ==12(2)n n n a a a n --=+>。

2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。

(3) 解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)nn n S n a S S n -=⎧=⎨-≥⎩(三)不等式1、0a b a b ->⇔>;0a b a b -=⇔=;0a b a b -<⇔<.2、不等式的性质: ①a b b a >⇔<; ②,ab bc a c >>⇒>; ③a b a c b c >⇒+>+;④,0a b c ac bc >>⇒>,,0a b c ac bc ><⇒<;⑤,a b c d a c b d >>⇒+>+;⑥0,0a b c d ac bd >>>>⇒>; ⑦()0,1n na b a b n n >>⇒>∈N >;⑧)0,1a b n n >>>∈N >.小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。

在字母比较的选择或填空题中,常采用特值法验证。

3、一元二次不等式解法: (1)化成标准式:20,(0)ax bx c a ++>>;(2)求出对应的一元二次方程的根;(3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。

线性规划问题:1.了解线性约束条件、目标函数、可行域、可行解、最优解2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤:(1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。

两类主要的目标函数的几何意义: ①zax by =+-----直线的截距;②22()()z x a y b =-+------两点的距离或圆的半径;4、均值定理: 若0a>,0b >,则a b +≥2a b+≥.()20,02a b ab a b +⎛⎫≤>> ⎪⎝⎭;2a b+称为正数a 、b a 、b 的几何平均数. 5、均值定理的应用:设x 、y 都为正数,则有⑴若x y s +=(和为定值),则当x y =时,积xy 取得最大值24s .⑵若xy p =(积为定值),则当x y =时,和x y +取得最小值.注意:在应用的时候,必须注意“一正二定三等”三个条件同时成立。

向量——既有大小又有方向的量在此规定下向量可以在平面(或空间)平行移动而不改变。

(6)并线向量(平行向量)——方向相同或相反的向量。

规定零向量与任意向量平行。

(7)向量的加、减法如图:(8)平面向量基本定理(向量的分解定理)的一组基底。

(9)向量的坐标表示表示。

平面向量的数量积数量积的几何意义:(2)数量积的运算法则[练习]答案:答案:2答案:线段的定比分点直线与方程3.1直线的倾斜角和斜率3.1倾斜角和斜率1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时, 规定α= 0°.2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°.3、直线的斜率:一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0;⑵当直线l与x轴垂直时, α= 90°, k 不存在.由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在.4、直线的斜率公式:给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率:斜率公式: k=y2-y1/x2-x1()()22122221PP x x y y =-+-3.1.2两条直线的平行与垂直1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,那么它们互相垂直,即3.2.1 直线的点斜式方程1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=-2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y +=3.2.2 直线的两点式方程1、直线的两点式方程:已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠y -y1/y -y2=x -x1/x -x22、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a3.2.3 直线的一般式方程1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)2、各种直线方程之间的互化。

3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标1、给出例题:两直线交点坐标L 1 :3x +4y -2=0 L 1:2x +y +2=0 34202220x y x y +-=⎧⎨++=⎩得 解:解方程组 x=-2,y=2所以L1与L2的交点坐标为M (-2,2)3.3.2 两点间距离两点间的距离公式 3.3.3点到直线的距离公式1.点到直线距离公式: 点),(00y x P 到直线0:=++C By Ax l的距离为:2200BA CBy Ax d +++=2、两平行线间的距离公式:已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 的距离为2221BA C C d +-=第四章圆与方程4.1.1 圆的标准方程1、圆的标准方程:222()()x a y b r -+-=圆心为A(a,b),半径为r 的圆的方程2、点00(,)M x y 与圆222()()x a y b r -+-=的关系的判断方法:(1)2200()()x a y b -+->2r ,点在圆外 (2)2200()()x a y b -+-=2r ,点在圆上 (3)2200()()x a y b -+-<2r ,点在圆内4.1.2 圆的一般方程1、圆的一般方程:022=++++F Ey Dx y x2、圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0. ②没有xy 这样的二次项.(2)圆的一般方程中有三个特定的系数D 、E 、F ,因之只要求出这三个系数,圆的方程就确定了. (3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显。

4.2.1 圆与圆的位置关系1、用点到直线的距离来判断直线与圆的位置关系.设直线l :0=++c by ax ,圆C :022=++++F Ey Dx y x ,圆的半径为r ,圆心)2,2(ED --到直线的距离为d ,则判别直线与圆的位置关系的依据有以下几点:(1)当r d >时,直线l 与圆C 相离;(2)当r d =时,直线l 与圆C 相切; (3)当r d <时,直线l 与圆C 相交;4.2.2 圆与圆的位置关系两圆的位置关系.设两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点:(1)当21r r l +>时,圆1C 与圆2C 相离;(2)当21r r l +=时,圆1C 与圆2C 外切;(3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;(4)当||21r r l -=时,圆1C 与圆2C 内切;(5)当||21r r l -<时,圆1C 与圆2C 内含;4.2.3 直线与圆的方程的应用1、利用平面直角坐标系解决直线与圆的位置关系;2、过程与方法用坐标法解决几何问题的步骤:第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题; 第三步:将代数运算结果“翻译”成几何结论.4.3.1空间直角坐标系1、点M 对应着唯一确定的有序实数组),,(z y x ,x 、y 、z 分别是P 、Q 、R 在x 、y 、z 轴上的坐标2、有序实数组),,(z y x ,对应着空间直角坐标系中的一点3、空间中任意点M 的坐标都可以用有序实数组),,(z y x 来表示,该数组叫做点M 在此空间直角坐标系中的坐标,记M ),,(z y x ,x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标。

4.3.2空间两点间的距离公式1、空间中任意一点),,(1111z y x P 到点),,(2222z y x P 之间的距离公式22122122121)()()(z z y y x x P P -+-+-=圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

相关文档
最新文档