第5讲 二次曲面

合集下载

空间解析几何二次曲面

空间解析几何二次曲面

二次曲面的性质
封闭性
01
二次曲面是封闭的,即它包围着一个确定的区域。
连续性
02
二次曲面在三维空间中是连续的,没有断裂或突起。
可微性
03
二次曲面在三维空间中是可微的,这意味着它的表面是平滑的。
02
二次曲面方程
二次曲面方程的建立
定义
二次曲面是三维空间中通过两个二次方程定义的 几何体。
形式
二次曲面的一般方程为 (Ax^2 + By^2 + Cz^2 + 2Fxy + 2Gxz + 2Hyz = D)。
优化方法
常用的优化方法包括数学规划、遗传算法、 模拟退火等,通过这些方法可以找到最优的 设计方案,提高产品的性能和降低成本。
感谢您的观看
THANKS
特点
二次曲面具有独特的形状和性质,其 形状由二次函数的系数决定。
二次曲面的分类
1 2
椭球面
当 $f$ 为正时,二次曲面呈现为椭球形状,其长 轴和短轴分别与 $x$ 轴和 $y$ 轴平行或垂直。
抛物面
当 $f$ 为一次函数时,二次曲面呈现为抛物线形 状,其开口方向与 $z$ 轴平行。
3
双曲面
当 $f$ 为负时,二次曲面呈现为双曲形状,其形 状取决于 $x$ 轴和 $y$ 轴的方向。
工程设计
二次曲面在工程设计中用于描述各种形状的表面,如球面、抛物 面等。
物理模拟
在物理模拟中,二次曲面用于描述粒子在力场中的运动轨迹和分 布。
数据分析
在数据分析中,二次曲面用于拟合数据,以揭示数据之间的内在 关系和规律。
03
二次曲面在三维空间中的 表示
二次曲面在三维空间中的投影

曲面及其方程、二次曲面ppt课件

曲面及其方程、二次曲面ppt课件
37
三、柱面 定义 沿定曲线C 移动的动直线L 所形成的曲面称为柱面。
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
38
柱面举例 抛物柱面
平面
39
一般地,已知准线方程
母线平行于 z 轴的柱面方程为: 注意:方程中缺z,表示z可以任意取值,所以方程 表示母线平行于z轴的柱面。 一般地,在空间直角坐标下
8
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
9
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
17
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线一 次称为旋转曲面的母 线和旋转轴。
18
所求方程为
4
解 根据题意有
化简得所求方程
5
例4 方程 解 根据题意有
的图形是怎样的?
图形上不封顶,下封底.
6
以上几例表明研究空间曲面有两个基本问题: (1)已知曲面作为点的轨迹时,求曲面方程.
(讨论旋转曲面) (2)已知坐标间的关系式,研究曲面形状.
(讨论柱面、二次曲面)
7
二、旋转曲面
定义:以一条平面曲 线绕其平面上的一条 直线旋转一周所成的 曲面称为旋转曲面。 这条曲线和定直线分 别称为旋转曲面的母 线和旋转轴。

第五节常见的二次曲面及其方程

第五节常见的二次曲面及其方程

(2) y12 b2 , 实轴与 z 轴平行, 虚轴与 x 轴平行.
(3) y1 b, 截痕为一对相交于点 (0,b,0) 的直线.

x a

z c

0
,
y b

x a

z c

0
.
y b
(4) y1 b,
截痕为一对相交于点 (0,b,0) 的直线.

x a

z c

0
,

x a

z c

0
.
y b
y b
(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得双曲线.
平面 x a 的截痕是两对相交直线.
单叶双曲面图形 z
o
y
x
x2 a2

y2 b2

z2 c2

1
双叶双曲面
o
y
x
二、小结

c
2
x2 (c2
z12
)

b2 c2
y2 (c2
z12
)

1
z z1
| z1 | c
同理与平面 x x1 和 y y1 的交线也是椭圆.
椭圆截面的大小随平面位置的变化而变化.
椭球面的几种特殊情况:
(1) a b,
x2 a2

y2 a2

z2 c2

1
旋转椭球面
由椭圆
x2 a2

z2 c2
1绕
z 轴旋转而成.
方程可写为
x2 y2 a2

二次曲面部分内容总结归纳

二次曲面部分内容总结归纳

二次曲面部分内容总结归纳在数学中,二次曲面是一类重要的曲线图形,具有广泛的应用。

本文将对二次曲面的定义、性质以及常见的二次曲面进行总结归纳,以帮助读者更好地理解和应用这一内容。

一、二次曲面的定义和特点二次曲面是由二次方程定义的曲面,其一般方程可以表示为Ax² + By² + Cz² + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0,其中A、B、C、D、E、F、G、H、I、J为系数。

1. 定义:二次曲面是在三维空间中满足以上方程的点的集合。

它是由平面或曲线与另外一个平面所构成的立体。

2. 分类:根据系数之间的关系,二次曲面可以分为椭球面、双曲面、抛物面和圆锥曲面等。

3. 对称性:二次曲面通常具有一定的对称性,例如椭球面关于三个坐标轴对称,双曲面关于两个坐标轴对称,抛物面则关于一个坐标轴对称。

二、常见的二次曲面下面将介绍几种常见的二次曲面及其特点:1. 椭球面:椭球面是指A、B、C系数均为正数的二次曲面。

它可以是一个三维椭球,具有三个轴,其中有一个是最大的主轴。

2. 双曲面:双曲面是指A、B、C系数有正有负的二次曲面。

它可以是两个相交的曲面,呈现典型的双曲线形状。

3. 抛物面:抛物面是指A、B系数有一个为零的二次曲面。

它可以是开口向上或向下的形状,对称于坐标轴。

4. 圆锥曲面:圆锥曲面是指除了A、B、C系数外,D、E、F系数都为零的二次曲面。

它可以是圆锥的侧面,或者是圆锥的顶部和底部。

三、二次曲面的应用二次曲面具有广泛的应用,其中一些常见的领域包括:1. 几何学:二次曲面在几何学中的应用非常广泛,如描述平面、曲线和曲面之间的关系,解决几何问题等。

2. 物理学:在物理学中,二次曲面可以用来描述电磁场、电荷分布和光学等现象。

3. 工程学:二次曲面在工程学中常用于描述悬索桥、天线接收器的覆盖范围等。

4. 经济学:二次曲面可以用于描述经济模型中的供需曲线、成本函数等。

二次曲面【高等数学PPT课件】

二次曲面【高等数学PPT课件】

(一)椭球面
x2 a2

y2 b2

z2 c2
1(
x
a,
y
b,
z
c)
椭球面与三个坐标面的交线:

x
2

a
2

y2 b2

1,
z 0
z

x2 a2
y
0
z2 c2

1,
z

y2 b2

z2 c2

1.
x 0
z

o
o
y
y
y
x
x
x
(二)双曲面
第八节 二 次 曲 面
二次曲面的定义:
a11 x2 a22 y2 a33 z2 2a12 xy 2a23 yz
2a13 xz 2a14 x 2a24 y 2a34z a44 0
三元二次方程所表示的曲面称为二次曲面.
相应地平面被称为一次曲面.
用坐标面和平行于坐标面的平面与曲面 相截,考察其交线的形状,然后加以综合, 从而了解曲面的全貌.
z
z
z
o
y
o
x oy x
y x
z x2 y2 y x2 z2
x y2 z2
(2)
双曲抛物面 (马鞍面)
x2 y2
z( p 与 q 同号)
pq
z
o x
z o x
y
z x>0x<0
o y
y x
x2 y2 z
pq
y>0
y<0
x2 y2 z

高等数学 二次曲面

高等数学 二次曲面

(3)用坐标面 yoz ( x = 0), x = x1与曲面相截 ) 均可得抛物线. 均可得抛物线 时可类似讨论. 同理当 p < 0, q < 0 时可类似讨论
2007年8月 南京航空航天大学 理学院 数学系` 9
椭圆抛物面的图形如下: 椭圆抛物面的图形如下:
z o x y z
x
o
y
p < 0, q < 0
2007年8月
南京航空航天大学 理学院 数学系`
19
思考题
x 2 − 4 y 2 + z 2 = 25 方程 表示怎样的曲线? 表示怎样的曲线? x = −3
2007年8月
南京航空航天大学 理学院 数学系`
20
思考题解答
2 2 − 4 y + z = 16 x 2 − 4 y 2 + z 2 = 25 ⇒ . x = −3 x = −3
表示双曲线. 表示双曲线.
2007年8月
南京航空航天大学 理学院 数学系`
21
练 习 题
y2 + z2 − 2x = 0 一、求曲线 ,在 xoy 面上的投影曲线 z = 3 的方程, 的方程,并指出原曲线是什么曲线 . 画出方程所表示的曲面: 二、画出方程所表示的曲面: z x2 y2 1、 = + ; 3 4 9 2、16 x 2 + 4 y 2 − z 2 = 64 . 画出下列各曲面所围成的立体的图形: 三、画出下列各曲面所围成的立体的图形: y 1、 x = 0 , z = 0 , x = 1 , y = 2 , z = ; 4 2、 x = 0 , y = 0 , z = 0 , x 2 + y 2 = R 2 , y 2 + z 2 = R 2 (在第一卦限内 在第一卦限内) (在第一卦限内) .

曲面及其方程、二次曲面-PPT

8
•大家有疑问的,可以询问和交流
•可以互相讨论下,但要小声点
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
10
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
2
以下给出几例常见的曲面.
例 1 建立球心在点 M0 ( x0 , y0 , z0 )、半径为 R 的球面方程.
解 设M ( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
x x0 2 y y0 2 z z0 2 R 所求方程为 x x0 2 y y0 2 z z0 2 R2
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
21
例5 证明以oz轴为旋转轴,yoz坐标面上的已知曲线
f ( y, z) 0
C:
x
0
为母线所产生的旋转曲面S的方程为: f ( x2 y2 , z) 0
11
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
12
二、旋转曲面
定义:以一条平面曲线 绕其平面上的一条直线 旋转一周所成的曲面称 为旋转曲面。这条曲线 和定直线一次称为旋转 曲面的母线和旋转轴。
13
这条定曲线C 叫柱面的准线,动直线L叫柱面的母线。
观察柱面的 形成过程:
播放

高等数学课件D853二次曲面


(3) 截痕:与 z z1 ( z1 c)的交线为
椭圆:
a2 c2
x2 (c2
z12
)

b2 c2
y2 (c2
z12
)

1
z z1
同样 y y1 ( y1 b ) 及
也为椭圆.
的截痕
(4) 当 a=b 时为旋转椭球面; 当a=b=c时为球面.
11/24/2019
高等数学课件
若p a2 0, q b2 0
x2 ay2 (bz 1 )2 2b

1 4b2
是单叶双曲面;
11/24/2019
高等数学课件
机动 目录 上页 下页 返回 结束
例2 设空间曲面由双参数
x a(u )

y

b(u

)
u, R, a,b 0
z 2u
椭球面、抛物面、双曲面、锥面
适当选取直角坐标系可得它们的标准方程,下面仅
就几种常见标准型的特点进行介绍 .
研究二次曲面特性的基本方法: 截痕法
11/24/2019
高等数学课件
机动 目录 上页 下页 返回 结束
1. 椭球面
x2 a2

y2 b2

z2 c2
1
( a,b, c为正数)
(1)范围:
x a, y b, z c
当q 0, p 0时,
若p 0 z x2 py2 是椭圆抛物面;
若p 0 z x2 py2 是双曲抛物面;
当p 0, q 0时,
若q a2 0
x2

(az

1 )2 2a

高数课件30空间几何5二次曲面


聚焦和散射: 二次曲面可以 用于聚焦和散
射光线
成像和投影: 二次曲面可以 用于成像和投

光学器件设计: 二次曲面可以 用于设计光学 器件,如透镜、
反射镜等
二次曲面在其他领域的应用
建筑设计:二次曲面在建筑设计中的应用广泛,如悉尼歌剧院、北京鸟 巢等 工业设计:二次曲面在工业设计中的应用,如汽车车身设计、飞机机翼 设计等
二次曲面在微分几何对象的
微分性质
二次曲面:在 空间中具有二 次方程的曲面
应用:二次曲 面在微分几何 中常用于描述 曲面的性质, 如曲率、挠率

例子:二次曲 面在微分几何 中的应用包括 球面、椭球面、
抛物面等。
二次曲面在几何光学中的应用
反射和折射: 二次曲面可以 模拟光线的反 射和折射现象
二次曲面的投影作图法
投影法:将二次曲面投影到平面上,得到 投影曲线
投影曲线:二次曲面的投影曲线是二次曲 线
投影曲线的性质:二次曲线的性质决定了 二次曲面的性质
投影曲线的作图方法:根据二次曲线的性 质,选择合适的作图方法
投影曲线的性质:二次曲线的性质决定了 二次曲面的性质
投影曲线的性质:二次曲线的性质决定了 二次曲面的性质
机遇:二次曲面在数学建模中 的广泛应用
机遇:二次曲面在数学建模中 的创新和优化
二次曲面与其他数学知识的 联系
第五章
二次曲面与线性代数的联系
二次曲面的方程可以表示为线性代数中的二次型 二次曲面的切平面可以用线性代数中的向量和矩阵来表示 二次曲面的曲率可以用线性代数中的矩阵和向量运算来计算 二次曲面的投影可以用线性代数中的矩阵和向量运算来计算
二次曲面的几何变换作图法
平移变换:将二次曲面沿某个方向移动一定距离 旋转变换:将二次曲面绕某个点旋转一定角度 缩放变换:改变二次曲面的大小和形状 反射变换:将二次曲面沿某个轴线进行反射 复合变换:将上述几种变换组合使用,实现更复杂的作图效果

高等数学(下) 第5讲 理论-2课时

2x 3z 6 表示平面:
z
y o xz

2
线
o
y
为:
oy
3 x
x
z a2 x2 y2
例2
方程组
(
x

a )2 2

y2
a2 表示怎样的曲线? 4
解 z a2 x2 y2
表示上半球面,
(x

a )2

y2

a
2
表示圆柱面,
2
4
交线如图:
例3
曲线

一、空间曲线的一般方程
空间曲线C可看作空间两曲面的交线.
F ( x, y, z) 0 S1
G(x, y,z) 0 S2
空间曲线的一般方程 x
z
S1
S2
C
o
y
例1
方程组
x2
y2 1 表示怎样的曲线?
2x 3z 6
z
解 x2 y2 1 表示母线
平行于z轴的圆柱面:
o
y
x
3. 双曲柱面(一支)
y2 x2 1
z
b2 a2
b
o
y
x
六、空间区域简图
例1 由曲面 z 6 x2 y2 与 z x2 y2 围成一个 空间区域, 试作出它的简图.
例2 由曲面 x 0, y 0, z 0, x y 1, y2 z2 1 围 成一个空间区域(在第I卦限部分), 试作出它的简图.
定义3 平行于某定直线的直线L并沿定曲线 C 移动 所 形成的轨迹叫做柱面.
下面我们来分析一下方程
在空间表示怎样的曲面 .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
旋转过程中的特征:
z
如图
设 M ( x , y, z ),
o
(1) z z1
(2)点 M 到 z 轴的距离
M (0, y , z ) f ( y, z ) 0 M
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
截得一点,即坐标原点 O (0,0,0)
原点也叫椭圆抛物面的顶点.
四、小结
曲面方程的概念 F ( x , y , z ) 0.
旋转曲面的概念及求法. 柱面的概念(母线、准线).
椭球面、抛物面、双曲面、截痕法.
思考题
指出下列方程在平面解析几何中和空 间解析几何中分别表示什么图形?
(1) x 2; ( 3) y x 1.
y
椭球面与平面
z h 的交线为椭圆 2 2 2 x y h 2 2 1 2 b c a z h
例 2 已知 A(1,2,3), B( 2,1,4),求线段 AB 的 垂直平分面的方程.

设 M ( x , y , z ) 是所求平面上任一点,
根据题意有 | MA || MB |,
( 2) x 2 y 2 4;
思考题解答
方程
x2
x2 y2 4
y x 1
平面解析几何中
空间解析几何中
平行于 y 轴的直线 平行于 yoz 面的平面 圆心在(0,0) ,
以z 轴为中心轴的圆柱面
半径为2 的圆
斜率为1的直线
平行于 z 轴的平面
练 习 题
一、填空题: 1、与Z 轴和点 A(1 , 3 ,1) 等距离的点的轨迹方程是 _____________; 2、以点O ( 2 ,2 , 1) 为球心,且通过坐标原点的球面 方程是_______________; 2 2 2 3、球面: x y z 2 x 4 y 4 z 7 0 的球心是 点___________,半径 R __________; x2 y2 z2 4、设曲面方程 2 + 2 + 2 =1,当a b 时,曲面可由 a b c xoz 面上以曲线________________绕_______轴旋 转面成,或由 yoz 面上以曲线_______________ 绕________轴旋转面成 ;
第四节 二次曲面与空间曲线 一、曲面方程的概念
曲面的实例:水桶的表面、台灯的罩子面等.
曲面方程的定义:
如果曲面S 与三元方程F ( x , y , z ) 0 有下述关系:
(1)曲面 S 上任一点的坐标都满足方程; (2)不在曲面 S 上的点的坐标都不满足方程;
那么,方程 F ( x , y , z ) 0 就叫做曲面 S 的方程, 而曲面 S 就叫做方程的图形.
二、画出下列各方程所表示的曲面: a a 1、( x ) 2 y 2 ( ) 2 ; 2 2 2 2 x z 2、 1 ; 9 4 z 2 x2 . 3、
练习题答案
一、1、 z 2 2 x 6 y 2 z 11 0 ; 2、 x 2 y 2 z 2 4 x 4 y 2 z 0 ;3、(1,-2,2),4; x2 z2 y2 z2 x2 y2 4、 2 2 1, z , 2 2 1, z , 2 2 1, y , a c b c a b y2 z2 2 1, y ; 5、不含与该坐标轴同名的变量; 2 b c y2 1, y ; 6、 xoy 面上的双曲线 x 2 4 7、 yoz 面 上的直线 z y a , z ; 8、平行于 y 轴的一条直线,与yoz 面 面平行的平面; 9、圆心在原点,半径为 2 的圆,轴为 z 轴 ,半径为 2 的圆柱面.
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
定义 以一条平面
曲线绕其平面上的 一条直线旋转一周 所成的曲面称为旋 转曲面. 这条定直线叫旋转 曲面的轴.
二、旋转曲面
一条曲线绕平面上的 定义
一条直线旋转一周 所成的曲面称为旋 转曲面.
y z 2 1 椭圆柱面 // x轴 2 b c 2 2 x y 2 1 双曲柱面 // z 轴 2 a b x 2 2 pz 抛物柱面 // y 轴
2
2
五、椭圆抛物面
x y 2 z 椭圆抛物面 2 a b
用截痕法讨论:
用坐标面 xoy ( z 0) 与曲面相截
2
2
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
d
1 1 1
y
d
x y | y1 |
2 2 2
x
2
将 z z1 , y1 x y 代入
f ( y1 , z1 ) 0
得方程
f x 2 y 2 , z 0,


yoz 坐标面上的已知曲线 f ( y , z ) 0 绕 z 轴旋
转一周的旋转曲面方程.
同理: yoz 坐标面上的已知曲线 f ( y , z ) 0 绕 y 轴旋转一周的旋转曲面方程为
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
播放
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
x2 y2 z2 2 2 1 2 a b c
椭球面与 三个坐标面 的交线:
2 z2 x2 2 1 , a c y 0
2 y2 x2 2 1 a b , z 0
2 y2 2 z2 1 . b c x 0
z
o x
f y,

x 2 z 2 0.

例4
在 yoz 平面上一条直线 l : z ky ,
让其绕 z 轴旋转一周形成的曲面方程:
z k x 2 y 2
称该旋转曲面为圆锥面
z

o
x
M1 (0, y1 , z1 )
y
M ( x, y, z )

y2 z2 5, yoz 平面上的双曲线 b2 c2 1 分别绕 在
5、若柱面的母线平行于某条坐标轴,则柱面方程的特 点是_________;
y2 x 2 z 1 是由_______绕_________轴放 6、曲面 4
置一周所形成的; 2 2 2 7、曲面 ( z a ) x y 是由______________绕_____ 轴旋转一周所形成的; 8、方程 x 2 在平面解析几何中表示___________在空 间解析几何中表示___________________; 2 2 9、方 程 x y 4 在 平 面 解 析 几 何 中 表 示 _______________ , 在 空 间 解 析 几 何 中 表 示 _______________.
三、柱面
定义 平行于定直线并沿定曲线 C 移动的直线 L 所形成的曲面称为柱面. 这条定曲线C 叫柱面的准线 L ,动直线 叫 柱面的母线. 观察柱面的形 成过程:
相关文档
最新文档