初中数学知识点精讲精析 一元二次方程知识讲解

合集下载

一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)

一元二次方程的概念(知识点考点)九年级数学上册知识点考点(解析版)

一元二次方程的概念(知识点考点一站到底)知识点☀笔记1.一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。

2.一元二次方程概念三要素: (1)只含有一个未知数;(2)且未知数次数最高次数是2; (3)是整式方程。

3. 一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,经过整理,•都能化成如下形式ax 2+bx+c=0(a ≠0)。

一个一元二次方程经过整理化成ax 2+bx+c=0(a ≠0)后,其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项。

考点☀梳理考点1:一元二次方程的概念必备知识点:只含有一个未知数,并且含有未知数的最高次数是2的整式方程叫一元二次方程。

解题指导:① 要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为 ax 2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。

② 将方程化为一般形式:ax 2+bx+c=0时,应满足(a≠0) 题型1 判断一元二次方程例1.(2022·江苏泰州·八年级期末)下列方程中是一元二次方程的是( ) A .()2224x x -+= B .2220x x ++=C .2130x x+-= D .21xy +=【答案】B【分析】根据一元二次方程的定义:只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程解决此题.【详解】解:A .由(x -2)2+4=x 2,得-4x +8=0,那么(x -2)2+4=x 2不是一元二次方程,故不符合题意. B .根据一元二次方程的定义,x 2+2x +2=0是一元二次方程,故符合题意.C .根据一元二次方程的定义,x 2+1x-3=0不是一元二次方程,而是分式方程,故不符合题意.D .根据一元二次方程,xy +2=1不是一元二次方程,故不符合题意. 故选:B .【点睛】本题主要考查一元二次方程的定义,熟练掌握一元二次方程的定义是解决本题的关键. 例2.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键. 练习1.(2022·湖北十堰·八年级期末)下列是一元二次方程的是( ) A .ax 2+bx+c=0 B .x -2=x 2 C .x 2-2=x (x -2)D .11x x+=【答案】B【分析】根据一元二次方程的概念,对选项进行判断即可一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程.【详解】A. ax 2+bx+c=0,当a ≠0是一元二次方程,故该选项不正确,不符合题意; B. x -2=x 2是一元二次方程,故该选项正确,符合题意;C. x 2-2=x (x -2)整理得220x -=,不是一元二次方程,故该选项不正确,不符合题意;D.11x x+=,不是整式方程,故该选项不正确,不符合题意. 故选B .【点睛】本题考查了一元二次方程的定义,掌握定义是解题的关键.练习2.(2022·全国·九年级单元测试)下列方程一定是一元二次方程的是( ) A .20ax bx c ++= B .()222322x x x -=-C .3270x x -+=D .()2240x --=【答案】D【分析】根据一元二次方程的定义判断选择即可.【详解】A .当0a =时,原方程不是一元二次方程,故不符合题意; B .原方程整理得:34x -=-,不是一元二次方程,故不符合题意; C .3270x x -+=是一元三次方程,故不符合题意; D .符合一元二次方程的定义,故符合题意; 故选D .【点睛】本题考查判断一元二次方程.掌握一元二次方程的定义是解题关键.练习3.(2022·全国·九年级单元测试)下列方程中,是关于x 的一元二次方程的是( ) A .20ax bx c ++=B .210x y --=C .2210x x += D .()()121x x -+=【答案】D【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A 、当a =0时,不是一元二次方程,故本选项不符合题意; B 、含有两个未知数,不是一元二次方程,故本不选项符合题意; C 、不是整式方程,不是一元二次方程,故本选项不符合题意; D 、原方程整理得x 2+x -3=0是一元二次方程,故本选项符合题意; 故选:D .【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的最高次数是2的整式方程,叫一元二次方程. 题型2 利用一元二次方程的概念求参数例1.(2022·江苏·九年级课时练习)当m 为何值时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5. (1)为一元二次方程; (2)为一元一次方程. 【答案】(1)m =3 (2)m =﹣1或m =0,m =2【分析】(1)根据一元二次方程的定义,可得答案; (2)根据一元一次方程的定义,可得答案.(1)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5一元二次方程,得1210m m ⎧-=⎨+≠⎩,解得m =3.当m =3时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元二次方程.(2)由关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程,得m +1=0或11130m m m ⎧-=⎨++-≠⎩,解得m=﹣1或m =0,m =2,当m =﹣1或m =0,m =2时,关于x 的方程(m +1)x |m ﹣1|+(m ﹣3)x =5的一元一次方程.【点睛】本题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.例2.(2022·全国·九年级专题练习)若方程(2)310m m x mx --=是关于的一元二次方程,求m 的值. 【答案】2m =-.【分析】根据一元二次方程的定义得出m 2=2,20m -≠再求出答案即可.【详解】根据题意得2220m m ⎧=⎪⎨-≠⎪⎩ 解得22m m ⎧=±⎪⎨≠⎪⎩所以当方程2(2)310m m x mx ---=是关于的一元二次方程时,2m =-.【点睛】本题考查了一元二次方程的定义,注意:只含有一个未知数,并且所含未知数的项的最高次数是2次的整式方程,叫一元二次方程.m 【答案】4【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可 【详解】解:由题意,得4022m m +≠⎧⎨-=⎩解|m|-2=2得m=±4, 当m=4时,m+4=8≠0,当m=-4时,m+4=0不符合题意的要舍去, ∴m 的值为4.【点睛】本题考查一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点. 32mx x x mx -=-+程,m 应满足什么条件? 【答案】1m ≠【分析】先把方程整理为一元二次方程的一般形式,根据二次项系数不为零可得答案. 【详解】解:2232mx x x mx -=-+,()()21320m x m x ∴-+--=结合题意得:10,m -≠ 1.m ∴≠【点睛】本题考查的是一元二次方程的定义,掌握一元二次方程的定义是解题的关键. 练习3.(2020·全国·九年级专题练习)当m 取何值时,方程1(1)320m m x x +-+-=是一元二次方程.【答案】m=-1【分析】根据一元二次方程的定义:只含有一个未知数,且未知数的最高次数是2的整式方程,列出方程求解即可.【详解】解:由题意可得:12m +=且m -1≠0, 解得:m=-1,∴当m=-1时,方程||1(1)320m m x x +-+-=是一元二次方程.【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx +c =0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.考点2:一元二次方程的一般式必备知识点:一元二次方程的一般形式是:()200ax bx c a ++=≠,其中2ax 是,a 叫二次项系数;bx 是一次项,b 叫一次项系数,c 是常数项。

一元二次方程知识归纳

一元二次方程知识归纳

一元二次方程知识归纳一元二次方程是初中数学中的重要内容,它在数学的学习和实际生活中都有着广泛的应用。

下面咱们就来好好归纳一下这部分知识。

首先,咱们得明白啥是一元二次方程。

一元二次方程的一般形式是:$ax^2 + bx + c = 0$(其中$a$、$b$、$c$是常数,$a ≠ 0$)。

这里的“一元”指的是方程中只有一个未知数,“二次”指的是未知数的最高次数是 2 。

那怎么判断一个方程是不是一元二次方程呢?就看它能不能化成上述的一般形式,并且要注意$a$不能等于 0 。

比如方程$x^2 5x + 6 =0$就是一元二次方程,而$x + 2 = 0$就不是,因为它未知数的最高次数是 1 ,是一元一次方程。

接下来,咱们说说一元二次方程的解法。

常见的解法有三种:直接开平方法、配方法、公式法。

直接开平方法适用于形如$(x + m)^2 = n$($n ≥ 0$)的方程。

比如说方程$(x 3)^2 = 4$,咱们就可以直接开平方,得到$x 3 =±2$,进而解得$x = 5$或$x = 1$。

配方法是个很重要的方法。

对于方程$ax^2 + bx + c = 0$,咱们通过在方程两边加上一次项系数一半的平方,把方程左边配成完全平方式。

举个例子,解方程$x^2 + 6x 7 = 0$,先把常数项移到右边得到$x^2 + 6x = 7$,然后在方程两边加上 9(6 的一半的平方),得到$x^2 + 6x + 9 = 7 + 9$,即$(x + 3)^2 = 16$,再开平方就能求出解。

公式法是通用的方法。

一元二次方程$ax^2 + bx + c = 0$($a ≠ 0$)的求根公式是$x =\frac{b ±\sqrt{b^2 4ac}}{2a}$。

使用公式法时,要先计算判别式$\Delta = b^2 4ac$,如果$\Delta > 0$,方程有两个不相等的实数根;如果$\Delta = 0$,方程有两个相等的实数根;如果$\Delta < 0$,方程没有实数根。

2023-2024学年九年级上数学:一元二次方程(精讲教师版)

2023-2024学年九年级上数学:一元二次方程(精讲教师版)

第1页(共8页)2023-2024学年九年级上数学:第21章一元二次方程
21.1
一元二次方程
1.一元二次方程的定义:
(1)定义:只含有一个未知数,且未知数的最高次数是2的整式方程.
(2)一般形式:200ax bx c a ++=≠()
,其中ax 2,bx ,c 分别叫做二次项、一次项、常数项,a ,b ,c 分别称为二次项系数、一次项系数、常数项.
2.一元二次方程的一般形式:
一般形式:20(0)ax bx c a ++=≠.其中,ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.
3.一元二次方程的根:
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.方程的解的定义是解方程过程中验根的依据.将此数代入这个一元二次方程的左右两边,看是否相等,若相等,就是这个方程的根;若不相等,就不是这个方程的根.。

初中数学一元二次方程知识点汇总,基础全面考前必掌握

初中数学一元二次方程知识点汇总,基础全面考前必掌握

初中数学一元二次方程知识点汇总,基础全面考前必掌握一、一元二次方程的定义及一般形式:只含有一个未知数x,未知数的最高次数是2,且系数不为0,这样的方程叫一元二次方程。

一元二次方程的一般形式:ax^{2}+bx+c =0 (a≠0),其中a 为二次项系数,b为一次项系数,c为常数项。

因此,一元二次方程必须满足以下3个条件:① 方程两边都是关于未知数的等式② 只含有一个未知数③ 未知数的最高次数为2如: 2x^{2}-4x+3=0 , 3x^{2}=5 为一元二次方程,而像就不是一元二次方程。

二、一元二次方程的特殊形式(1)当b=0,c=0时,有: ax^{2} =0,∴ x^{2} =0,∴x=0(2)当b=0,0≠0时,有: ax^{2}+c=0 ,∵a≠0,此方程可转化为:①当a与c异号时, -\frac{c}{a}>0 ,根据平方根的定义可知,x=±\sqrt{-\frac{c}{a}} ,即当b=0,c≠0,且a与c 异号时,一元二次方程有两个不相等的实数根,这两个实数根互为相反数。

②当a与c同号时, -\frac{c}{a}<0 ,∵负数没有平方根,∴方程没有实数根。

(3)当b≠0,c=0时,有 ax^{2}+bx=0 ,此方程左边可以因式分解,使方程转化为x(ax+b)=0,即x=0或ax+b=0,所以x1=0,x2=-b/a。

由此可见,当b≠0,c=0时,一元二次方程 ax^{2}+bx=0 有两个不相等的实数根,且两实数根中必有一个为0。

三、一元二次方程解法:1.第一步:解一元二次方程时,如果没有给出一元二次方程的通式,先将其化为一元二次方程的通式,再确定求解的方法。

2. 解一元二次方程的常用方法:(1)直接开方法:把一元二次方程化为一般式后,如果方程中缺少一次项,是一个形如ax2+c=0的方程时,可以用此方法求解。

解法步骤:①把常数项移到等号右边, ax^{2}=-c ;②方程中每项都除以二次项系数, x^{2}=-\frac{c}{a} ;③开平方求出未知数的值:x=±\sqrt{-\frac{c}{a}}(2)因式分解法:将一元二次方程化为通式后,如果方程左边的多项式可以因式分解,就可以用这种方法求解。

一元二次方程专题讲解,知识点归纳,典型例题精讲精练

一元二次方程专题讲解,知识点归纳,典型例题精讲精练

第二章 一元二次方程专题1 一元二次方程的定义1.一元二次方程的概念:通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程. 要点诠释: 识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.2.一元二次方程的一般形式:一般地,任何一个关于x 的一元二次方程,都能化成形如02=++c bx ax ,(0≠a )这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx 是一次项,b是一次项系数;c 是常数项.要点诠释:(1)只有当时,方程02=++c bx ax 才是一元二次方程; (2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.3.一元二次方程的解:使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.【例题精选】例1 方程5x 2﹣2=﹣3x 的二次项系数、一次项系数、常数项分别是( )A .5、3、﹣2B .5、﹣3、﹣2C .5、3、2D .5、﹣3、2【分析】直接利用一元二次方程中各部分的名称分析得出答案.【解答】解:5x 2﹣2=﹣3x 整理得:5x 2+3x ﹣2=0,则二次项系数、一次项系数、常数项分别是:5、3、﹣2.故选:A .例2(2019秋•兰州期末)下列方程是关于x的一元二次方程的是()A.x=B.ax2+c=0C.a2x﹣3x=x(1﹣x)D.x(x2﹣1)=0【分析】根据一元二次方程的定义逐个判断即可.【解答】解:A、不是关于x的一元二次方程,故本选项不符合题意;B、不是关于x的一元二次方程,故本选项不符合题意;C、是关于x的一元二次方程,故本选项符合题意;D、不是关于x的一元二次方程,故本选项不符合题意;故选:C.例3 (2019秋•襄阳期末)已知x=1是一元二次方程2x2﹣cx=0的一个根,则c的值是()A.﹣1B.2C.3D.﹣2【分析】将x=1代入方程可得关于c的方程,解之可得.【解答】解:将x=1代入方程2x2﹣cx=0,得:2﹣c=0,解得c=2,故选:B.【随堂练习】1.(2021•潜江模拟)下列是一元二次方程的是()A.﹣5x+2=1B.2x2﹣y+1=0C.x2+2x=0D.x2﹣=0【解答】解:A、含有一个未知数,不是一元二次方程,故此选项不符合题意;B、含有两个未知数,不是一元二次方程,故此选项不符合题意;C、是一元二次方程,故此选项符合题意;D、含有分式,不是一元二次方程,故此选项不符合题意.故选:C.2.(2020秋•姜堰区期末)已知关于x的方程(a﹣1)x2﹣2x+1=0是一元二次方程,则a满足的条件是()A.a≠0B.a≠1C.a>1D.a≤2【解答】解:∵方程(a﹣1)x2+x﹣2=0是关于x的一元二次方程,∴a﹣1≠0,解得a≠1.故选:B.3.(2021•武汉模拟)方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为()A.3和2B.3和﹣2C.3和﹣1D.3和1【解答】解:方程3x2﹣2x﹣1=0的二次项系数和一次项系数分别为3和﹣2,故选:B.2 直接开平方法1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:①形如关于x的一元二次方程,可直接开平方求解.若,则;表示为,有两个不等实数根;若,则x=O;表示为,有两个相等的实数根;若,则方程无实数根.②形如关于x的一元二次方程,可直接开平方求解,两根是.【例题精选】例1(2020•颍州区一模)解方程:(x﹣3)2=4.【分析】根据直接开方法即可求出答案.【解答】解:∵(x﹣3)2=4,∴x﹣3=±2,∴x=5或x=1;例2(2020•宿松县模拟)解方程:4(2x﹣1)2﹣36=0.【分析】根据直接开方法即可求出答案.【解答】解:∵4(2x﹣1)2﹣36=0,∴(2x﹣1)2=9,∴2x﹣1=±3,∴x=2或﹣1【随堂练习】1.(2020秋•南京期末)方程(x+3)2=4的根是()A.x1=﹣1,x2=﹣5B.x1=1,x2=﹣5C.x1=x2=﹣1D.x1=﹣1,x2=5【解答】解:(x+3)2=4,∴x+3=±2,∴x1=﹣1,x2=﹣5,故选:A.2.(2020秋•市中区期末)方程x2=4的解是()A.x1=4,x2=﹣4B.x1=x2=2C.x1=2,x2=﹣2D.x1=1,x2=4【解答】解:∵x2=4,∴x=2或x=﹣2,故选:C.3 配方法1.配方法解一元二次方程:(1)配方法解一元二次方程:将一元二次方程配成的形式,再利用直接开平方法求解,这种解一元二次方程的方法叫配方法.(2)配方法解一元二次方程的理论依据是公式:.(3)用配方法解一元二次方程的一般步骤:①把原方程化为的形式;②将常数项移到方程的右边;方程两边同时除以二次项的系数,将二次项系数化为1;③方程两边同时加上一次项系数一半的平方;④再把方程左边配成一个完全平方式,右边化为一个常数;⑤若方程右边是非负数,则两边直接开平方,求出方程的解;若右边是一个负数,则判定此方程无实数解.【例题精选】例1(2020•闽侯县模拟)解方程:x2﹣6x﹣8=0.【分析】利用配方法得到(x﹣3)2=17,然后利用直接开平方法解方程.【解答】解:x2‒6x=8,x2‒6x+9=17,(x﹣3)2=17,x﹣3=±,所以x1=3+,x2=3﹣.例2(2019秋•天门期末)解方程:x2﹣2x﹣5=0.【分析】先利用配方法得到(x﹣1)2=6,然后利用直接开平方法解方程.【解答】解:x2﹣2x=5,x2﹣2x+1=6,(x﹣1)2=6,x﹣1=±,所以x1=1+,x2=1﹣.【随堂练习】1.(2021•泸县模拟)将一元二次方程x2﹣2x=1配方,其正确的结果是()A.(x+1)2=2B.(x﹣2)2=5C.(x﹣1)2=1D.(x﹣1)2=2【解答】解:x2﹣2x=1,配方得:x2﹣2x+1=1+1,即(x﹣1)2=2.故选:D.2.(2020秋•郁南县期末)一元二次方程x2+4x=2配方后化为()A.(x+2)2=6B.(x﹣2)2=6C.(x+2)2=﹣6D.(x+2)2=﹣2【解答】解:∵x2+4x=2,∴x2+4x+4=2+4,∴(x+2)2=6.故选:A.3.(2020秋•兰陵县期末)用配方法解方程x2﹣6x+1=0,方程应变形为()A.(x﹣3)2=8B.(x﹣3)2=10C.(x﹣6)2=10D.(x﹣6)2=8【解答】解:∵x2﹣6x+1=0,∴x2﹣6x+9=8,∴(x﹣3)2=8,故选:A.4.(2020秋•费县期末)用配方法解方程x2﹣4x﹣7=0,可变形为()A.(x+2)2=3B.(x+2)2=11C.(x﹣2)2=3D.(x﹣2)2=11【解答】解:∵x2﹣4x﹣7=0,∴x2﹣4x+4=11,∴(x﹣2)2=11,故选:D.4 公式法1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:.①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x的一元二次方程的步骤:①把一元二次方程化为一般形式;②确定a、b、c的值(要注意符号);③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.【例题精选】例1(2019秋•玉田县期中)一元二次方程ax2+bx+c=0(c≠0)的求根公式是()A.B.C.D.【分析】根据求根公式即可求出答案.【解答】解:一元二次方程的求根公式为x=,故选:A.例2(2019秋•行唐县期末)解方程.(1)2x2﹣6x﹣1=0;(2)2y(y+2)﹣y=2.【分析】(1)根据配方法即可求出答案;(2)根据因式分解法即可求出答案;【解答】解:(1)∵2x2﹣6x﹣1=0,∴x2﹣3x=,∴(x﹣)2=,∴x=;(2)∵2y(y+2)﹣y=2,∴2y(y+2)﹣y﹣2=0,∴(y+2)(2y﹣1)=0,∴y=﹣2或y=;【随堂练习】1.(2020秋•北海期末)用公式法解方程x2﹣6x+1=0所得的解正确的是()A.B.C.D.【解答】解:∵a=1,b=﹣6,c=1,∴△=(﹣6)2﹣4×1×1=32>0,则x===3±2,故选:D.2.(2020秋•普宁市期末)用公式法解方程3x2+5x+1=0,正确的是()A.B.C.D.【解答】解:这里a=3,b=5,c=1,∵△=25﹣12=13,∴x=,故选:A.3.(2020秋•市北区期末)解方程:4x2﹣6x﹣3=0.【解答】解:△=(﹣6)2﹣4×4×(﹣3)=84,x==,所以x1=,x2=.4.(2021春•三水区校级月考)解方程:2x2﹣10x=3.【解答】解:2x2﹣10x﹣3=0,△=(﹣10)2﹣4×2×(﹣3)=124,x==,所以x1=,x2=.5 因式分解法1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【例题精选】例1 (2019春•浏阳市期中)计算:选择适当方法解下列方程(1)x2﹣2x﹣3=0(2)3x(x﹣1)=2﹣2x【分析】(1)利用因式分解法求解可得;(2)利用因式分解法求解可得.【解答】解:(1)∵x2﹣2x﹣3=0,∴(x﹣3)(x+1)=0,则x﹣3=0或x+1=0,解得x=3或x=﹣1;(2)3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0或3x+2=0,所以x1=1,x2=﹣.例2(2019秋•罗湖区校级期中)解方程(1)x2+x﹣3=0(2)(2x+1)2=3(2x+1)【分析】(1)先写出a,b,c的值,再计算△,然后用公式法求解即可;(2)先将原方程右边的移到左边,然后利用因式分解法进行分解即可.【解答】解:(1)∵x2+x﹣3=0∴a=1,b=1,c=﹣3∴△=b2﹣4ac=1﹣4×1×(﹣3)=1+12=13>0∴x==∴x1=,x2=.(2)∵(2x+1)2=3(2x+1)∴(2x+1)2﹣3(2x+1)=0∴(2x+1)(2x+1﹣3)=0∴(2x+1)(2x﹣2)=0∴2x+1=0或2x﹣2=0∴x1=﹣,x2=1.【点评】本题考查了利用公式法和因式分解法解一元二次方程,属于基本计算能力的考查,难度不大.【随堂练习】1.(2020秋•南京期末)方程x2﹣x=0的根为()A.x1=x2=0B.x1=1,x2=0C.x1=x2=﹣1D.x1=﹣1,x2=0【解答】解:x2﹣x=0,x(x﹣1)=0,x﹣1=0或x=0,解得:x1=1,x2=0,故选:B.2.(2020秋•南充期末)方程(x﹣1)(x﹣2)=0的解是()A.1B.2C.1和2D.﹣1和﹣2【解答】解:∵(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,解得x1=1,x2=2,故选:C.3.(2020秋•鼓楼区期末)方程x2﹣x=0的解是()A.x1=x2=0B.x1=0,x2=﹣1C.x1=x2=1D.x1=0,x2=1【解答】解:x2﹣x=0,x(x﹣1)=0,解得:x1=0,x2=1.故选:D.4.(2020秋•濮阳期末)方程x(x+3)=0的解是()A.x1=x2=﹣3B.x1=0,x2=﹣2C.x1=0,x2=﹣3D.x1=1,x2=3【解答】解:∵x(x+3)=0,∴x=0或x+3=0,解得x1=0,x2=﹣3,故选:C.综合练习一.选择题(共3小题)1.一元二次方程﹣x2+2x=0的根为()A.﹣2B.0,2C.0,﹣2D.2【解答】解:﹣x(x﹣2)=0,﹣x=0或x﹣2=0,所以x1=0,x2=2.故选:B.2.下列一元二次方程中,两实数根之和为2的是()A.x2+2x+1=0B.x2﹣x﹣=0C.﹣x2﹣2x+3=0D.x2﹣2=0【解答】解:A.方程x2+2x+1=0的两根之和为﹣2,不符合题意;B.方程x2﹣x﹣=0的两根之和为2,符合题意;C.方程﹣x2﹣2x+3=0的两根之和为﹣2,不符合题意;D.方程x2﹣2=0的两根之和为0,不符合题意;故选:B.3.如果关于x的方程(a﹣5)x2﹣4x﹣1=0有两个实数根,则a满足的条件是()A.a≠5B.a≥1C.a>1且a≠5D.a≥1且a≠5【解答】解:由题意知,△=(﹣4)2﹣4×(a﹣5)×(﹣1)≥0,且a﹣5≠0,解得:a≥1且a≠5,故选:D.二.解答题(共4小题)4.解方程(1)3x2﹣8x+4=0;(2)(2x﹣1)2=(x﹣3)2【解答】解:(1)3x2﹣8x+4=0,(3x﹣2)(x﹣2)=0,∴3x﹣2=0或x﹣2=0,∴x1=,x2=2;(2)(2x﹣1)2=(x﹣3)2,(2x﹣1)2﹣(x﹣3)2=0,(2x﹣1+x﹣3)(2x﹣1﹣x+3)=0,∴3x﹣4=0或x+2=0,∴x1=,x2=﹣2.5.已知a是方程x2﹣2x﹣4=0的根,求代数式a(a+1)2﹣a(a2+a)﹣3a﹣2的值.【解答】解:a(a+1)2﹣a(a2+a)﹣3a﹣2=a3+2a2+a﹣a3﹣a2﹣3a﹣2=a2﹣2a﹣2∵a是方程x2﹣2x﹣4=0的根,∴a2﹣2a﹣4=0,∴a2﹣2a=4,∴原式=4﹣2=2.6.已知关于x的一元二次方程x2+(m+3)x+m+1=0.(1)求证:无论m取何值,原方程总有两个不相等的实数根;(2)若m是方程的一个实数根,求m的值.【解答】(1)证明:∵△=(m+3)2﹣4(m+1)=(m+1)2+4,∵无论m取何值,(m+1)2+4恒大于0,∴原方程总有两个不相等的实数根.(2)解:∵m是方程的一个实数根,∴m2+(m+3)m+m+1=0.整理得:2m2+4m+1=0解得:m=.7.用适当的方法解方程:(1)3x2﹣2x=0;(2)(x﹣1)2=4;(3)x2+2x﹣5=0;(4)(3x+2)(x+3)=8x+15【解答】解:(1)3x2﹣2x=0;分解因式得:x(3x﹣2)=0,解得:x1=0,x2=;(2)(x﹣1)2=4;开方得:x﹣1=±2,解得:x1=3,x2=﹣1;(3)x2+2x﹣5=0,配方得:x2+2x+1=6,即(x+1)2=6,开方得:x+1=±,解得:x1=﹣1+,x2=﹣1﹣;方程整理得:x(2x﹣5)﹣2(2x﹣5)=0,分解因式得:(x﹣2)(2x﹣5)=0,解得:x1=2,x2=2.5;(4)(3x+2)(x+3)=8x+15方程整理得:x2+x﹣3=0,a=1,b=1,c=﹣3∴b2﹣4ac=12﹣4×1×(﹣3)=13,∴x=;解得:x1=,x2=.6 根与系数的关系如果一元二次方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21. 注意它的使用条件为a ≠0, Δ≥0.要点诠释:1.一元二次方程的根的判别式正反都成立.利用其可以解决以下问题: (1)不解方程判定方程根的情况;(2)根据参系数的性质确定根的范围;(3)解与根有关的证明题.2. 一元二次方程根与系数的应用很多:(1)已知方程的一根,不解方程求另一根及参数系数;(2)已知方程,求含有两根对称式的代数式的值及有关未知数系数;(3)已知方程两根,求作以方程两根或其代数式为根的一元二次方程. 【例题精选】例 1 (2020•鼓楼区一模)已知方程2x 2+4x ﹣3=0的两根分别为x 1、x 2,则x 1+x 2=________,x 1x 2=__________.【分析】根据方程的系数结合根与系数的关系,即可得出x 1+x 2和x 1x 2的值.【解答】解:∵x 1、x 2是方程2x 2+4x ﹣3=0的两根,∴x 1+x 2=﹣=﹣2,x 1x 2==﹣.故答案为:﹣2;﹣.例2(2020•泰兴市一模)一元二次方程x 2﹣4x +2=0根的情况是( )A .无实数根B .有两个正根C .有一个正根,一个负根D .有两个负根【分析】先求出“△”的值,再根据根的判别式的内容得出即可.【解答】解:x 2﹣4x +2=0,∵△=(﹣4)2﹣4×1×2=8>0,且x 1+x 2=4>0,x 1•x 2=2>0,∴有两个正根,故选:B .【随堂练习】1.(2020秋•鄂州期末)一元二次方程2x2+4x+1=0的两根为x1、x2,则x1+x2的值是()A.4B.﹣4C.﹣2D.2【解答】解:根据题意得x1+x2=﹣=﹣2.故选:C.2.(2020秋•遂宁期末)若一元二次方程5x﹣1=4x2的两根为x1和x2,则x1•x2的值等于()A.1B.C.D.【解答】解:方程化为4x2﹣5x+1=0,根据题意得x1•x2=.故选:B.3.(2020秋•东台市期末)方程x2﹣5x﹣6=0的两根之和为()A.﹣6B.5C.﹣5D.1【解答】解:设方程的两根是x1、x2,那么有x1+x2=﹣=﹣(﹣5)=5.故选:B.7增长率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)n a x b -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.) 【例题精选】例1 (2020•铁西区二模)国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口1万人,通过各方面的共同努力,2018年底该地区贫困人口减少到0.25万人,求该地区2016年底至2018年底贫困人口年平均下降的百分率.【分析】等量关系为:2016年贫困人口×(1﹣下降率)2=2018年贫困人口,把相关数值代入计算即可.【解答】解:设这两年全省贫困人口的年平均下降率为x ,根据题意得:(1﹣x )2=0.25,解得:x =0.5=50%或x =1.5(舍去)答:该地区2016年底至2018年底贫困人口年平均下降的百分率为50%.【点评】本题考查一元二次方程的应用,得到2年内变化情况的等量关系是解决本题的关键.例2(2019秋•薛城区期末)某药品原价为100元,连续两次降价a %后,售价为64元,则a 的值为( )A .10B .20C .23D .36【分析】可先用x 表示第一次降价后商品的售价,再根据题意表示第二次降价后的售价,然后根据已知条件得到关于x 的方程.【解答】解:当药品第一次降价%时,其售价为100﹣100a %=100(1﹣a %);当药品第二次降价x 后,其售价为100(1﹣a %)2.∴100(1﹣a %)2=64.解得:a =20或a =﹣180(舍去),故选:B .【点评】本题主要考查一元二次方程的应用,要根据题意列出第一次降价后商品的售价,再根据题意列出第二次降价后售价的方程,令其等于64即可.【随堂练习】1.(2021•长丰县模拟)一种商品原价100元,经过两次降价后的售价是60元,设平均每次降价的百分率为x,那么所列方程正确的是()A.60(1+x)2=100B.60(1+2x)=100C.100(1﹣x)2=60D.100(1﹣2x)=60【解答】解:设平均每次降价的百分率为x,根据题意,得100(1﹣x)2=60.故选:C.2.(2020秋•孟津县期末)某超市一月份的营业额为36万元,由于受疫情影响,二月份营业额有所下降,三月份开始复苏,营业额为48万元,设从一月到三月平均每月的增长率为x.则下面所列方程正确的是()A.36(1﹣x)2=48B.36(1+x)2=48C.36(1﹣x)2=48﹣36D.48(1﹣x)2=36【解答】解:依题意得:36(1+x)2=48.故选:B.3.(2020秋•金台区期末)某市为解决当地教育“大班额”问题,计划用三年时间完成对相关学校的扩建,2019年市政府已投资5亿人民币,若每年投资的增长率相同,预计2021年投资额达到y亿元人民币,设每年投资的增长率为x,则可得()A.y=5(1+2x)B.y=5x2C.y=5(1+x)2D.y=5(1+x2)【解答】解:依题意,得y=5(1+x)2.故选:C.8、利润问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数【例题精选】例1 (2020•谷城县校级模拟)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?【分析】关系式为:每件服装的盈利×(原来的销售量+增加的销售量)=1600,为了减少库存,计算得到降价多的数量即可.【解答】解:设每件服装应降价x元,根据题意,得:(44﹣x)(20+5x)=1600解方程得x=4或x=36,∵在降价幅度不超过10元的情况下,∴x=36不合题意舍去,答:每件服装应降价4元.【点评】此题主要考查了一元二次方程的应用,得到现在的销售量是解决本题的难点;根据每天盈利得到相应的等量关系是解决本题的关键.例2 (2019秋•平江县期末)某商场销售一批衬衫,平均每天可销售出20件,每件盈利40元,为扩大销售盈利,商场决定采取适当的降价措施,但要求每件盈利不少于20元,经调查发现.若每件衬衫每降价1元,则商场每天可多销售2件.(1)若每件衬衫降价4元,则每天可盈利多少元?(2)若商场平均每天盈利1200元.则每件衬衫应降价多少元?【分析】(1)可直接根据每件的利润×销售量=总利润,求出结果;(2)此题首先根据盈利1200元,列出一元二次方程:(20+2×x)×(40﹣x)=1200,然后解出即可.【解答】解:(1)(20+2×4)×(40﹣4)=1008元.答:商场每天销售这种衬衫可以盈利1008元.(2)设每件衬衫降价x元时,商场每天销售这种衬衫可以盈利1200元,根据题意得:(20+2x)×(40﹣x)=1200,整理得:x2﹣30x+200=0,(x﹣10)(x﹣20)=0,解得:x1=10,x2=20,答:每件衬衫降价10元或20元时,商场每天销售这种衬衫可以盈利1200元.【点评】本题主要考查一元二次方程的应用,解题的关键是读懂题意找出题中的等量关系每件的利润×销售量=总利润.【随堂练习】1.(2020秋•福州期末)某餐厅主营盒饭业务,每份盒饭的成本为12元.若每份盒饭的售价为16元,每天可卖出360份.市场调查反映:如调整价格,每涨价1元,每天要少卖出40份.若该餐厅想让每天盒饭业务的利润达到1680元,设每份盒饭涨价x元,则符合题意的方程是()A.(16+x﹣12)(360﹣40x)=1680B.(x﹣12)(360﹣40x)=1680C.(x﹣12)[360﹣40(x﹣16)]=1680D.(16+x﹣12)[360﹣40(x﹣16)]=1680【解答】解:设售价应涨价x元,则:(16+x﹣12)(360﹣40x)=1680,故选:A.2.(2020秋•宁德期末)某商场将进货价为20元的玩具以30元售出,平均每天可售出300件,调查发现,该玩具的单价每上涨1元,平均每天就少售出10件.若商场要想平均每天获得3750元利润,则每件玩具应涨价多少元?设每件玩具应涨价x元,则下列说法错误的是()A.涨价后每件玩具的售价是(30+x)元B.涨价后平均每天少售出玩具的数量是10x件C.涨价后平均每天销售玩具的数量是(300﹣10x)件D.根据题意可列方程为:(30+x)(300﹣10x)=3750【解答】解:设涨价x元,根据题意可得:A、∵(30+x)表示涨价后玩具的单价,∴A选项正确,不符合题意;B、∵10x表示涨价后少售出玩具的数量,∴B选项正确,不符合题意;C、∵(300﹣10x)表示涨价后销售玩具的数量,∴C选项正确,不符合题意;D、∵可列方程(30+x﹣20)(300﹣10x)=3750,故D选项错误,符合题意,故选:D.3.(2020秋•鼓楼区期末)某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定范围内,衬衫的单价每降1元,商场平均每天可多售出2件.如果降价后商场销售这批衬衫每天盈利1250元,那么衬衫的单价降了多少元?设衬衫的单价降了x元,则可列方程为.【解答】解:由题意可得,(40﹣x)(20+2x)=1250,故答案为:(40﹣x)(20+2x)=1250.4.(2021春•长兴县月考)某商场销售一批衬衣,每件衬衣的进价为80元,平均每天可售出30件,每件衬衣盈利50元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衣降价10元,商场平均每天可多售出20件.若商场平均每天盈利2000元,则每件衬衣的售价应为多少元?【解答】解:设每件衬衣降价x元,则每件衬衣的售价为(80+50﹣x)元,每件衬衣盈利(50﹣x)元,平均每天可售出(30+)=(30+2x)件,依题意得:(50﹣x)(30+2x)=2000,整理得:x2﹣35x+250=0,解得:x1=10,x2=25,又∵为了扩大销售,增加盈利,尽快减少库存,∴x=25,∴80+50﹣x=105(元).答:每件衬衣的售价应为105元.9 其他问题1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).【例题精选】例1 (2019秋•斗门区期末)学校打算用长16米的篱笆围成一个长方形的生物园饲养小兔,生物园的一面靠在长为8米的墙上(如图).(1)若生物园的面积为30平方米,求生物园的长和宽.(2)能否围成面积为35平方米的生物园?若能,求出长和宽;若不能,请说明理由.【分析】(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16﹣2x)米,根据长方形的面积公式结合生物园的面积为30平方米,即可得出关于x的一元二次方程,解之取其较大值即可得出结论;(2)设垂直于墙的一边长为y米,则平行于墙的一边长为(16﹣2y)米,根据长方形的面积公式结合生物园的面积为35平方米,即可得出关于y的一元二次方程,由根的判别式△<0可得出该方程无解,进而可得出不能围成面积为35平方米的生物园.【解答】解:(1)设垂直于墙的一边长为x米,则平行于墙的一边长为(16﹣2x)米,依题意,得:x(16﹣2x)=30,整理,得:x2﹣8x+15=0,解得:x1=3,x2=5.当x=3时,16﹣2x=10>8,不合题意,舍去;当x=5时,16﹣2x=6.答:生物园的长为6米,宽为5米.(2)不能,理由如下:设垂直于墙的一边长为y米,则平行于墙的一边长为(16﹣2y)米,依题意,得:y(16﹣2y)=35,整理,得:2y2﹣16y+35=0.∵△=(﹣16)2﹣4×2×35=﹣24<0,∴原方程无解,∴不能围成面积为35平方米的生物园.【点评】本题考查了一元二次方程的应用以及根的判别式,找准等量关系,正确列出一元二次方程是解题的关键.例2 (2020•德阳模拟)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035B.x(x﹣1)=1035C.x(x+1)=1035D.x(x﹣1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.【随堂练习】1.(2021春•上城区校级期中)在一幅长50cm,宽40cm的矩形风景画的四周镶一条外框,制成一幅矩形挂图(如图所示),如果要使整个挂图的面积是3000cm2,设边框的宽为xcm,那么x满足的方程是()A.(50﹣2x)(40﹣2x)=3000B.(50+2x)(40+2x)=3000C.(50﹣x)(40﹣x)=3000D.(50+x)(40+x)=3000【解答】解:设边框的宽为xcm,所以整个挂画的长为(50+2x)cm,宽为(40+2x)cm,根据题意,得:(50+2x)(40+2x)=3000,故选:B.2.(2020秋•大余县期末)如图,学校课外生物小组的试验园地是长20米,宽15米的长方形.为了便于管理,现要在中间开辟一横两纵等宽的小道(如图),要使种植面积为252平方米,则小道的宽为()A.5米B.1米C.2米D.3米【解答】解:设该小道的宽为x米,依题意得(20﹣2x)(15﹣x)=252,整理得x2﹣25x+24=0,即:(x﹣24)(x﹣1)=0,解得x1=24(舍去),x2=1.即:该小道的宽为1米.故选:B.3.(2020秋•官渡区期末)《生物多样性公约》第十五次缔约方大会(COP15)将于2021年5月17日至30日在云南省昆明市举办、昆明某景观园林公司为迎接大会召开,计划在一个长为32m,宽为20m的矩形场地ABCD(如图所示)上修建三条同样宽的道路,使其中两条与AB平行、另一条与AD平行,其余部分种草坪,若使每一块草坪的面积为95m2,求道路的宽度、若设道路的宽度为xm,则x满足的方程为()A.(32﹣x)(20﹣x)=95B.(32﹣2x)(20﹣x)=95C.(32﹣x)(20﹣x)=95×6D.(32﹣2x)(20﹣x)=95×6【解答】解:设道路的宽度为xm,则六块草坪可合成长(32﹣2x)m,宽(20﹣x)m的矩形,依题意得:(32﹣2x)(20﹣x)=95×6.故选:D.综合练习一.解答题(共7小题)1.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有144台电脑被感染,每轮感染中平均一台电脑会感染多少台电脑?【解答】解:设每轮感染中平均一台电脑感染x台,依题意,得:(1+x)2=144,解得:x1=11,x2=﹣13(不合题意,舍去).答:每轮感染中平均一台电脑感染11台.2.社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.(1)求通道的宽是多少米?(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位,当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?【解答】解:(1)设甬道的宽为x米,根据题意得:(52﹣2x)(28﹣2x)=640解得:x=34(舍去)或x=6,答:甬道的宽为6米;(2)设月租金上涨a元,停车场的月租金收入为14400元,根据题意得:(200+a)(64﹣)=14400整理,得a2﹣440a+16000=0解得:a1=400(舍去),a2=40答:每个车位的月租金上涨40元时,停车场的月租金收入为14400元.3.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元,问第一次降价后至少要售出该种商品多少件?【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100﹣m)件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×(100﹣m)=36m+2400≥3210,解得:m≥22.5.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.4.某公园要在一块长40m,宽30m的长方形空地上建成一个矩形花园,要求在花园中修三条纵向平行和两条横向平行的宽度相同的小道,剩余的地方种植花草.如图所示,要使种植花草的面积为500m2,那么小道进出口的宽度应为多少米?【解答】解:设小道进出口的宽度为x米,依题意得(40﹣3x)(30﹣2x)=500.整理,得3x2﹣85x+350=0.解得,x1=5,x2=.∵>30(不合题意,舍去),∴x=5.答:小道进出口的宽度应为5米.5.某公司2016年的生产成本是100万元,由于改进技术,生产成本逐年下降,2018年的生产成本是81万元,若该公司2017、2018年每年生产成本下降的百分率都相同.(1)求平均每年生产成本下降的百分率;(2)假设2019年该公司生产成本下降的百分率与前两次相同,请你预测2019年该公司的生产成本.【解答】解:(1)设每年生产成本的下降率为x,根据题意得:100(1﹣x)2=81,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:每年生产成本的下降率为10%.(2)81×(1﹣10%)=72.9(万元).答:预测2019该公司的生产成本为72.9万元.6.如图,要利用一面墙(墙长为15米)建羊圈,用30米的围栏围成两个大小相同的矩形羊圈,设羊圈的一边AB为xm,总面积为ym2.(1)求y与x的函数关系式.(2)如果要围成总面积为63m2的羊圈,AB的长是多少?【解答】解:(1)y=x(30﹣3x),=﹣3x2+30x;(2)当y=63时﹣3x2+30x=63,解得x1=7,x2=3,当x=7时30﹣3x=9<15当x=3时30﹣3x=21>15 (不合题意,舍去)答:AB为7m.7.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm.(纸板的厚度忽略不计)(1)EF=(30﹣2x)cm,GH=(20﹣x)cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长.。

数学九年级上册一元二次方程的应用--知识讲解(基础)

数学九年级上册一元二次方程的应用--知识讲解(基础)

一元二次方程的应用--知识讲解(基础)【学习目标】1. 通过分析具体问题中的数量关系,建立方程模型并解决实际问题,总结运用方程解决实际问题的一 般步骤;2. 通过列方程解应用题,进一步提高逻辑思维能力、分析问题和解决问题的能力.【要点梳理】要点一、列一元二次方程解应用题的一般步骤1.利用方程解决实际问题的关键是寻找等量关系.2.解决应用题的一般步骤:审(审题目,分清已知量、未知量、等量关系等);设(设未知数,有时会用未知数表示相关的量);列(根据题目中的等量关系,列出方程);解(解方程,注意分式方程需检验,将所求量表示清晰);验(检验方程的解能否保证实际问题有意义)答(写出答案,切忌答非所问).要点诠释:列方程解实际问题的三个重要环节:一是整体地、系统地审题;二是把握问题中的等量关系;三是正确求解方程并检验解的合理性.要点二、一元二次方程应用题的主要类型1.数字问题(1)任何一个多位数都是由数位和数位上的数组成.数位从右至左依次分别是:个位、十位、百位、 千位……,它们数位上的单位从右至左依次分别为:1、10、100、1000、……,数位上的数字只能是0、1、2、……、9之中的数,而最高位上的数不能为0.因此,任何一个多位数,都可用 其各数位上的数字与其数位上的单位的积的和来表示,这也就是用多项式的形式表示了一个多位 数.如:一个三位数,个位上数为a ,十位上数为b ,百位上数为c ,则这个三位数可表示为: 100c+10b+a.(2)几个连续整数中,相邻两个整数相差1.如:三个连续整数,设中间一个数为x ,则另两个数分别为x-1,x+1.几个连续偶数(或奇数)中,相邻两个偶数(或奇数)相差2.如:三个连续偶数(奇数),设中间一个数为x ,则另两个数分别为x-2,x+2.2.平均变化率问题列一元二次方程解决增长(降低)率问题时,要理清原来数、后来数、增长率或降低率,以及增长或降低的次数之间的数量关系.如果列出的方程是一元二次方程,那么应在原数的基础上增长或降低两次.(1)增长率问题:平均增长率公式为(1)na xb += (a 为原来数,x 为平均增长率,n 为增长次数,b 为增长后的量.)(2)降低率问题:平均降低率公式为(1)na xb -= (a 为原来数,x 为平均降低率,n 为降低次数,b 为降低后的量.)3.利息问题(1)概念:本金:顾客存入银行的钱叫本金.利息:银行付给顾客的酬金叫利息.本息和:本金和利息的和叫本息和.期数:存入银行的时间叫期数.利率:每个期数内的利息与本金的比叫利率.(2)公式:利息=本金×利率×期数利息税=利息×税率本金×(1+利率×期数)=本息和本金×[1+利率×期数×(1-税率)]=本息和(收利息税时)4.利润(销售)问题利润(销售)问题中常用的等量关系:利润=售价-进价(成本)总利润=每件的利润×总件数5.形积问题此类问题属于几何图形的应用问题,解决问题的关键是将不规则图形分割或组合成规则图形,根据图形的面积或体积公式,找出未知量与已知量的内在关系并列出方程.要点诠释:列一元二次方程解应用题是把实际问题抽象为数学问题(列方程),然后由数学问题的解决而获得对实际问题的解决.这是在解决实际问题时常用到的数学思想—方程思想.【典型例题】类型一、数字问题1.已知两个数的和等于12,积等于32,求这两个数是多少.【答案与解析】设其中一个数为x ,那么另一个数可表示为(12-x),依题意得x(12-x)=32,整理得x 2-12x+32=0解得 x 1=4,x 2=8,当x =4时12-x =8;当x =8时12-x =4.所以这两个数是4和8.【总结升华】 数的和、差、倍、分等关系,如果设一个数为x ,那么另一个数便可以用x 表示出来,然后根据题目条件建立方程求解.举一反三:【高清ID 号:388525 关联的位置名称(播放点名称):数字问题 例1】【变式】有一个两位数等于其数字之积的3倍,其十位数字比个位数字少2,求这个两位数.【答案】设个位数字为x ,则十位数字为(2)x -.由题意,得: 10(2)+3(2)x xx x -=- 整理,得:2317200x x -+=解方程,得:(35)(4)0x x --=∴ 15,3x = 24x = 经检验,53x =不合题意,舍去(注意根的实际意义的检验) ∴当4x =时, 2x -=2∴10(2)102424x x -+=⨯+=答:这个两位数为24.类型二、平均变化率问题2. 2010年5月中央召开了新疆工作座谈会,为实现新疆跨越式发展和长治久安,作出了重要战略决策部署.为此我市抓住机遇,加快发展,决定今年投入5亿元用于城市基础设施维护和建设,以后逐年增加,计划到2012年当年用于城市基础设施维护与建设资金达到8.45亿元.(1)求从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率;(2)若2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率相同,预计我市这三年用于城市基础设施维护和建设资金共多少亿元?【答案与解析】(1)设从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率为x ,由题意得5(1+x)2=8.45.解得x 1=30%,x 2=-2.3(不合题意,舍去).答:从2010年至2012年我市每年投入城市基础设施维护和建设资金的年平均增长率为30%.(2)这三年共投资5+5(1+x)+8.45=5+5(1+0.3)+8.45=19.95(亿元)答:预计我市这三年用于城市基础设施维护和建设资金共19.95亿元.【总结升华】本题是常见的增长率问题,要理解a(1+x)n =b(其中a 是原来的量,x 是平均增长率,n 是增长的次数,b 是增长到的量)的含义.原来的量经过一次增长后达到a(1+x);在这个基础上,再增长一次即经过第二次增长后达到a(1+x)(1+x)=a(1+x)2;在这个基础上,再增长一次即经过三次增长后达到a(1+x)(1+x)(1+x)=a(1+x)3;…;依次类推.举一反三:【高清ID 号:388525 关联的位置名称(播放点名称):增长率问题例3】【变式】某产品原来每件是600元,由于连续两次降价,现价为384元,如果两次降价的百分数相同,求平均每次降价率.【答案】设平均每次降价率为x ,则第一次降价为600x ,降价后价格为:600600600(1)x x -=-,第二次降价为:600(1)x x -⋅,降价后价格为: 600(1)x --600(1)x x -⋅2600(1)x =-.根据题意列方程,得:2600(1)384x -=216(1)25x -= 415x -=± ∴115x =, 295x = 295x =不合题意,舍去(注意根的实际意义的检验) ∴0011205x == 答:平均每次下降率为0020.类型三、利润(销售)问题3.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价,若每件商品售价为a 元,则可卖出(350-10a)件,但物价局限定每件商品加价不能超过进价的20%,商店计划要赚400元,需要卖出多少件商品?每件商品售价多少元?【答案与解析】设每件商品的售价为a 元.根据题意,得(a-21)(350-10a)=400.∴ a 2-56a+775=0,∴ (a-25)(a-31)=0,∴ a-25=0或a-31=0,∴ a 1=25,a 2=31.当a =31时,加价31-21=10,不合题意,舍去.∴ 350-10a =350-10×25=100.答:每件商品售价为25元,需要卖出100件商品.【总结升华】列一元二次方程解应用题往往求出两解,有的解不合实际意义或不合题意.应舍去,必须进行检验.类型四、形积问题4.如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD,求该矩形草坪BC边的长.【答案与解析】设草坪ABCD的BC边长x米,则宽AB为根据题意,得整理得:x2-32x+240=0,∴ (x-12)(x-20)=0.解得:x1=12,x2=20又由题意知:BC≤16.∴ x=20(不合题意,舍去).∴该矩形草坪BC边的长为12米.【总结升华】1.结合图形分析数量关系是解决面积等几何问题的关键;2.注意检验一元二次方程的两个解是否符合题意.。

九年级数学上册知识点讲解归纳:一元二次方程

九年级数学上册知识点讲解归纳:一元二次方程教学内容一元二次方程概念及一元二次方程一般式及有关概念.教学目标了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;•应用一元二次方程概念解决一些简单题目.例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得:40-16x-10x+4x2=18移项化简,得:2x2-13x+11=0其中二次项系数为2,一次项系数为-13,常数项为11.1.在下列方程中,一元二次方程的个数是(A ).①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A.1个 B.2个 C.3个 D.4个2.方程2x2=3(x-6)化为一般形式后二次项系数、•一次项系数和常数项分别为( B).A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,63.px2-3x+p2-q=0是关于x的一元二次方程,则( C ).A.p=1 B.p>0 C.p≠0 D.p为任意实数22.2.1 直接开平方法教学内容运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.例1:解方程:x2+4x+4=1解:由已知,得:(x+2)2=1直接开平方,得:x+2=±1即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-31.若x2-4x+p=(x+q)2,那么p、q的值分别是( B ).A.p=4,q=2 B.p=4,q= -2 C.p=-4,q=2 D.p=-4,q=-2 2.方程3x2+9=0的根为(D ).A.3 B.-3 C.±3 D.无实数根3.用配方法解方程x2-23x+1=0正确的解法是( B ).A.(x-13)2=89,x=13±B.(x-13)2= -89,原方程无解C.(x-23)2=59,x1=23+3,x2=23-D.(x-23)2=1,x1=53,x2=-1322.2.2 配方法第1课时教学内容间接即通过变形运用开平方法降次解方程.用配方法完成x2-36x+70=0的解题解:x2-36x=-70,x2-36x+182=-70+324,(x-18)2=254,x-18=,x-18=或x-18=-,1.将二次三项式x2-4x+1配方后得(B ).A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-32.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( B ). A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1C.x2+8x+42=1 D.x2-4x+4=-11二、填空题1.方程x2+4x-5=0的解是___ x1=1,x2=-5 _____.2.代数式2221x xx---的值为0,则x的值为____2____.3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为__ z2+2z-8=0_____,•所以求出z的值即为x+y的值,所以x+y的值为_2,-422.2.3 公式法教学内容1.一元二次方程求根公式的推导过程;2.公式法的概念;3.利用公式法解一元二次方程.已知ax2+bx+c=0(a ≠0)且b2-4ac ≥0,它的两个根x1=,x2=用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.例1.用公式法解下列方程.(1)2x2-4x-1=0 (2)5x+2=3x2(3)(x-2)(3x-5)=0 (4)4x2-3x+1=0解:(1)a=2,b=-4,c=-1b2-4ac=(-4)2-4×2×(-1)=24>0x=(4)22--==⨯ ∴x1=,x2=(2)将方程化为一般形式3x2-5x-2=0a=3,b=-5,c=-2b2-4ac=(-5)2-4×3×(-2)=49>0x=576±= x1=2,x2=-13(3)将方程化为一般形式3x2-11x+9=0a=3,b=-11,c=9b2-4ac=(-11)2-4×3×9=13>0∴x==∴x1=,x2=(3)a=4,b=-3,c=1b2-4ac=(-3)2-4×4×1=-7<0因为在实数范围内,负数不能开平方,所以方程无实数根.22.2.3因式分解法一、教学目标1.会用因式分解法解一元二次方程,领会因式分解法的实质是降次.2.培养式的变形能力,发展符号感.解下列方程(1)x(x-2)+x-2=0解:(x-2)(x-2)=0x1= x2 =2 (2) 2x-41=x2-2x+4322.2.一元二次方程——根与系数关系1、一元二次方程)0(02≠=++a c bx ax 根的判别式△=b2-4ac 与根的情况之间的关系是什么?)0(02≠=++a c bx ax有两个不相等的实数根;(1) △)0(02≠=++a c bx ax 有两个相等的实数根; (2)△)0(02≠=++a c bx ax 没有实数根;(3)△例1、方程06kx x 22=-+的一根是3-,另一根是2x ,则( )A 、4k 4x 2==、,B 、x2=-1,k=4,C 、 x2=1,k=-4,D 、x2=1,k=4分析:因为-3是方程06kx x 22=-+的根,所以2(-3)2+(-3)k-6=0,所以k=4,又因为x1+x2=-2,所以-3+ x2=-2,所以x2=1,所以选D 。

解一元二次方程(知识点考点)九年级数学上册知识点考点(解析版)

解一元二次方程(知识点考点一站到底)知识点☀笔记一元二次方程的解法一元二次方程的四种解法:(1) 直接开平方法:如果()20x k k =≥,则x k =(2) 配方法:要先把二次项系数化为1,然后方程两变同时加上一次项系数一半的平方,配成左边是完全平方式,右边是非负常数的形式,然后用直接开平方法求解;(3) 公式法:一元二次方程()200ax bx c a ++=≠的求根公式是24b b ac x -±-=()240b ac -≥; (4) 因式分解法:如果()()0x a x b --=则12,x a x b ==。

温馨提示:一元二次方程四种解法都很重要,尤其是因式分解法,它使用的频率最高,在具体应用时,要注意选择最恰当的方法解。

根的判别式 定义:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a-+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b ac x a a -+= 也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b ac x -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根. 考点☀梳理解题指导:① 形如(x +m )2=n (n ≥0)的方程可用直接开平方法;② 当方程二次项系数为1,且一次项系数为偶数时,可用配方法;③ 若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法;④ 如果方程不能用直接开平方法和因式分解法求解,则用公式法.⑤ 十字相乘法例如:解方程:x 2+3x -4=0.第1种拆法:4x -x =3x (正确),第2种拆法:2x -2x =0(错误),所以x 2+3x -4=(x +4)(x -1)=0,即x +4=0或x -1=0,所以x 1=-4,x 2=1.⑥ 换元法在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.考点1:直接开方法解一元二次方程必备知识点:①直接开平方法:如果()20x k k =≥,则x k =题型1 直接开方法解一元二次方程例1.(2022·新疆·沙雅县第五中学七年级期中)解方程:()216125x +=. 【答案】114x =,294x =- 【分析】方程两边同时除以16,再开平方来求解.【详解】解:方程两边同时除以16得()225116x +=, 开平方得514x +=±, 解得114x =,294x =-. 【点睛】本题主要考查了一元二次方程的解法,理解直接开平方法是解答关键.例2.(2022·陕西安康·九年级期末)解方程:1250x --=. 【答案】16x =,24x =-【分析】由()21250x --=,得出2125x ,开方得15x -=±,即可解出【详解】∵()21250x --=,∵2125x ,∵15x -=或15x -=-,则16x =,24x =-.【点睛】本题考查直接开方法求解一元二次方程,将题给式子移项,化为2x a =的形式,再利用数的开放直接求解.练习1.(2022·广东·可园中学七年级期中)解方程:24(3)250x --=.【答案】1112x =,212x =【分析】利用直接开平方法求解即可.【详解】解:24(3)250x --=,24(3)25x -=,225(3)4x -=, 532x ∴-=±, 1112x ∴=,212x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.【答案】x 1=16,x 2=﹣14【分析】根据直接开平方法进行求解即可.【详解】解:∵(x ﹣1)2=225,∵x ﹣1=±15,解得x 1=16,x 2=﹣14.【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键.练习3.(2022·江苏·九年级专题练习)解方程:2x 2=6 【答案】x 13=,x 23=-【分析】直接开平方即可一元二次方程.【详解】解:226x =,23x =,3x ∴=±,13x ∴=,23x =-.【点睛】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解此题的关键.练习4.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:316m =. 【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解.【详解】解:()2316m -=,34m -=±,34m =±, ∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.考点2:配方法解一元二次方程必备知识点:①当方程二次项系数为1,且一次项系数为偶数时,可用配方法;题型2 配方法解一元二次方程例1.(2022·安徽合肥·八年级期末)用配方法解方程:21090x x -+= 【答案】19x =,21x =【分析】利用解一元二次方程-配方法:先把二次项系数化为1,然后方程两边同时加上一次项系数一半的平方,进行计算即可.【详解】解:21090x x -+=,2109x x -=-,21025925x x -+=-+,2(5)16x -=,54x -=±,54x -=或54x -=-,19x =,21x =.【点睛】本题考查了解一元二次方程-配方法,解题的关键是熟练掌握解一元二次方程-配方法的步骤. 例2.(2021·河南南阳·九年级期中)用配方法解方程23210x x +-=. 【答案】11x =-,213x = 【分析】先将原方程配方,然后再整体运用直接开平方法,最后求出x 即可.【详解】解:原方程可化为:22133x x += 22221113333x x ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭ 21439x ⎛⎫+= ⎪⎝⎭ 1233x +=±, 11x =-,213x =. 【点睛】本题主要考查了解一元二次方程,掌握运用配方法解一元二次方程是解答本题的关键.【答案】x 1=32,x 2=﹣4 【分析】移项,方程两边都除以2,再配方,开方,即可得出两个方程,再求出方程的解即可.【详解】解:2x 2+5x ﹣12=0,移项,得2x 2+5x =12,x 2+52x =6, 配方,得x 2+52x +2516=6+2516,即(x +54)2=12116, 开方,得x +54=±114, 解得:x 1=32,x 2=﹣4. 【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解题的关键.【答案】11x =,23x =【分析】利用配方法解答,即可求解.【详解】解:2430x x -+=,配方得∵()221x -=,解得∵21x -=±,即11x =,23x =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法、配方法、因式分解法、公式法是解题的关键. 练习3.(2022·安徽合肥·八年级期末)解方程:x 2-6x =8 【答案】12317,317x x =+=-【分析】利用配方法解一元二次方程即可得.【详解】解:268x x -=,26989x x -+=+,2(3)17x -=,317x -=±,317x =±,即方程的解为12317,317x x =+=-.【点睛】本题考查了解一元二次方程,熟练掌握一元二次方程的解法(如直接开平方法、配方法、公式法、因式分解法、换元法等)是解题关键.【答案】x 1=162+,x 2=162- 【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数的绝对值一半的平方.【详解】解:2x 2﹣4x ﹣1=0x 2﹣2x 12-=0 x 2﹣2x +112=+1 (x ﹣1)232=∵x 1=162+,x 2=162-. 【点睛】本题考查了配方法解一元二次方程,掌握配方法是解题的关键.例1.(2022·广西贺州·八年级期中)请阅读下列材料:我们可以通过以下方法求代数式的223x x +-最小值.()22222232111314x x x x x +-=+⋅+--=+- ()210x +≥∴当x =-1时,223x x +-有最小值-4请根据上述方法,解答下列问题:(1)(()2222352332x x x x x a b ++=+++=++,则a =__________,b =__________; (2)若代数式227x kx -+的最小值为3,求k 的值. 【答案】(1)3,2(2)2k =±【分析】(1)根据配方法直接作答即可;(2)根据题中材料告知的方法,先配方,再根据平方的非负性求解即可.(1)解:2235x x ++()222332x x =+⨯++ ()232x =++,3,2a b ∴==,故答案为:3,2;(2)解:227x kx -+22227x kx k k =-+-+()227x k k =--+, ∵2)0x k -≥(, ∵()227x k k --+的最小值是27k -+,∵代数式227x kx -+有最小值3,∵273k -+=,即24k =,∵2k =±.【点睛】此题考查了配方法的应用,以及平方的非负性,熟练掌握完全平方公式是解本题的关键.练习1.(2022·山东泰安·八年级期中)在学了乘法公式“222()2a b a ab b ±=±+”的应用后,王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,∵2(2)0x +≥,∵2(2)11x ++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.∵245x x ++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为_____.(2)求代数式21032x x ++的最小值. (3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x +y 的最小值.【答案】(1)3(2)21032x x ++的最小值是7;(3)21253x x -++有最大值,最大值是8; (4)x +y 的最小值是2.【分析】(1)根据偶次方的非负性可求得;(2)根据题意用配方法和偶次方的非负性可直接求得;(3)根据题意用配方法和偶次方的非负性可直接求得;(4)根据7x -x 2+y -11=0,用x 表示出y ,写出x +y ,先根据题意用配方法和偶次方的非负性可求. (1)解:()213x -+,当x =1时,2(1)3x -+有最小值,是3;故答案为:3;(2)解:222221032105532(5)7x x x x x ++=++-+=++.∵2(05)x +≥,∵2(5)77x ++≥,当2(5)0x +=时,2(5)7x ++的值最小,最小值是7.∵21032x x ++的最小值是7;(3)解:21253x x -++有最大值,理由如下: ∵21253x x -++ 21(6)53x x =--+ =21(699)53x x --+-+ 21(69)353x x =--+++ 2133()8x =-++. 当21(3)03x -+=时,21(3)83x -++有最大值,最大值是8, ∵21253x x -++有最大值,最大值是8; (4)解:∵27110x x y -+-=,∵2711y x x =-++,∵22222271161163311(3)2x y x x x x x x x x +=-++=-+=-+-+=-+,∵2(3)0x -≥,∵2(3)22x -+≥,当2(3)0x -=时,2(3)2x -+的值最小,最小值是2.∵x +y 的最小值是2.【点睛】本题考查了配方法的应用和偶次方为非负数,解题的关键是能够将代数式配成完全平方式的形式.265x x ++22223335x x =+⋅⋅+-+2(3)4x =+-∵ ()230x +≥,∵ 当x =-3时,代数式265x x ++的最小值为-4.请根据上述的方法,解答下列问题:(1) 2261()x x x m n +-=++,则mn 的值为_______.(2)求代数式2265x x --+的最大值.(3)若代数式226x kx ++的最小值为2,求k 的值. 【答案】(1)-30(2)最大值为11(3)k =42±【分析】(1)利用配方法根据一次项的系数求出m 与n 的值,再相乘即可;(2)先提出代数式的负号,再进行配方,最后根据偶次方的非负性求出代数式的最大值即可; (3)先将代数式中的二次线系数提出来化为1,再进行配方,根据最小值为2求出k 的值即可.(1)解:261x x +-22223331x x =+⋅⋅+--2(3)10x =+-2()x m n =++ 解得m =3,n =-10,∵mn =-30.(2)解: 2265x x --+2(26)7x x =-++222(26(6)(6)5x x ⎡⎤=-+⋅⋅+-+⎣⎦2(6)11x =-++∵2(6)0x +≥,∵2(6)0x -+≤,∵代数式2265x x --+的最大值为11.解:226x kx ++22()62k x x =++ 22222()()6444k k k x x ⎡⎤=+⋅⋅+-+⎢⎥⎣⎦ 222()648k k x =+-+ ∵2()04k x +≥, ∵代数式226x kx ++有最小值为268k -. ∵代数式226x kx ++的最小值为2,∵2628k -=. 解得:k =42±.【点睛】本题考查的是将多项式进行配方化为完全平方式的形式,再利用偶次方的非负性求代数式的最大或最小值,准确的进行配方是解题的关键.已知2226100m m n n ++-+=,求m 和n 的值.解:将左边分组配方:()()2221690m m n n +++-+=.即()()22130m n ++-=. ∵()210m +≥,()230n -≥,且和为0, ∵()210m +=且()230n -=,∵m =-1,n =-3.利用以上解法,解下列问题:(1)已知:224250x x y y ++-+=,求x 和y 的值.(2)已知a ,b ,c 是ABC 的三边长,满足228625a b a b +=+-且ABC 为直角三角形,求c . 【答案】(1)x =-2,y =1(2)5或7【分析】(1)先将等式左边化为两个完全平方式,根据非负数的和为零可得x 和y 的值;(2)同理可得a 和b 的值,再分类讨论,由勾股定理可得c 的值.(1)解:∵224250x x y y ++-+=∵()()22210x y ++-=∵x +2=0,y -1=0∵x =-2,y =1.(2)∵228625a b a b +=+-∵2286250a b a b +--+=∵()()22430a b -+-=∵a -4=0,b -3=0∵a =4,b =3∵ABC 是直角三角形∵22345c =+=或22437c =-=∵c 的值为5或7.【点睛】此题考查配方法的应用和非负数的性质,解题的关键是要学会拼凑出完全平方式. 练习4.(2022·江西上饶·八年级期末)在理解例题的基础上,完成下列两个问题: 例题:若2222440m mn n n ++-+=,求m 和n 的值;解:由题意得:()()2222440m mn n n n +++-+=,∵22()(2)0m n n ++-=,∵020m n n +=⎧⎨-=⎩,解得22m n =-⎧⎨=⎩. (1)若22228160x xy y y ++++=,求2x y -()的值;(2)若22126450a b a b +-++=,求32a b -的值. 【答案】(1)64 (2)24【分析】(1)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出x 与y 的值,代入原式计算即可得到结果;(2)已知等式整理后,利用完全平方公式配方,再利用非负数的性质求出a 与b 的值,代入原式计算即可得到结果. (1)由题意得:22228160x xy y y y +++++= ∵()()2240x y y +++=∵040x y y +=⎧⎨+=⎩解得:44x y =⎧⎨=-⎩∵()()224464x y -=+=. (2)由题意得:221236690a a b b -++++= ∵()()22630a b -++=∵6030a b -=⎧⎨+=⎩解得:63a b =⎧⎨=-⎩∵33322262162439a ab b -====-().【点睛】本题考查了配方法的应用,非负数的性质,以及负整数指数幂,熟练掌握完全平方公式及运算法则是解本题的关键.考点3:公式法解一元二次方程必备知识点:①如果方程不能用直接开平方法和因式分解法求解,则用公式法. 题型3 公式法解一元二次方程例1.(2022·北京·通州区运河中学八年级阶段练习)用开平方法解方程:(2316m =.【答案】134m =+,234m =-【分析】根据开平方法解一元二次方程即可求解. 【详解】解:()2316m -=,34m -=±, 34m =±,∴134m =+,234m =-.【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. 【答案】11193x +=,21193x -=【分析】先找出a ,b ,c ,再求出24b ac ∆=-的值,根据求根公式即可求出答案. 【详解】解:∵23260x x --=, ∵3a =,2b =-,6c =-,∵()()224243676b ac ∆=-=--⨯⨯-=,∵()()22224364223b b ac x a±--⨯⨯--±-==⨯22196±=1193±=∵11193x +=,21193x -=【点睛】本题考查了解一元二次方程,解一元二次方程的方法有提公因式法、公式法,因式分解法等,根据方程的系数特点灵活选择恰当的方法进行求解是解题的关键.练习1.(2021·上海市南汇第四中学八年级期末)解方程:x 2﹣25x ﹣4=0. 【答案】x 1=5+3,x 2=5﹣3【分析】先找出各项系数,求出判别式,根据一元二次方程的求根公式计算即可. 【详解】解:a =1,b =﹣25,c =﹣4, Δ=b 2﹣4ac =(﹣25)2﹣4×1×(﹣4)=36>0, 方程有两个不等的实数根,x =24253653221b b ac a -±-±==±⨯,即x 1=5+3,x 2=5﹣3.【点睛】本题考查用公式法求解一元二次方程,熟练掌握根据方程的特点,选择恰当解法是解题的关键. 390x x --=【答案】13352x +=,23352x -=【分析】根据公式法即可求解. 【详解】解:∵1a =,3b =-,9b =-, ∵93645∆=+=>0,∵243453352212b b ac x a -±-±±===⨯, ∵13352x +=,23352x -=. 【点睛】本题主要考查解一元二次方程,掌握解方程的方法是解题的关键. (1)5x 2-6x +1=0(公式法) (2)x 2+8x -2=0(公式法) 【答案】(1)121,15x x ==(2)12432,432x x =+=-【分析】(1)根据题意,用公式法解一元二次方程; (2)根据题意,用配方法解一元二次方程即可求解.(1)解:5x 2-6x +1=0中,5,6,1a b c ==-=,24362016b ac ∴∆=-=-=,2464210b b ac x a -±-±∴==,解得:121,15x x ==;(2)x 2+8x -2=0,28=2x x +,281618x x ++=,()2418x +=,432x +=±,解得:12432,432x x =+=-. 【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键. (1)2219x x -+= ; (2)22310x x -+=. 【答案】(1)124,2x x ==- (2)1211,2x x ==【分析】(1)用直角开平方法解答即可; (2)用求根公式解答即可.(1)解:2219x x -+=,原方程可化为2(1)9x -=,直接开平方,得13x -=±,∵124,2x x ==-. (2)22310x x -+=,∵981∆=-=>0,∵方程有两个不相等的实数根,12314x ±=,,1211,2x x ==. 【点睛】本题考查一元二次方程的解法,解题关键是能够正确地选择恰当的解题方法.必备知识点:①若方程移项后一边为0,另一边能分解成两个一次因式的积,可用因式分解法; 题型4 因式分解法解一元二次方程例1.(2022·安徽合肥·八年级期末)解方程:23543x x x【答案】121,4x x =-=【分析】先整理可得2340x x --=,再利用因式分解法解答,即可求解. 【详解】解:23543xx x∵239120x x ,即2340x x --=, ∵()()140x x +-=, 解得:121,4x x =-=【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法——直接开平方法,因式分解法,公式法,配方法是解题的关键.例2.(2022·安徽安庆·八年级期末)解方程:2212x x x -=-. 【答案】12x =或1x =- 【分析】用因式分解法解一元二次方程即可. 【详解】解:2x 2-x =1-2x , ∵2x 2+x -1=0,∵(2x -1)(x +1)=0, 2x -1=0或x +1=0, ∵12x =或1x =-. 【点睛】本题考查解一元二次方程,熟练掌握因式分解法解一元二次方程的方法是解题的关键. 练习1.(2022·安徽合肥·八年级期末)解一元二次方程:()()323x x -=-. 【答案】x 1=3,x 2=5【分析】通过移项,因式分解再求方程的解即可. 【详解】解:(x -3)2=2(x -3) 移项得(x -3)2-2(x -3)=0,因式分解得(x -3)(x -3-2)=0, (x -3)(x -5)=0, ∵x 1=3,x 2=5.【点睛】本题考查了一元二次方程的解法,关键是运用因式分解使解方程变得更简洁. 练习2.(2022·上海市罗星中学八年级期末)解方程:24830x x -+=【答案】1231,22x x ==【分析】利用因式分解法解方程即可. 【详解】24830x x -+= (23)(21)0x x --=∵230x -=或210x -=1231,22x x ==【点睛】本题考查解一元二次方程,选择合适的方法是解题的关键. (1)()()22311-=-x x (2)()3122x x x -=- 【答案】(1)10x =,212x = (2)123x =,21x =【分析】(1)利用平方差公式分解因式后求解; (2)利用提公因式分解因式后求解. (1)解:()()22311-=-x x()()223110x x ---=()()3113110x x x x -+---+=()2420x x -=10x =,212x =. (2)()3122x x x -=-()()31210x x x ---=()()3210x x --=∵320x -=或10x -=, 解得,123x =,21x =.【点睛】本题考查因式分解法解一元二次方程,是重要考点,掌握相关知识是解题关键. (1)2x x = (2)21090x x ++=【答案】(1)10x =,21x =; (2)11x =-,29x =-【分析】(1)利用移项,提公因式求解即可; (2)利用因式分解法求解即可.(1)解:∵2x x =,∵20x x -=,∵x (x -1)=0,∵x =0或x -1=0,∵10x =,21x =; (2)∵21090x x ++=,∵(x +1)(x +9)=0,∵x +1=0或x +9=0,∵11x =-,29x =-【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.考点5:换元法解一元二次方程必备知识点:①在已知或者未知条件中,某个代数式几次出现,可用一个字母来代替它从而简化问题,这就是换元法,当然有时候要通过变形才能换元.把一些形式复杂的方程通过换元的方法变成一元二次方程,从而达到降次的目的.题型5 换元法解一元二次方程例1.(2022·全国·九年级专题练习)解方程:()()2226x x x x +++=.【答案】122,1x x ==-【分析】利用换元法可将原方程降次求解,再根据分类讨论思想对一元二次方程求解即可. 【详解】解:设x 2+x =y ,则原方程变形为y 2+y -6=0, 解得:y 1=-3,y 2=2.①当y =2时,x 2+x =2,即x 2+x -2=0, 解得:x 1=-2,x 2=1;②当y =-3时,x 2+x =-3,即x 2+x +3=0, ∵∵=12-4×1×3=1-12=-11<0, ∵此方程无解;∵原方程的解为x 1=-2,x 2=1.【点睛】本题考查了因式分解法,公式法解一元二次方程,能够掌握换元法将原方程降次,熟练运用公式法,因式分解法解一元二次方程是解决本题的关键.例2.(2022·江苏·九年级课时练习)转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程x 4-3x 2-4=0时,我们就可以通过换元法,设x 2=y ,将原方程转化为y 2-3y -4=0,解方程得到y 1=-1,y 2=4,因为x 2=y ≥0,所以y =-1舍去,所以得到x 2=4,所以x 1=2,x 2=-2.请参考例题解法,解方程:223320x x x x +-+=. 【答案】x 1=1,x 2=-4【分析】利用题中给出的方法设23x x +=y ,把方程转化为含y 的一元二次方程,求出y 的值,再求解无理方程,求出x 的值.【详解】解:设23x x +=y ,则x 2+3x =y 2, 原方程可化为:y 2-y -2=0, ∵y 1=-1,y 2=2 , ∵23x x +=y ≥0, ∵y 1=-1舍去 , ∵23x x +=2, ∵x 2+3x =4, ∵x 2+3x -4=0, ∵x 1=1,x 2=-4.【点睛】本题考查了解一元二次方程及换元法,掌握换元法的一般步骤是解决本题的关键,换元法的一般步骤:设元(未知数),换元,解元,还原四步.解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是: 设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =. 当1y =时,21x =,1x ∴=±;当4y =时,24x =,2x ∴=±; ∴原方程有四个根:11x =,21x =-,32x =,42x =-.仿照上面方法,解方程:222(3)4(3)30x x x x +++=+. 【答案】1352x -+=,2352x --=.【分析】设x 2+3x =y ,则原方程变为y 2+4y +3=0,求出y =-1,或y =-3,再分别解方程即可. 【详解】解:设x 2+3x =y ,则原方程变为y 2+4y +3=0, ∵(y +1)(y +3)=0, 解得y =-1,或y =-3,当y =-1时,x 2+3x =-1,即x 2+3x +1=0,解得x =12353522x x -+--==,,当y =-3时,x 2+3x =-3,即x 2+3x +3=0,因为∆=32-4×3<0,所以方程没有实数根,舍去; ∵原方程有两个根:1352x -+=,2352x --=.【点睛】此题考查了换元法解一元二次方程,正确理解已知中的解题方法并仿照解题是解题的关键. (1)2x -2x =99(2)2(21)x -+3(2x -1)=0 (3)22()x x --5(2x -x )+6=0. 【答案】(1)111x =,29x =- (2)112x =,21x =- (3)12x =,21x =-,31132x +=,41132x -=【分析】(1)根据配方法求解即可; (2)根据因式分解求解即可;(3)先令x 2-x =y ,得到关于y 的一元二次方程,然后根据因式分解法求出y ,再把y 的值代入x 2-x =y 求解即可. (1)解:2x -2x =99, ∵2x -2x +1=99+1 ∵2(1)100x -=, ∵110x -=±, ∵111x =,29x =-; (2)解:2(21)x -+3(2x -1)=0,∵(21)[(21)3]0x x --+=,即(21)(22)0x x -+=, ∵210x -=或220x +=, ∵112x =,21x =-; (3)解:22()x x --5(2x -x )+6=0, 令2x x y -=,则原方程为2560y y -+=∵(2)(3)0y y --=, ∵20y -=或30y -=, ∵y =2或3当y =2时,22x x -=, ∵220x x --= ∵(2)(1)0x x -+=, ∵x -2=0或x +1=0, ∵12x =,21x =-; 当y =3时,23-=x x , ∵230x x --=, ∵1141(3)11322x ±-⨯⨯-±==, ∵31132x +=,41132x -=. 综上所述,12x =,21x =-,31132x +=,41132x -=.【点睛】本题考查了一元二次方程的解法,能把一元二次方程转化成一元一次方程是解此题的关键. 阅读材料:像13x x -=这样,根号内含有未知数的方程,我们称之为无理方程. 13;x x --;两边平方:x ﹣1=9﹣6x +x 2. 解这个一元二次方程:x 1=2,x 2=5检验所得到的两个根,只有 是原无理方程的根. 理解应用:解无理方程1122x x +=. 【答案】2x =;x =3【分析】阅读材料:通过检验可确定原方程的解; 理解应用:先移项得到1212x x -=+,再两边平方得到一个一元二次方程,然后解这个一元二次方程,然后进行检验确定原无理方程的根. 【详解】解:阅读材料: 经检验2x =是原方程的解; 故答案为:2x =; 理解应用:移项:1212x x -=+, 两边平方:()214414x x x -+=+,解得154x =,23x =, 经检验原无理方程的根为3x =.【点睛】本题考查了无理方程:解无理方程的基本思想是把无理方程转化为有理方程来解,在变形时要注意根据方程的结构特征选择解题方法.用乘方法(即将方程两边各自乘同次方来消去方程中的根号)来解无理方程,往往会产生增根,应注意验根. 必备知识点:①根的判别式:运用配方法解一元二次方程过程中得到 2224()24b b ac x a a -+=,显然只有当240b ac -≥时,才能直接开平方得:22424b b acx a a -+=±也就是说,一元二次方程20(0)ax bx c a ++=≠只有当系数a 、b 、c 满足条件240b ac ∆=-≥时才有实数根.这里24b ac -叫做一元二次方程根的判别式.判别式与根的关系在实数范围内,一元二次方程20(0)ax bx c a ++=≠的根由其系数a 、b 、c 确定,它的根的情况(是否有实数根)由24b ac ∆=-确定.设一元二次方程为20(0)ax bx c a ++=≠,其根的判别式为:24b ac ∆=-则①0∆>⇔方程20(0)ax bx c a ++=≠有两个不相等的实数根21,24b b acx -±-=. ②0∆=⇔方程20(0)ax bx c a ++=≠有两个相等的实数根122b x x a==-. ③0∆<⇔方程20(0)ax bx c a ++=≠没有实数根.题型6 根的判别式的应用例1.(2022·江苏扬州·八年级期末)已知关于x 的一元二次方程2312200kx k x k k .(1)求证:无论x 取何值,此方程总有两个实数根; (2)若该方程的两根都是整数,求整数k 的值. 【答案】(1)见解析 (2)±1【分析】(1)利用一元二次方程根的判别式,即可求解;(2)用公式法求出方程的两根,1211,2x x k=-=-,再由该方程的两根都是整数,且k 为整数,可得11k -为整数,即可求解. (1)解:根据题意得:231422k k k2296188k k k k =++--221k k =-+()210k =-≥∵无论x 取何值,此方程总有两个实数根;(2)解:2312200kxk x k k , ∵()()3112k k x k-+±-=, ∵1211,2x x k=-=-, ∵该方程的两根都是整数,且k 为整数,∵11k-为整数, ∵整数k 为±1.【点睛】本题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程()200++=≠ax bx c a ,当240b ac ∆=->时,方程有两个不相等的实数根;当240b ac ∆=-=时,方程有两个相等的实数根;当240b ac ∆=-<时,方程没有实数根是解题的关键.例2.(2022·安徽滁州·八年级期末)已知关于x 的方程().(1)小明同学说:“无论m 为何实数,方程总有两个不相等的实数根.”你认为他说的有道理吗?请说明理由.(2)若方程的一个根是-2,求另一个根及m 的值. 【答案】(1)有道理,理由见解析(2)另一个根为2,5m =-【分析】(1)根据Δ=b 2-4ac >0,即可得证;(2)将x =-2代入方程,求出m 的值,再将m =-5代入方程,解方程即可确定方程的另一个根.(1)解:有道理,理由如下:∵()()()222245416213120b ac m m m m m ∆=-=+-+=++=++>∵无论m 为何实数,方程总有两个不相等的实数根.(2)解:将2x =-代入方程得()42510m m -+++=解得5m =-∵原方程为240x -=∵2x =±∵另一个根为2,5m =-.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.练习1.(2022·江苏南京·八年级期末)已知关于x 的一元二次方程2x 2﹣3mx +m 2+m ﹣3=0(m 为常数).(1)求证:无论m 为何值,方程总有两个不相等的实数根:(2)若x =2是方程的根,则m 的值为_____. 【答案】(1)见解析(2)552m +=或552-【分析】(1)先计算判别式的值得到∆=(m -2)2+8>0,然后根据判别式的意义得到结论;(2)将x =2代入方程,解方程即可.(1)解:∵∆=9m 2-4×2(m 2+m -3)=(m -2)2+8>0,∵无论m 为何值,方程总有两个不相等的实数根;(2)将x =2代入方程,得8-6m +m 2+m ﹣3=0,整理得,m 2-5m +5=0,解得552m +=或552-, 故答案为:552m +=或552-. 【点睛】本题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式∆=b 2-4ac :当∆>0,方程有两个不相等的实数根;当∆=0,方程有两个相等的实数根;当∆<0,方程没有实数根.也考查了解一元二次方程. 210x kx k ++-=方程总有两个不相等的实数根.【答案】见解析【分析】根据Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>判断即可.【详解】∵关于x 的方程22210x kx k ++-=,a =1,b =2k ,c =21k -,∵Δ=2224(2)41(1)40b ac k k -=-⨯⨯-=>,∵无论k 取何值时,方程总有两个不相等的实数根.【点睛】本题考查了一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键. 练习3.(2022·山东青岛·八年级期中)已知关于x 的一元二次方程250x mx m -+-=.(1)求证:无论m 取何值,方程一定有两个不相等的实数根;(2)若方程有一根为25m 的值.【答案】(1)见解析(2)4m =【分析】(1)根据根的判别式求出∆的值,即可得到结论;(2)把x =25+代入方程,得出关于m 的方程,解之可得.(1)证明:24(5)m m ∆=--2420m m =-+24416m m =-++2(2)16m =-+∵2(2)160m ∆=-+>∵方程一定有两个不相等的实数根.(2)将25x =+代入原方程,得2(25)(25)50m m +-++-=(15)445m +=+∵4m =【点睛】此题考查了一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式Δ=b 2−4ac :当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.练习4.(2021·河南南阳·九年级期中)已知关于x 的方程220x k x k -++=(1)求证:无论k 取何值,该方程总有实数根;(2)若等腰ABC 的一边长1a =,另两边b 、c 恰好是该方程的两个根,求三角形另外两边的长.【答案】(1)见解析(2)三角形另外两边长为2,2【分析】(1)检验根的判别式的正负情况即可得证.(2)∵ABC 是等腰三角形,若b =c ,即∆=0,解出k 后代入方程,解方程可得另外两边长;若a 是腰,则a =1是方程的根,把1代入方程解出k 后,再解出方程另一个解,检验是否符合三角形三边关系即可. (1)证明:2(2)42k k ∆=+-⨯2448k k k =++-2(2)0k =-≥所以此方程总有实根.(2)解:①若b c =,则此方程有两个相等实根此时20k -=,则2k =,原方程为:2440x x -+=,122x x ==,∵另外两边长为2和2,②若a c =,则1a =是方程2(2)20x k x k -++=的根,∵21(2)20k k -++=,∵1k =,原方程为2320x x -+=,解得:11x =,22x =,而1、1、2为边不能构成三角形.所以,三角形另外两边长为2,2.【点睛】本题考查了一元二次方程根的判别式、解一元二次方程、等腰三角形存在性、三角形三边关系等知识点,熟练掌握相关知识点是解决本题的关键.。

一元二次方程知识点归纳和重难点精析

一元二次方程知识点归纳和重难点精析一、知识点归纳1.一元二次方程的基本概念一元二次方程是指只含有一个未知数,且未知数的最高次数为2的整式方程。

其一般形式为ax²+bx+c=0(a≠0)。

2.一元二次方程的解法公式一元二次方程的解法公式为x=[-b ±sqrt(b²-4ac)] / (2a)。

其中,sqrt表示求平方根,x为未知数,a、b、c为方程的系数。

二、重难点精析九年级数学一元二次方程的重难点1.高次项:一元二次方程中,二次项的系数a不能为0.且最高次数为2.这是在解一元二次方程时需要特别注意的难点。

2.整体化简:在求解一元二次方程时,需要将方程进行整体化简,从而得到未知数的值。

这需要学生具备一定的化简和运算能力。

针对重难点的解决方法及相关思考题1.高次项注意事项:在一元二次方程中,要确保二次项的系数不为0.且最高次数不超过2.如有其他高次项,可将其合并或转化为二次项。

2.整体化简技巧:为了更好地求解一元二次方程,学生需要掌握整体化简的方法。

可以通过移项、合并同类项等方式,将方程化简为更易于求解的形式。

思考题:求解一元二次方程x²-6x+9=0时,有哪些方法可以解题?哪种方法更适合处理此类方程?三、扩展知识一元二次方程的历史背景及应用领域一元二次方程作为九年级数学的重要知识点,在实际生活和后续学习中有着广泛的应用。

例如,在解决实际问题时,一元二次方程可用于解决诸如最大化、最小化、平均值等优化问题。

此外,在物理、化学、生物等科学领域中,一元二次方程也常常用于描述现象和解决问题。

相关知识点补充在求解一元二次方程的过程中,可能会涉及到其他数学知识点,如三角函数、平移和缩放等。

这些知识点对于理解一元二次方程的解法和实际应用都有一定的帮助。

例如,三角函数可以用于求解一元二次方程的近似解;平移和缩放可以用于将复杂的一元二次方程转化为简单的形式,从而更容易求解。

因此,学生在学习的过程中需要注意知识点的联系与运用。

一元二次方程知识点总结(全章齐全)

一元二次方程知识点总结定义:两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式.这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中是二次项,是二次项系数;是一次项,是一次项系数;是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.基本解法①直接开平方法:对于形如的方程,即一元二次方程的一边是含有未知数的一次式的平方,而另一边是一个非负数,可用直接开平方法求解。

②配方法:(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.③公式法:(1)把一元二次方程化为一般式。

(2)确定a,b,c的值。

(3)代入中计算其值,判断方程是否有实数根。

(4)若代入求根公式求值,否则,原方程无实数根。

【小试牛刀】方程ax2+bx+c=0的根为④因式分解法·因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个0,即:若ab=0,则a=0或b=0。

·步骤:(1)将方程化为一元二次方程的一般形式。

(2)把方程的左边分解为两个一次因式的积,右边等于0。

(3)令每一个因式都为零,得到两个一元一次方程。

(4)解出这两个一元一次方程的解,即可得到原方程的两个根。

根的判别情况判别式:世上没有一件工作不辛苦,没有一处人事不复杂。

不要随意发脾气,谁都不欠你的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22·1 一元二次方程
一元二次方程
只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程叫做一元二次方程.
一般的,任何一个关于x 的一元二次方程都可整理成为)0(02
≠=++a c bx ax 的形式.)0(02≠=++a c bx ax 叫做一元二次方程的一般形式,其中2ax 是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.
使得一元二次方程)0(02≠=++a c bx ax 成立的x 叫做)0(02≠=++a c bx ax 的解,也叫做一元二次方程的根.
对于实际问题,列出方程并求得方程的解后,还要考虑这些解是否确实是实际问题的解. 典型例题
例1.下列方程都是整式方程吗?其中哪些是一元一次方程?其中哪些是一元二次方程?
(1)3523-=+x x (2)42=x
(3)2)2()43)(3(+=-+x x x (4)8)2)(1(2+=--x x x
分析:判断一个方程是否是一元二次方程,不能只看表面,而是能化简就必须化简,然后再看这个方程未知数的最高次数是否2.
解:(1)(2)(3)(4)都是整式方程,(1)(4)是一元一次方程,(2)(3)是一元二次方程.。

相关文档
最新文档