【学案导学 备课精选】高中数学 4.1.1导数与函数的单调性同步练习(含解析)北师大版选修1-1

合集下载

学案导学备课精选高中数学4.1.1导数与函数的单调性同步练习(含解析)北师大版选修11 (1)

学案导学备课精选高中数学4.1.1导数与函数的单调性同步练习(含解析)北师大版选修11 (1)

§1 函数的单调性与极值1.1 导数与函数的单调性 课时目标 掌握导数与函数单调性之间的关系,会利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.1.导函数的符号和函数的单调性的关系:如果在某个区间内,函数y =f (x )的导数________,则在这个区间上,函数y =f (x )是增加的;如果在某个区间内,函数y =f (x )的导数f ′(x )<0,则在这个区间上,函数f (x )是________的.2.函数的单调性决定了函数图像的大致形状.一、选择题1.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙: f (x )在(a ,b )内是单调递增的.则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若在区间(a ,b )内,f ′(x )>0,且f (a )≥0,则在(a ,b )内有( )A .f (x )>0B .f (x )<0C .f (x )=0D .不能确定3.下列函数中,在(0,+∞)内为增函数的是( )A .sin xB .x e xC .x 3-xD .ln x -x4.函数f (x )=2x -sin x 在(-∞,+∞)上是( )A .增函数B .减函数C .先增后减D .不确定5.定义在R 上的函数f (x ),若(x -1)·f ′(x )<0,则下列各项正确的是( )A .f (0)+f (2)>2f (1)B .f (0)+f (2)=2f (1)C .f (0)+f (2)<2f (1)D .f (0)+f (2)与2f (1)大小不定6.函数y =ax -ln x 在(12,+∞)内单调递增,则a 的取值范围为( ) A .(-∞,0]∪C . 题 号 1 2 3 4 5 6答 案二、填空题7.函数f (x )=x 3-15x 2-33x +6的单调减区间是____________.8.已知f (x )=ax 3+3x 2-x +1在R 上是减函数,则a 的取值范围为__________.9.使y =sin x +ax 在R 上是增函数的a 的取值范围为____________.三、解答题10.求函数f(x)=2x2-ln x的单调区间.11.(1)已知函数f(x)=x3+bx2+cx+d的单调减区间为,求b,c的值.(2)设f(x)=ax3+x恰好有三个单调区间,求实数a的取值范围.能力提升12.判断函数f(x)=(a+1)ln x+ax2+1的单调性.13.已知函数f(x)=x3-ax-1.(1)若f(x)在实数集R上单调递增,求实数a的取值范围;(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,请说明理由.1.利用导数的正负与函数单调性的关系可以求函数的单调区间;在求函数单调区间时,只能在定义域内讨论导数的符号.2.根据函数单调性可以求某些参数的范围.第四章 导数应用§1 函数的单调性与极值1.1 导数与函数的单调性知识梳理1.f′(x)>0 减少作业设计1.A2.A3.B4.A5.C6.C7.(-1,11)解析 ∵f′(x)=3x 2-30x -33=3(x +1)(x -11).由f′(x)<0,得-1<x<11,∴f(x)的单减区间为(-1,11).8.(-∞,-3]解析 f′(x)=3ax 2+6x -1≤0恒成立⇔⎩⎪⎨⎪⎧ a<0Δ≤0,即⎩⎪⎨⎪⎧a<036+12a≤0, ∴a≤-3.9.即b =-32,c =-6.(2)∵f′(x)=3ax 2+1,且f(x)有三个单调区间,∴方程f′(x)=3ax 2+1=0有两个不等的实根,∴Δ=02-4×1×3a>0,∴a<0.∴a 的取值范围为(-∞,0).12.解 由题意知f(x)的定义域为(0,+∞),f′(x)=a +1x +2ax =2ax 2+a +1x .①当a≥0时,f′(x)>0,故f(x)在(0,+∞)上单调递增.②当a≤-1时,f′(x)<0,故f(x)在(0,+∞)上单调递减.③当-1<a<0时,令f′(x)=0,解得x =-a +12a ,则当x ∈⎝ ⎛⎭⎪⎫0, -a +12a 时,f′(x)>0;当x ∈⎝ ⎛⎭⎪⎫ -a +12a ,+∞时,f′(x)<0.故f(x)在⎝ ⎛⎭⎪⎫0, -a +12a 上单调递增,在⎝ ⎛⎭⎪⎫-a +12a ,+∞上单调递减.综上,当a≥0时,f(x)在(0,+∞)上单调递增;当a≤-1时,f(x)在(0,+∞)上单调递减;当-1<a<0时,f(x)在⎝⎛⎭⎪⎫0, -a +12a 上单调递增,在⎝ ⎛⎭⎪⎫ -a +12a ,+∞上单调递减. 13.解 (1)由已知,得f′(x)=3x 2-a.因为f(x)在(-∞,+∞)上是单调增函数,所以f′(x)=3x 2-a≥0在(-∞,+∞)上恒成立,即a≤3x 2对x ∈(-∞,+∞)恒成立. 因为3x 2≥0,所以只需a≤0.又a =0时,f′(x)=3x 2≥0,f(x)在实数集R 上单调递增,所以a ≤0.(2)假设f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,则a ≥3x 2在x ∈(-1,1)时恒成立.因为-1<x <1,所以3x 2<3,所以只需a ≥3.当a =3时,在x ∈(-1,1)上,f ′(x )=3(x 2-1)<0,即f (x )在(-1,1)上为减函数,所以a ≥3.故存在实数a ≥3,使f (x )在(-1,1)上单调递减.。

高考数学复习、高中数学 导数与函数的单调性附答案解析

高考数学复习、高中数学  导数与函数的单调性附答案解析

第2节 导数与函数的单调性课标要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系,能利用导数研究函数的单调性;2.对于多项式函数,能求不超过三次的多项式函数的单调区间。

【知识衍化体验】知识梳理1.函数的导数与单调性的关系函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内 ; (2)若f ′(x )<0,则f (x )在这个区间内 ; (3)若f ′(x )=0,则f (x )在这个区间内是 . 【微点提醒】1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.基础自测 1.函数f(x)=ln x -x 的单调递增区间是( )A .(-∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)2.函数f (x )=x 3-ax 为R 上增函数的一个充分不必要条件是( ) A .a ≤0 B .a <0 C .a ≥0 D .a >03.函数y =f(x)的导函数f′(x)的图象如下图,则函数y =f(x)的图象可能是( )4.若函数f(x)=ln x +ax 2-2在区间⎝ ⎛⎭⎪⎫12,2内单调递增,则实数a 的取值范围是( )A .(-∞,-2]B .(-2,+∞)C.⎝ ⎛⎭⎪⎫-2,-18 D.⎣⎢⎡⎭⎪⎫-18,+∞ 【考点聚焦突破】考点1利用导数求函数的单调区间【例1】已知函数f(x)=4e x (x +1)-x 2-4x ,讨论f (x )的单调性.规律方法当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点即f(x)的无定义点的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.【训练1】函数f(x)=axx2+1(a>0)的单调递增区间是( )A.(-∞,-1) B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)2.函数f(x)=x+2cos x(x∈(0,π))的单调递减区间为________.考点2利用导数讨论函数的单调区间【例2】 (2015江苏节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.规律方法1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f x=x3,f′x=3x2≥0f′x=0在x=0时取到,f x在R上是增函数.【训练2】已知函数f(x)=e x(ax2-2x+2)(a>0),试讨论f(x)的单调性.考点3函数单调性的简单应用角度1比较大小或解不等式【例3-1】(1)已知函数f (x )=-xex +ln 2,则( )A .f ⎝ ⎛⎭⎪⎫1e =f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫1e <f ⎝ ⎛⎭⎪⎫12C .f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12D .大小关系无法确定 (2)已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.角度2 根据函数的单调性求参数【例3-2】已知函数f (x )=x 3-ax -1.(Ⅰ)若f (x )在(-1,1)上为减函数,则实数a 的取值范围为 ; (Ⅱ)若f (x )的单调递减区间为(-1,1),则实数a 的值为 ; (Ⅲ)若f (x )在(-1,1)上不单调,则实数a 的取值范围为 .【训练3】(1)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值范围是________.(2)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.(3)定义在R 上的奇函数f (x ),其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),则满足13(2x -1)f (2x -1)<f (3)的实数x 的取值范围是________.规律方法1.利用导数比较大小或解不等式的常用技巧,利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.2. f(x)在区间D上单调递增(减),只要f′(x)≥0(≤0)在D上恒成立即可,如果能够分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.反思与感悟【思维升华】1.函数的导数与函数的单调性在一个区间上,f′(x)≥0(个别点取等号)⇔f(x)在此区间上为增函数.在一个区间上,f′(x)≤0(个别点取等号)⇔f(x)在此区间上为减函数.2.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.【易错防范】1.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值点和导数为0的点.2.研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.第2节 导数与函数的单调性【知识衍化体验】 知识梳理1.(1)单调递增;(2)单调递减;(3)常数函数.基础自测 1.B 2.B 3.D 4.D【考点聚焦突破】【例1】解:f ′(x )=4e x (x +2)-2(x +2)=2(x +2)(2e x-1).令f ′(x )=0,得x 1=-2,x 2=ln 12.当x 变化时, f (x ), f ′(x )的变化情况如下表:x (-∞,-2)-2 ⎝ ⎛⎭⎪⎫-2,ln 12 ln 12 ⎝ ⎛⎭⎪⎫ln 12,+∞ f ′(x ) +-+f (x )极大值极小值∴y =f (x )的单调递增区间为(-∞,-2),(ln 12,+∞),单调递减区间为⎝⎛⎭⎪⎫-2,ln 12.【训练1】B函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.⎝ ⎛⎭⎪⎫π6,5π6解析 f ′(x )=1-2sin x ,令f ′(x )<0得sin x >12,故π6<x <5π6.【例2】解:由题意, f (x )的定义域为R , f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3当a =0时,有f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增.当a >0时,令f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫-∞,- 2a 3∪(0,+∞);令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫-2a 3,0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减.当a <0时,令f ′(x )>0,得x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞;令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫0,-2a 3,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.综上,当a=0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时, f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减 【训练2】解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2a a.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 【例3-1】C 解析 f ′(x )=-e x--x exe x ·e x=x -1ex,当x <1时,f ′(x )<0,函数f (x )单调递减.∵1e <12<1,∴f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12.故选C. (2) (4,+∞)令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).【例3-2】 解(Ⅰ)(法一)由题意,f ′(x )=3x 2-a ,由f (x )在(-1,1)上为减函数,得f ′(x )≤0在(-1,1)上恒成立,即a ≥3x 2恒成立.又因为当x ∈(-1,1)时,函数y =3x 2的值域是[0,3),所以实数a 的取值范围是[3,+∞).(法二)当a ≤0时, f ′(x )=3x 2-a ≥0,显然没有单调递减区间,不符合题意.当a >0时,令f ′(x )=3x 2-a =0,得x =±3a 3,易知当x ∈⎝ ⎛⎭⎪⎫-3a 3,3a 3时, f (x )单调递减.若f (x )在(-1,1)上为减函数,则(-1,1)应为⎝ ⎛⎭⎪⎫-3a 3,3a 3的子区间,即3a 3≥1,解得a ≥3,所以实数a 的取值范围是[3,+∞).(Ⅱ)由(Ⅰ)知f (x )的单调递减区间为( -3a 3, 3a 3),所以3a 3=1,解得a =3. (Ⅲ)由(Ⅰ)知,当a ≤0时,f (x )在R 上单调递增,不符合题意.当a >0时,由f ′(x )=0,得x =±3a 3,因为f (x )在(-1,1)上不单调,所以0<3a3<1,解得0<a <3,所以a 的取值范围是(0,3).【训练3】(1) [3,+∞)由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max <1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.(2)⎝ ⎛⎭⎪⎫-19,+∞ 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.(3)(-1,2)∵函数f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴由xf ′(x )<f (-x )可得xf ′(x )+f (x )<0,即[xf (x )]′<0,∵当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),∴当x ∈(-∞,0]时,恒有[xf (x )]′<0,设F (x )=xf (x ),则函数F (x )=xf (x )在(-∞,0]上为减函数,∵F (-x )=(-x )f (-x )=(-x )(-f (x ))=xf (x )=F (x ),∴函数F (x )为R 上的偶函数,∴函数F (x )=xf (x )为[0,+∞)上的增函数,∵13(2x -1)f (2x -1)<f (3),∴(2x -1)f (2x -1)<3f (3),∴F (2x -1)<F (3),∴|2x -1|<3,解得-1<x <2.。

高中数学 文科 导数课时1 导数与函数的单调性学案(含答案)

高中数学 文科 导数课时1 导数与函数的单调性学案(含答案)

§3.2导数的应用1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.知识拓展1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.(×)(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.(√)(3)函数的极大值不一定比极小值大.(√)(4)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×)(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√)题组二教材改编2.[P98A组T4]如图是函数y=f(x)的导函数y=f′(x)的图象,则下面判断正确的是()A.在区间(-2,1)上f(x)是增函数B.在区间(1,3)上f(x)是减函数C.在区间(4,5)上f(x)是增函数D.当x=2时,f(x)取到极小值答案C解析在(4,5)上f′(x)>0恒成立,∴f(x)是增函数.3.[P94例4]设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点 答案 D解析 f ′(x )=-2x 2+1x =x -2x2(x >0),当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0, ∴x =2为f (x )的极小值点.4.[P91例2]函数f (x )=x 3-6x 2的单调递减区间为______________. 答案 (0,4)解析 f ′(x )=3x 2-12x =3x (x -4), 由f ′(x )<0,得0<x <4,∴函数f (x )的单调递减区间为(0,4).5.[P99A 组T6]函数f (x )=13x 3-4x +4在[0,3]上的最大值与最小值分别为__________.答案 4,-43解析 由f (x )=13x 3-4x +4,得f ′(x )=x 2-4=(x -2)(x +2),令f ′(x )>0,得x >2或x <-2;令f ′(x )<0,得-2<x <2.所以f (x )在(-∞,-2),(2,+∞)上单调递增; 在(-2,2)上单调递减,而f (2)=-43,f (0)=4,f (3)=1,故f (x )在[0,3]上的最大值是4,最小值是-43.题组三 易错自纠6.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A.无极大值点、有四个极小值点B.有三个极大值点、一个极小值点C.有两个极大值点、两个极小值点D.有四个极大值点、无极小值点答案C解析导函数的图象与x轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点.7.已知定义在实数集R上的函数f(x)满足f(1)=3,且f(x)的导数f′(x)在R上恒有f′(x)<2(x∈R),则不等式f(x)<2x+1的解集为____________.答案(1,+∞)解析令g(x)=f(x)-2x-1,∴g′(x)=f′(x)-2<0,∴g(x)在R上为减函数,g(1)=f(1)-2-1=0.由g(x)<0=g(1),得x>1.∴不等式的解集为(1,+∞).8.设a∈R,若函数y=e x+ax有大于零的极值点,则实数a的取值范围是________.答案(-∞,-1)解析∵y=e x+ax,∴y′=e x+a.∵函数y=e x+ax有大于零的极值点,∴方程y′=e x+a=0有大于零的解,∵当x>0时,-e x<-1,∴a=-e x<-1.第1课时 导数与函数的单调性题型一 不含参数的函数的单调性1.函数y =4x 2+1x 的单调增区间为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,-1) D.⎝⎛⎭⎫-∞,-12 答案 B解析 由y =4x 2+1x ,得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2+1x 的单调增区间为⎝⎛⎭⎫12,+∞.故选B. 2.已知函数f (x )=x ln x ,则f (x )( ) A .在(0,+∞)上单调递增 B .在(0,+∞)上单调递减 C .在⎝⎛⎭⎫0,1e 上单调递增 D .在⎝⎛⎭⎫0,1e 上单调递减 答案 D解析 因为函数f (x )=x ln x 的定义域为(0,+∞), 所以f ′(x )=ln x +1(x >0), 当f ′(x )>0时,解得x >1e,即函数的单调递增区间为⎝⎛⎭⎫1e ,+∞; 当f ′(x )<0时,解得0<x <1e,即函数的单调递减区间为⎝⎛⎭⎫0,1e ,故选D. 3.(2018·开封调研)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是______________________. 答案 ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 解析 f ′(x )=sin x +x cos x -sin x =x cos x . 令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 思维升华 确定函数单调区间的步骤 (1)确定函数f (x )的定义域. (2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间. (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型二 含参数的函数的单调性典例 讨论函数f (x )=(a -1)ln x +ax 2+1的单调性. 解 f (x )的定义域为(0,+∞), f ′(x )=a -1x +2ax =2ax 2+a -1x.①当a ≥1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; ②当a ≤0时,f ′(x )<0,故f (x )在(0,+∞)上单调递减; ③当0<a <1时,令f ′(x )=0,解得x = 1-a 2a ,则当x ∈⎝⎛⎭⎪⎫0, 1-a 2a 时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫ 1-a 2a ,+∞时,f ′(x )>0,故f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 综上所述,当a ≥1时,f (x )在(0,+∞)上单调递增; 当a ≤0时,f (x )在(0,+∞)上单调递减; 当0<a <1时,f (x )在⎝ ⎛⎭⎪⎫0, 1-a 2a 上单调递减, 在⎝⎛⎭⎪⎫1-a 2a ,+∞上单调递增. 思维升华 (1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 跟踪训练 已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性. 解 由题意得f ′(x )=e x [ax 2+(2a -2)x ](a >0), 令f ′(x )=0,解得x 1=0,x 2=2-2aa.①当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝⎛⎭⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎫0,2-2a a ; ②当a =1时,f (x )在(-∞,+∞)内单调递增; ③当a >1时,f (x )的单调递增区间为⎝⎛⎭⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝⎛⎭⎫2-2a a ,0.题型三 函数单调性的应用问题命题点1 比较大小或解不等式典例 (1)(2017·南昌模拟)已知定义在⎝⎛⎭⎫0,π2上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈⎝⎛⎭⎫0,π2,都有f ′(x )sin x <f (x )cos x ,则( ) A.3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3 B .f ⎝⎛⎭⎫π3>f (1) C.2f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π4 D.3f ⎝⎛⎭⎫π6<f ⎝⎛⎭⎫π3答案 A解析 令g (x )=f (x )sin x, 则g ′(x )=f ′(x )sin x -f (x )cos x sin 2x, 由已知g ′(x )<0在⎝⎛⎭⎫0,π2上恒成立, ∴g (x )在⎝⎛⎭⎫0,π2上单调递减, ∴g ⎝⎛⎭⎫π4>g ⎝⎛⎭⎫π3, 即f ⎝⎛⎭⎫π422>f ⎝⎛⎭⎫π332, ∴3f ⎝⎛⎭⎫π4>2f ⎝⎛⎭⎫π3. (2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.答案 (-∞,-2)∪(0,2)解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′<0,∴φ(x )=f (x )x在(0,+∞)上为减函数,又φ(2)=0, ∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).命题点2 根据函数单调性求参数典例 (2018·石家庄质检)已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0). (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.解 (1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞), 所以h ′(x )=1x-ax -2,由于h (x )在(0,+∞)上存在单调递减区间, 所以当x ∈(0,+∞)时,1x-ax -2<0有解, 即a >1x 2-2x有解. 设G (x )=1x 2-2x,所以只要a >G (x )min 即可. 而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1.所以a >-1.又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞).(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立, 即a ≥1x 2-2x恒成立. 由(1)知G (x )=1x 2-2x, 所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0, 所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 引申探究1.本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.解 因为h (x )在[1,4]上单调递增,所以当x ∈[1,4]时,h ′(x )≥0恒成立,所以当x ∈[1,4]时,a ≤1x 2-2x恒成立, 又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围.解 h (x )在[1,4]上存在单调递减区间,则h ′(x )<0在[1,4]上有解,所以当x ∈[1,4]时,a >1x 2-2x有解, 又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1,所以a >-1,又因为a ≠0,所以a 的取值范围是(-1,0)∪(0,+∞).思维升华 根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.跟踪训练 已知函数f (x )=x 3-ax -1.(1)若f (x )在R 上为增函数,求实数a 的取值范围;(2)若函数f (x )的单调递减区间为(-1,1),求a 的值.解 (1)因为f (x )在R 上是增函数,所以f ′(x )=3x 2-a ≥0在R 上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为当a =0时,f ′(x )=3x 2≥0,当且仅当x =0时取等号.所以f (x )=x 3-1在R 上是增函数.所以实数a 的取值范围是(-∞,0].(2)f ′(x )=3x 2-a .当a ≤0时,f ′(x )≥0,f (x )在(-∞,+∞)上为增函数,所以a ≤0不合题意.当a >0时,令3x 2-a <0,得-3a 3<x <3a 3, 所以f (x )的单调递减区间为⎝⎛⎭⎫-3a 3,3a 3, 由题意知,3a 3=1,即a =3.用分类讨论思想研究函数的单调性典例 (12分)已知函数g (x )=ln x +ax 2-(2a +1)x ,若a ≥0,试讨论函数g (x )的单调性. 思想方法指导 含参数的函数的单调性问题一般要分类讨论,常见的分类讨论标准有以下几种可能:①方程f ′(x )=0是否有根;②若f ′(x )=0有根,求出根后判断其是否在定义域内;③若根在定义域内且有两个,比较根的大小是常见的分类方法.规范解答解 g ′(x )=2ax 2-(2a +1)x +1x=(2ax -1)(x -1)x.[2分] ∵函数g (x )的定义域为(0,+∞),∴当a =0时,g ′(x )=-x -1x. 由g ′(x )>0,得0<x <1,由g ′(x )<0,得x >1.[4分]当a >0时,令g ′(x )=0,得x =1或x =12a,[6分] 若12a <1,即a >12, 由g ′(x )>0,得x >1或0<x <12a, 由g ′(x )<0,得12a<x <1;[8分] 若12a >1,即0<a <12, 由g ′(x )>0,得x >12a或0<x <1,由g ′(x )<0,得1<x <12a, 若12a =1,即a =12,在(0,+∞)上恒有g ′(x )≥0.[10分] 综上可得:当a =0时,函数g (x )在(0,1)上单调递增, 在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)上单调递增, 在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增; 当a =12时,函数g (x )在(0,+∞)上单调递增; 当a >12时,函数g (x )在⎝⎛⎭⎫0,12a 上单调递增, 在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.[12分]。

高中数学第四章导数应用4.1.1导数与函数的单调性作业1北师大版选修1-1(2021年整理)

高中数学第四章导数应用4.1.1导数与函数的单调性作业1北师大版选修1-1(2021年整理)

2018-2019学年高中数学第四章导数应用4.1.1 导数与函数的单调性作业1 北师大版选修1-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第四章导数应用4.1.1 导数与函数的单调性作业1 北师大版选修1-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第四章导数应用4.1.1 导数与函数的单调性作业1 北师大版选修1-1的全部内容。

4。

1。

1 导数与函数的单调性[基础达标]1。

函数f(x)=2x-sin x在(-∞,+∞)上()A.是增函数B.是减函数C.先增后减D.先减后增解析:选A.f′(x)=2-cos x,因为cos x∈[-1,1],所以2-cos x>0恒成立,即f′(x)>0恒成立,故选A。

2.函数f(x)=错误!x2-ln x的单调递减区间为()A.(-1,1)B.(0,1]C.[1,+∞)D.(-∞,-1)∪(0,1]解析:选B.f′(x)=x-错误!=错误!(x〉0),由题意可知错误!得0〈x≤1。

3。

设函数f(x)在定义域内可导,y=f(x)的图像如图所示,则导函数y=f′(x)的图像可能为( )解析:选D。

由y=f(x)图像可知,x<0时,f(x)是增函数,f′(x)〉0,x〉0时,函数图像先增加后减小再增加,其对应的导数是,先有f′(x)〉0,再有f′(x)<0,最后f′(x)〉0,因此D符合条件.错误!对于R上的任意连续函数f(x),若满足(x-1)f′(x)≥0,则必有( )A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)〉2f(1)解析:选C.由题意,当x>1时,f′(x)≥0,当x<1时,f′(x)≤0,由于函数f(x)为连续函数,所以f′(1)=0必成立.所以函数f(x)的单调递增区间是[1,+∞),单调递减区间为(-∞,1),所以f(0)≥f(1),f(2)≥f(1),所以f(0)+f(2)≥2f(1).5.若函数f(x)=x2+ax+错误!在(1,+∞)上是增函数,则a的取值范围是()A.[-1,0]B.[-1,+∞)C.[0,3] D.[3,+∞)解析:选B。

导数与函数单调性 最新课时作业(含解析)

导数与函数单调性 最新课时作业(含解析)

导数与函数单调性 课时作业一、选择题1.函数y =x 3+x 的递增区间是 ( )A .(-∞,1)B .(-1,1)C .(-∞,+∞)D .(1,+∞)解析:y′=3x 2+1>0对任意实数都成立,故y =x 3+x 在R 上递增,选C. 答案:C2.已知函数f (x )=xln x +3,则f (x )的单调递减区间为 ( )A .(e ,+∞)B .(0,e)C .(0,1)和(1,e)D .(-∞,1)和(1,e)解析:由题意f ′(x )=ln x -x ·1x (ln x )2=ln x -1(ln x )2(x >0,且x ≠1),解不等式ln x -1(ln x )2<0,得x <e.∵x >0,且x ≠1, ∴0<x <1或1<x <e.∴函数的单调减区间为(0,1)和(1,e). 答案:C3.定义在[0,π2)上可导函数f (x )的导数为f ′(x ),且f ′(x )cos x +f (x )sin x <0,f (0)=0,则下列判断中,一定正确的是 ( )A .f (π6)>2f (π3)B .f (π4)<2f (π3)C .f (ln2)>0D .f (π6)<2f (π4) 解析:设F (x )=f (x )cos x ,因为f ′(x )cos x +f (x )sin x <0,x ∈[0,π2), 所以F ′(x )=f ′(x )cos x -f (x )·(cos x )′cos 2x=f ′(x )cos x +f (x )sin xcos 2x<0.所以F (x )在[0,π2)上递减,所以F (ln2)<F (0)=0,F (0)>F (π6)>F (π4)>F (π3),即f (ln2)<0,0>f (π6)cos π6>f (π4)cos π4>f (π3)cos π3,所以0>23f (π6)>2f (π4)>2f (π3),因为f ⎝ ⎛⎭⎪⎫π3<0,所以f (π6)>3f (π3)>2f (π3), f (π4)>2f (π3),2f (π6)>3f (π4), 但3f (π4)>2f (π4)不成立, 故f (π6)<2f (π4)未必成立.故选A. 答案:A4.已知函数f (x )是定义在区间(0,+∞)上的可导函数,满足f (x )>0且f (x )+f ′(x )<0(f ′(x )为函数的导函数),若0<a <1<b 且ab =1,则下列不等式一定成立的是 ( )A .f (a )>(a +1)f (b )B .f (b )>(1-a )f (a )C .af (a )>bf (b )D .af (b )>bf (a )解析:令g (x )=e x f (x ),∴g ′(x )=e x (f (x )+f ′(x ))<0,∴g (x )在(0,+∞)上为减函数. ∵a <b ,∴g (a )>g (b ),即e a f (a )>e b f (b ), ∵f (x )>0,∴f (a )f (b )>e b -a, 取b =2,则a =12,f (b )f (a )<e -32<1-a <ba ,∴B ,D 错;因为e b -a >e b -1>b 2,所以f (a )f (b )>e b -a >b 2=b a ⇒af (a )>bf (b ),所以C 正确. 答案:C5.已知定义在(0,+∞)上的函数f (x ),满足(1)f (x )>0;(2)f (x )<f ′(x )<2f (x )(其中f ′(x )是f (x )是导函数,e 是自然对数的底数),则f (1)f (2)的范围为 ( ) A .(12e 2,1e ) B .(1e 2,1e ) C .(e ,2e) D .(e ,e 3) 解析:构造函数g (x )=f (x )e x ,x ∈(0,+∞),则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,由已知f (x )<f ′(x ),得g ′(x )>0在(0,+∞)上恒成立,则函数g (x )在(0,+∞)上递增, 所以g (1)<g (2),即f (1)e <f (2)e 2,又因为f (x )>0,所以f (1)f (2)<e e 2,即f (1)f (2)<1e, 再构造函数h (x )=f (x )(e x )2,x ∈(0,+∞),则h ′(x )=f ′(x )(e x )2-f (x )·2(e x )2(e x )4=f ′(x )-2f (x )(e x )2,由已知f ′(x )<2f (x ),得h ′(x )<0在(0,+∞)上恒成立,则函数h (x )在区间(0,+∞)上单调递减,所以h (1)>h (2),即f (1)e 2>f (2)e 4,又因为f (x )>0,所以f (1)f (2)>e 2e 4,即f (1)f (2)>1e 2,所以1e 2<f (1)f (2)<1e .故选B.答案:B6.已知函数f (x )=x 3+3ax 在(1,3)上单调递增,则实数a 的取值范围是 ( )A .[-1,+∞)B .(-1,+∞)C .(-∞,-1]D .(-∞,-1) 解析:∵f (x )=x 3+3ax , ∴f ′(x )=3x 2+3a .又函数f (x )在(1,3)上单调递增, ∴f ′(x )=3x 2+3a ≥0在(1,3)上恒成立,即a ≥-x 2在(1,3)上恒成立.∵当x ∈(1,3)时,-x 2<-1,∴a ≥-1. 所以实数a 的取值范围是[-1,+∞). 故选A. 答案:A7.定义在R 上的函数f (x )满足f (2)=2,且对于任意x ∈R ,都有12f ′(x )<1,则不等式f (log 2x )>2log 2x -2的解集为 ( )A .{x |0<x <4}B .{x |-4<x <0}C .{x |x ≥4}D .{x |x <4} 解析:设t =log 2x ,则f (log 2x )>2log 2x -2可化为f (t )>2t -2, 设g (t )=f (t )-2t +2,则g ′(t )=f ′(t )-2, 因为12f ′(x )<1,即12f ′(t )<1, 所以g ′(t )=f ′(t )-2<0, 所以函数g (t )为单调递减函数, 令t =2,则g (2)=f (2)-2×2+2=0, 所以g (t )>0的解集为{t |t <2}, 即log 2x <2,解得0<x <4,即不等式的解集为{x |0<x <4},故选A. 答案:A8.已知函数f ′(x )是函数f (x )的导函数,f (1)=12e (其中e 为自然对数的底数),对任意实数x ,都有f (x )-f ′(x )>0,则不等式2f (x )<e x -2的解集为 ( )A .(-∞,e)B .(1,+∞)C .(1,e)D .(e ,+∞) 解析:由题意构造函数g (x )=f (x )e x, 则g ′(x )=f ′(x )-f (x )e x<0,∴函数g (x )在R 上单调递减. 又2f (x )<e x -2,∴f (x )e x <12e 2,而g (1)=f (1)e =12e 2,∴g (x )<g (1),∴x >1,故不等式的解集为(1,+∞).故选B.答案:B9.已知函数f(x)=12x2sin x+x cos x,则其导函数f′(x)的图象大致是()解析:∵f(x)=12x2sin x+x cos x,∴f′(x)=12x2cos x+cos x,∴f′(-x)=12(-x)2cos(-x)+cos(-x)=12x2cos x+cos x=f′(x),∴其导函数f′(x)为偶函数,图象关于y轴对称,故排除A,B,当x→+∞时,f′(x)→+∞,故排除D,故选C.答案:C10.(已知函数f(x)的定义域为(0,+∞),f′(x)是f(x)的导函数,且满足f(x)>xf′(x),则不等式f(x2-1)>(x-1)f(x+1)的解集为()A.(1,+∞) B.(1,2) C.(2,+∞) D.(0,1)解析:设g(x)=f(x)x,∴g′(x)=f′(x)·x-f(x)x2,∵f(x)>xf′(x),∴g′(x)<0,∴函数g(x)在(0,+∞)上是减函数,∵f(x2-1)>(x-1)f(x+1),∴(x+1)f(x2-1)>(x2-1)f(x+1),∴f (x 2-1)x 2-1>f (x +1)x +1,∴g (x 2-1)>g (x +1), ∴⎩⎨⎧x 2-1>0,x +1>0,x 2-1<x +1,∴1<x <2.故选B. 答案:B11.已知a ≥0,函数f (x )=(x 2-2ax )e x ,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是( )A .0<a <34 B.12<a <34 C .a ≥34 D .0<a <12解析:f ′(x )=(2x -2a )e x +(x 2-2ax )e x =[x 2+(2-2a )x -2a ]e x ,由题意,当x ∈[-1,1]时,f ′(x )≤0恒成立,即x 2+(2-2a )x -2a ≤0恒成立,即⎩⎨⎧(-1)2+(2-2a )·(-1)-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.选C. 答案:C12.已知函数f (x )=x +a ln x ,若∀x 1,x 2∈⎝ ⎛⎭⎪⎫12,1(x 1≠x 2),|f (x 1)-f (x 2)|>|1x 1-1x 2|,则正数a 的取值范围是 ( )A .[12,+∞)B .[32,+∞) C .[1,+∞) D .[2,+∞)解析:因为a >0,f ′(x )=1+a x >0,所以f (x )=x +a ln x 在(12,1)上单调递增,不妨设x 1<x 2,则f (x 1)-f (x 2)<0,1x 1-1x 2>0,∀x 1,x 2∈(12,1)(x 1≠x 2),|f (x 1)-f (x 2)|>⎪⎪⎪⎪⎪⎪1x 1-1x 2即f (x 2)-f (x 1)>1x 1-1x 2,所以f (x 2)+1x 2>f (x 1)+1x 1,即g (x )=f (x )+1x 在(12,1)上单调递增,所以g ′(x )=1+a x -1x 2≥0,即a ≥1x -x ,又32>1x -x ,故a ≥32,故选B.答案:B 二、填空题13.若函数f (x )=kx -ln x 在区间(1,+∞)上为单调增函数,则k 的取值范围是________.解析:函数f (x )=kx -ln x 在区间(1,+∞)上为单调增函数等价于导函数在此区间恒大于等于0,故k ≥1x ⇒k ≥1.答案:[1,+∞)14.已知函数f (x )=e x -1e x -2sin x ,其中e 为自然对数的底数,若f (2a 2)+f (a -3)+f (0)<0,则实数a 的取值范围为________.解析:f (0)=0,f ′(x )=e x +e -x -2cos x ,e x +e -x ≥2,而2cos x ≤2,所有f ′(x )≥0,函数y =f (x )是单调递增函数,并且满足f (-x )=-f (x ),即函数是奇函数,那么原不等式为f (2a 2)<-f (a -3)=f (3-a ),即2a 2<3-a ⇔2a 2+a -3<0,解得-32<a <1,故答案为:(-32,1).答案:(-32,1)15.已知函数f (x )=|ln x |,若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是________.解析:∵f (x )=|ln x |=⎩⎨⎧-ln x ,0<x <1,ln x ,x ≥1,画出函数f (x )=|ln x |的图象,如图1,图1∵0<a <b 且f (a )=f (b ),∴0<a <1<b ,-ln a =ln b ,∴ln(ab )=0,∴ab =1,∴a +2b =a +2a =f (a )的导数为f ′(a )=1-2a 2,可得f (a )在0<a <1时递减,即有a +2b >f (1)=3,∴a +2b 的取值范围是(3,+∞). 答案:(3,+∞)16.已知f (x )=ln x ,0<a <b ,若p =f (ab ),q =f (a +b 2),r =f (a )+f (b )2,则p ,q ,r 的大小关系是________.解析:q =f (a +b 2)=ln a +b2,r =f (a )+f (b )2=ln a +ln b 2=ln ab =p .∵a +b2≥ab ,当且仅当a =b 时取等号,∴r =p <q . 答案:r =p <q 三、解答题17.已知函数f (x )=(2x -1)e x -a (x 2+x ),a ∈R .(1)讨论f (x )的单调性;(2)设g (x )=-ax 2-a .若对任意的x ∈R ,恒有f (x )≥g (x ),求a 的取值范围. 解:(1)f ′(x )=(2x +1)e x -a (2x +1)=(2x +1)(e x -a ).(ⅰ)当a ≤0时,e x -a >0.当x ∈(-∞,-12)时,f ′(x )<0;当x ∈(-12,+∞)时,f ′(x )>0,所以f (x )在(-∞,-12)上单调递减,在(-12,+∞)上单调递增.(ⅱ)当a >0时,由f ′(x )=0,得x =-12或x =ln a . 当a =e -12时,f ′(x )=(2x +1)(e x -e -12)≥0, 所以f (x )在R 上单调递增.当0<a <e -12时,ln a <-12.当x ∈(-∞,ln a )∪(-12,+∞)时,f ′(x )>0;当x ∈(ln a ,-12)时,f ′(x )<0,所以f (x )在(-∞,ln a ),(-12,+∞)上单调递增,在(ln a ,-12)上单调递减.当a >e -12时,ln a >-12.当x ∈(-∞,-12)∪(ln a ,+∞)时,f ′(x )>0;当x ∈(-12,ln a )时,f ′(x )<0,所以f (x )在(-∞,-12),(ln a ,+∞)上单调递增,在(-12,ln a )上单调递减. (2)由题意,对任意的x ∈R , 恒有(2x -1)e x -a (x -1)≥0, 即不等式a (x -1)≤(2x -1)e x 成立. ①当x =1时,显然成立.②当x >1时,不等式化为a ≤(2x -1)e x x -1.令h (x )=(2x -1)e xx -1(x >1),有h ′(x )=(2x 2-3x )e x (x -1)2.当x ∈(1,32)时,h ′(x )<0,h (x )单调递减;当x ∈(32,+∞)时,h ′(x )>0,h (x )单调递增,所以当x =32时,h (x )取极小值h (32)=4e 32.于是a ≤4e 32.③当x <1时,不等式转化为a ≥(2x -1)e x x -1.令φ(x )=(2x -1)e xx -1(x <1),有φ′(x )=(2x 2-3x )e x(x -1)2.当x ∈(-∞,0)时,φ′(x )>0,φ(x )单调递增;当x ∈(0,1)时,φ′(x )<0,φ(x )单调递减,所以当x =0时,φ(x )取极大值φ(0)=1.此时a ≥1.综上,a 的取值范围是[1,4e 32]. 18.已知函数f (x )=ln x ,g (x )=x -1.(1)求函数y =f (x )的图象在x =1处的切线方程; (2)证明:f (x )≤g (x );(3)若不等式f (x )≤ag (x )对任意的x ∈(1,+∞)均成立,求实数a 的取值范围. 解:(1)f ′(x )=1x ,∴f ′(1)=1.又由f (1)=0,得所求切线l :y -f (1)=f ′(1)(x -1), 即所求切线为y =x -1.(2)设h (x )=f (x )-g (x )=ln x -x +1,则h ′(x )=1x -1,令h ′(x )=0,得x =1,得下表:max (3)∀x ∈(1,+∞),f (x )>0,g (x )>0, (ⅰ)当a ≥1时,f (x )≤g (x )≤ag (x ); (ⅱ)当a ≤0时,f (x )>0,ag (x )≤0, 不满足f (x )≤ag (x );(ⅲ)当0<a <1时,设e(x )=f (x )-ag (x )=ln x -a (x -1), e ′(x )=1x -a ,令e ′(x )=0,x =1a 得下表:∴e(x )max =e(1a )>e(1)=0,不满足不等式. 综上,a ≥1.19.已知函数f (x )=12x 2-(2a +2)x +(2a +1)ln x .(1)求f (x )的单调区间;(2)对任意的a ∈[32,52],x 1,x 2∈[1,2],恒有|f (x 1)-f (x 2)|≤λ|1x 1-1x 2|,求正实数λ的取值范围.解:(1)f ′(x )=x -(2a +2)+2a +1x =(x -2a -1)(x -1)x (x >0),令f ′(x )=0,得x 1=2a +1,x 2=1.①当a =0时,f ′(x )=(x -1)2x ≥0恒成立且仅有f ′(1)>0,所以f (x )增区间是(0,+∞); ②当a >0时,2a +1>1,所以f (x )增区间是(0,1)与(2a +1,+∞),减区间是(1,2a +1); ③当-12<a <0时,0<2a +1<1,所以f (x )增区间是(0,2a +1)与(1,+∞),减区间是(2a +1,1); ④当a ≤-12时,2a +1≤0,所以f (x )增区间是(1,+∞),减区间是(0,1). (2)因为a ∈[32,52],所以(2a +1)∈[4,6], 由(1)知f (x )在[1,2]上为减函数.若x 1=x 2,则原不等式恒成立,∴λ∈(0,+∞).若x 1≠x 2,不妨设1≤x 1<x 2≤2,则f (x 1)>f (x 2),1x 1>1x 2, 所以原不等式即为f (x 1)-f (x 2)≤λ(1x 1-1x 2), 即f (x 1)-λ·1x 1≤f (x 2)-λ·1x 2对任意的a ∈[32,52],x 1,x 2∈[1,2]恒成立.令g (x )=f (x )-λx ,所以对任意的a ∈[32,52],x 1,x 2∈[1,2],有g (x 1)<g (x 2)恒成立,所以g (x )=f (x )-λx 在闭区间[1,2]上为增函数.所以g ′(x )≥0对任意的a ∈[32,52],x ∈[1,2]恒成立. 而g (x )=12x 2-(2a +2)x +(2a +1)ln x -λx ,g ′(x )=x -(2a +2)+2a +1x +λx 2≥0,化简为x 3-(2a +2)x 2+(2a +1)x +λ≥0,即(2x -2x 2)a +x 3-2x 2+x +λ≥0,其中a ∈[32,52].∵x ∈[1,2],∴2x -2x 2≤0,∴只需(2x -2x 2)·52+x 3-2x 2+x +λ≥0.即x 3-7x 2+6x +λ≥0对任意x ∈[1,2]恒成立.令h (x )=x 3-7x 2+6x +λ,x ∈[1,2],h ′(x )=3x 2-14x +6<0恒成立. ∴h (x )=x 3-7x 2+6x +λ在闭区间[1,2]上为减函数,则h min (x )=h (2)=λ-8, ∴λ-8≥0,解得λ≥8.。

(2021年整理)高中数学函数的单调性练习题及其答案

(2021年整理)高中数学函数的单调性练习题及其答案

高中数学函数的单调性练习题及其答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学函数的单调性练习题及其答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学函数的单调性练习题及其答案的全部内容。

函数的单调性一、选择题:1.在区间(0,+∞)上不是增函数的函数是( )A .y =2x +1B .y =3x 2+1C .y =x2D .y =2x 2+x +12.函数f (x )=4x 2-mx +5在区间[-2,+∞]上是增函数,在区间(-∞,-2)上是减函数,则f (1)等于( )A .-7B .1C .17D .253.函数f (x )在区间(-2,3)上是增函数,则y =f (x +5)的递增区间是 ( ) A .(3,8) B .(-7,-2)C .(-2,3)D .(0,5)4.函数f (x )=21++x ax 在区间(-2,+∞)上单调递增,则实数a 的取值范围是 ( ) A .(0,21) B .( 21,+∞)C .(-2,+∞)D .(-∞,-1)∪(1,+∞)5.已知函数f (x )在区间[a ,b ]上单调,且f (a )f (b )<0,则方程f (x )=0在区间[a ,b ]内( ) A .至少有一实根 B .至多有一实根C .没有实根D .必有唯一的实根6.已知函数f (x )=8+2x -x 2,如果g (x )=f ( 2-x 2),那么函数g (x ) ( )A .在区间(-1,0)上是减函数B .在区间(0,1)上是减函数C .在区间(-2,0)上是增函数D .在区间(0,2)上是增函数7.已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点,那么不等式 |f (x +1)|<1的解集的补集是( )A.(-1,2)B.(1,4)C.(-∞,-1)∪[4,+∞)D.(-∞,-1)∪[2,+∞)8.已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是( )A.f(-1)<f(9)<f(13)B.f(13)<f(9)<f(-1)C.f(9)<f(-1)<f(13) D.f(13)<f(-1)<f(9)9.函数)xgxf-=和的递增区间依次是()A.]1,=xx(2(|)|(x)-∞(-∞],0,(B.)(+∞-∞,1[],0,C.]1,+∞D),0[+∞+∞,1[),(),,0[-∞10.已知函数()()2212f x x a x=+-+在区间(]4,∞-上是减函数,则实数a的取值范围是()A.a≤3 B.a≥-3 C.a≤5 D.a≥311.已知f(x)在区间(-∞,+∞)上是增函数,a、b∈R且a+b≤0,则下列不等式中正确的是()A.f(a)+f(b)≤-f(a)+f(b)]B.f(a)+f(b)≤f(-a)+f(-b)C.f(a)+f(b)≥-f(a)+f(b)]D.f(a)+f(b)≥f(-a)+f(-b)12.定义在R上的函数y=f(x)在(-∞,2)上是增函数,且y=f(x+2)图象的对称轴是x=0,则()A.f(-1)<f(3) B.f(0)>f(3)C.f(-1)=f(-3)D.f(2)<f(3)二、填空题:13.函数y=(x-1)—2的减区间是___ _.14.函数y=x-2x1+2的值域为__ ___.-15、设()y f x=是R上的减函数,则()3=-的单调递减区间为。

导数与函数的单调性练习含答案

第2讲导数在研究函数中的应用第1课时导数与函数的单调性一、选择题1.函数f(x)=x-ln x的单调递减区间为() A.(0,1) B.(0,+∞)C.(1,+∞) D.(-∞,0)∪(1,+∞)解析函数的定义域是(0,+∞),且f′(x)=1-1x=x-1x,令f′(x)<0,解得0<x<1,所以单调递减区间是(0,1).答案 A2.(2015·陕西卷)设f(x)=x-sin x,则f(x)() A.既是奇函数又是减函数B.既是奇函数又是增函数C.是有零点的减函数D.是没有零点的奇函数解析因为f′(x)=1-cos x≥0,所以函数为增函数,排除选项A和C.又因为f(0)=0-sin 0=0,所以函数存在零点,排除选项D,故选B.答案 B3.已知定义在R上的函数f(x),其导函数f′(x)的大致图像如图所示,则下列叙述正确的是()A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )解析 依题意得,当x ∈(-∞,c )时,f ′(x )>0,因此,函数f (x )在(-∞,c )上是增函数,由a <b <c ,所以f (c )>f (b )>f (a ). 答案 C4.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,52 D.⎝ ⎛⎦⎥⎤-∞,52 解析 ∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x 恒成立. 令g (x )=x +1x ,g ′(x )=1-1x 2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52. 答案 D5.(2017·上饶模拟)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( )A .(-1,1)B .(-1,+∞)C .(-∞,-1)D .(-∞,+∞) 解析 由f (x )>2x +4,得f (x )-2x -4>0,设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2,因为f′(x)>2,所以F′(x)>0在R上恒成立,所以F(x)在R上单调递增.又F(-1)=f(-1)-2×(-1)-4=2+2-4=0,故不等式f(x)-2x-4>0等价于F(x)>F(-1),所以x>-1.答案 B二、填空题6.已知函数f(x)=(-x2+2x)e x(x∈R,e为自然对数的底数),则函数f(x)的单调递增区间为________.解析因为f(x)=(-x2+2x)e x,所以f′(x)=(-2x+2)e x+(-x2+2x)e x=(-x2+2)e x.令f′(x)>0,即(-x2+2)e x>0,因为e x>0,所以-x2+2>0,解得-2<x<2,所以函数f(x)的单调递增区间为(-2,2).答案(-2,2)7.已知函数f(x)=-12x2+4x-3ln x在区间[t,t+1]上不单调,则t的取值范围是________.解析由题意知f′(x)=-x+4-3x=-(x-1)(x-3)x,由f′(x)=0得函数f(x)的两个极值点为1和3,则只要这两个极值点有一个在区间(t,t+1)内,函数f(x)在区间[t,t+1]上就不单调,由t<1<t+1或t<3<t+1,得0<t<1或2<t<3.答案(0,1)∪(2,3)8.(2017·武汉模拟)已知f(x)=2ln x+x2-5x+c在区间(m,m+1)上为递减函数,则m的取值范围为________.解析 由f (x )=2ln x +x 2-5x +c ,得f ′(x )=2x +2x -5,又函数f (x )在区间(m ,m +1)上为递减函数, ∴f ′(x )≤0在(m ,m +1)上恒成立, ∴⎩⎪⎨⎪⎧2m +2m -5≤0,2m +1+2(m +1)-5≤0,解得12≤m ≤1.答案 ⎣⎢⎡⎦⎥⎤12,1三、解答题 9.已知函数f (x )=ln x +ke x (k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求k 的值; (2)求f (x )的单调区间.解 (1)由题意得f ′(x )=1x -ln x -ke x ,又f ′(1)=1-ke =0,故k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x.设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x <0, 即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞). 10.已知函数f (x )=x 3+ax 2-x +c ,且a =f ′⎝ ⎛⎭⎪⎫23.(1)求a 的值;(2)求函数f (x )的单调区间;(3)设函数g (x )=(f (x )-x 3)·e x ,若函数g (x )在x ∈[-3,2]上单调递增,求实数c 的取值范围.解 (1)由f (x )=x 3+ax 2-x +c , 得f ′(x )=3x 2+2ax -1.当x =23时,得a =f ′⎝ ⎛⎭⎪⎫23=3×⎝ ⎛⎭⎪⎫232+2a ×23-1, 解得a =-1.(2)由(1)可知f (x )=x 3-x 2-x +c ,则f ′(x )=3x 2-2x -1=3⎝ ⎛⎭⎪⎫x +13(x -1),列表如下:所以f (x )的单调递增区间是⎝ ⎛⎭⎪⎫-∞,-13和(1,+∞);f (x )的单调递减区间是⎝ ⎛⎭⎪⎫-13,1.(3)函数g (x )=(f (x )-x 3)·e x =(-x 2-x +c )·e x , 有g ′(x )=(-2x -1)e x +(-x 2-x +c )e x =(-x 2-3x +c -1)e x ,因为函数g (x )在x ∈[-3,2]上单调递增,所以h (x )=-x 2-3x +c -1≥0在x ∈[-3,2]上恒成立,只要h (2)≥0,解得c ≥11,所以c 的取值范围是[11,+∞).11.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析 依题意得,当x <1时,f ′(x )>0, 则f (x )在(-∞,1)上为增函数; 又f (3)=f (-1),且-1<0<12<1, 因此有f (-1)<f (0)<f ⎝ ⎛⎭⎪⎫12,即有f (3)<f (0)<f ⎝ ⎛⎭⎪⎫12,c <a <b .答案 C12.(2016·全国Ⅰ卷)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1] B.⎣⎢⎡⎦⎥⎤-1,13 C.⎣⎢⎡⎦⎥⎤-13,13 D.⎣⎢⎡⎦⎥⎤-1,-13 解析 ∵f (x )=x -13sin 2x +a sin x ,∴f ′(x )=1-23cos 2x +a cos x =1-23(2cos 2x -1)+a cos x =-43cos 2 x +a cos x +53,由f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立. 令t =cos x ,t ∈[-1,1],则-43t 2+at +53≥0.在t ∈[-1,1]上恒成立.∴4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=-3a -1≤0,g (-1)=3a -1≤0.解之得-13≤a ≤13. 答案 C13.(2017·合肥质检)设f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-2)=0,当x >0时,xf ′(x )-f (x )>0,则使得f (x )>0成立的x 的取值范围是________. 解析 令g (x )=f (x )x ,则g ′(x )=xf ′(x )-f (x )x 2>0,x ∈(0,+∞),所以函数g (x )在(0,+∞)上单调递增. 又g (-x )=f (-x )-x=-f (x )-x=f (x )x =g (x ), 则g (x )是偶函数,g (-2)=0=g (2). 则f (x )=xg (x )>0⇔⎩⎪⎨⎪⎧x >0,g (x )>0或⎩⎪⎨⎪⎧x <0,g (x )<0,解得x >2或-2<x <0,故不等式f (x )>0的解集为(-2,0)∪(2,+∞). 答案 (-2,0)∪(2,+∞)14.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,∴f ′(1)=1=12a ,a =2. 又∵g (1)=0=12a +b ,∴b =-1,∴g (x )=x -1. (2)∵φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数, ∴φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,∴x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞), ∵x +1x ∈[2,+∞),∴2m -2≤2,m ≤2. 故实数m 的取值范围是(-∞,2].。

2024年高考数学一轮复习专题14导数与函数的单调性含解析

专题14导数与函数的单调性最新考纲1.了解函数单调性和导数的关系;能利用导数探讨函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、微小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题(生活中的优化问题).基础学问融会贯穿1.函数的单调性在某个区间(a,b)内,假如f′(x)>0,那么函数y=f(x)在这个区间内单调递增;假如f′(x)<0,那么函数y=f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①假如在x0旁边的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②假如在x0旁边的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是微小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根旁边的左右两侧导数值的符号.假如左正右负,那么f(x)在这个根处取得极大值;假如左负右正,那么f(x)在这个根处取得微小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.【学问拓展】1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.重点难点突破【题型一】不含参数的函数的单调性【典型例题】已知函数,则f(x)的增区间为()A.(0,1)B.(0,e)C.(1,+∞)D.(e,+∞)【解答】解:易知函数f(x)的定义域为(0,+∞),又,令f′(x)>0,解之得0<x<e,故选:B.【再练一题】用导数求单调区间f(x).【解答】解:∵f(x)1,∴f′(x)0,∴﹣1<x<1,∴函数的单调增区间是(﹣1,1),单调减区间是(﹣∞,﹣1],[1,+∞).思维升华确定函数单调区间的步骤(1)确定函数f(x)的定义域.(2)求f′(x).(3)解不等式f′(x)>0,解集在定义域内的部分为单调递增区间.(4)解不等式f′(x)<0,解集在定义域内的部分为单调递减区间.【题型二】含参数的函数的单调性【典型例题】求下列函数的单调区间,并求[1,e]上的最值.(1)f(x)=lnx﹣ax;(2)f(x)=ax2﹣2lnx3;(3)f(x)=e x﹣ax﹣1,求单调区间.【解答】解:(1)f(x)=lnx﹣ax,∴f′(x)a,当a≤0时,f′(x)>0恒成立,∴函数f(x)在(0,+∞)上单调递增,∴函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=1﹣ae,f(x)min=f(1)=﹣a,当a>0时,f′(x)a,令f′(x)=0,解得x,当f′(x)>0,即0<x时,函数单调递增,当f′(x)<0,即x时,函数单调递减,∴函数f(x)在(0,)上单调递增,在(,+∞)上单调递减,当x时,函数有极大值,即极大值为f()=﹣1﹣lna①当1时,即a≥1时,函数f(x)在[1,e]上单调递减,∴f(x)min=f(e)=1﹣ae,f(x)max=f(1)=﹣a,②当e时,即0<a时,函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=1﹣ae,f(x)min=f(1)=﹣a,③1e时,即a<1时,函数f(x)在[1,)上单调递增,在(,e]上单调递减,∴f(x)max=f()=﹣1﹣lna,f(1)=﹣a,f(e)=1﹣ae,当a<1,f(1)>f(e),故f(x)min=f(e)=1﹣ae,当a时,f(1)≤f(e),故f(x)min=f(1)=﹣a;(2)f(x)=ax2﹣2lnx3=ax2﹣6lnx,∴f′(x)=2ax,当a≤0时,f′(x)<0恒成立,∴函数f(x)在(0,+∞)上单调递减,∴函数f(x)在[1,e]上单调递减,∴f(x)min=f(e)=ae2﹣6,f(x)max=f(1)=a,当a>0时,令f′(x)=0,解得x,当f′(x)<0,即0<x时,函数单调递减,当f′(x)>0,即x时,函数单调递减,∴函数f(x)在(0,)上单调递减,在(,+∞)上单调递增,当x时时,函数有微小值,即微小值为f()3ln,①当1时,即a≥3时,函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=ae2﹣6,f(x)min=f(1)=a,②当e时,即0<a时,函数f(x)在[1,e]上单调递减,∴f(x)max=f(1)=a,f(x)min=f(e)=ae2﹣6,③1e时,即a<3时,函数f(x)在[1,)上单调递减,在(,e]上单调递增,∴f(x)min=f()3ln,f(1)=a,f(e)=ae2﹣6,当a<3,f(1)>f(e),故f(x)max=f(1)=a,当a a<3,f(1)<f(e),故f(x)max=f(e)=ae2﹣6;(3)f(x)=e x﹣ax﹣1,∴f′(x)=e x﹣a,当a≤0时,f′(x)>0恒成立,∴函数f(x)在(0,+∞)上单调递增,∴函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=e e﹣ae﹣1,f(x)min=f(1)=e﹣a﹣1,当a>0时,f′(x)=e x﹣a,令f′(x)=0,解得x=lna,当f′(x)<0,即0<x<lna时,函数单调递减,当f′(x)>0,即x>lna时,函数单调递增,∴函数f(x)在(0,lna)上单调递减,在(lna,+∞)上单调递增,当x=lna时,函数有微小值,即微小值为f(lna)=a﹣1﹣alna①当lna≤1时,即0<a≤e时,函数f(x)在[1,e]上单调递增,∴f(x)max=f(e)=e e﹣ae﹣1,f(x)min=f(1)=e﹣a﹣1,②当lna≥e时,即a≥e e,函数f(x)在[1,e]上单调递减,∴f(x)max=f(1)=e﹣a﹣1,f(x)min=f(e)=e e﹣ae﹣1,③1<lna<e时,即e<a<e e时,函数f(x)在[1,lna)上单调递减,在(lna,e]上单调递增,∴f(x)min=f(lna)=a﹣1﹣alna,f(1)=e﹣a﹣1,f(e)=e e﹣ae﹣1,当a<e e,f(1)>f(e),故f(x)max=f(1)=e﹣a﹣1,当e<a,f(1)<f(e),故f(x)max=f(e)=e e﹣ae﹣1.【再练一题】已知函数f(x)=x alnx(a∈R).(1)当a>0时,探讨f(x)的单调区间;(2)设g(x)=x lnx,当f(x)有两个极值点为x1,x2,且x1∈(0,e)时,求g(x1)﹣g(x2)的最小值.【解答】解:(1)f(x)的定义域(0,+∞),f′(x)=1,令f′(x)=0,得x2﹣ax+1=0,①当0<a≤2时,△=a2﹣4≤0,此时f′(x)≥0恒成立,∴f(x)在定义域(0,+∞)上单调递增;②当a>2时,△=a2﹣4>0,x2﹣ax+1=0的两根为:x1,x2,且x1,x2>0.当x∈(0,)时,f′(x)>0,f(x)单调递增;当x∈(,)时,f′(x)<0,f(x)单调递减;当x∈(,+∞)时,f′(x)>0,f(x)单调递增;综上,当0<a≤2时,f(x)的递增区间为(0,+∞),无递减区间;当a>2时,f(x)的递增区间为(0,),(,+∞),递减区间为(,).(2)由(1)知,f(x)的两个极值点x1,x2是方程x2﹣ax+1=0的两个根,则,所以x2,a=(x1),∴g(x1)﹣g(x2)=x1lnx1﹣(ln)=x1alnx1=x1(x1)lnx1.设h(x)=(x)﹣(x)lnx,x∈(0,e],则(g(x1)﹣g(x2))min=h(x)min,∵h′(x)=(1)﹣[(1)lnx+(x)],当x∈(0,e]时,恒有h′(x)≤0,∴h(x)在(0,e]上单调递减;∴h(x)min=h(e),∴(g(x1)﹣g(x2))min.思维升华 (1)探讨含参数的函数的单调性,要依据参数对不等式解集的影响进行分类探讨.(2)划分函数的单调区间时,要在函数定义域内探讨,还要确定导数为零的点和函数的间断点.【题型三】函数单调性的应用问题命题点1 比较大小或解不等式【典型例题】若a∈R,且a>1,函数,则不等式f(x2﹣2x)<1的解集是()A.(0,2)B.(0,1)∪(1,2)C.(﹣∞,0)∪(2,+∞)D.【解答】解:由0,解得﹣1<x<1.可得函数f(x)的定义域为:(﹣1,1).y2在(﹣1,1)上单调递增.y1在(﹣1,1)上单调递增,a>1,∴y在(﹣1,1)上单调递增.∴f(x)在(﹣1,1)上单调递增.又f(0)=1.∴不等式f(x2﹣2x)<1即不等式f(x2﹣2x)<f(0),∴﹣1<x2﹣2x<0,解得0<x<2,且x≠1.∴不等式f(x2﹣2x)<1的解集为(0,1)∪(1,2).故选:B.【再练一题】已知奇函数f(x)的导函数为f'(x),当x>0时,xf'(x)+f(x)>0,若a=f(1),,c=﹣ef(﹣e),则a,b,c的大小关系是()A.a<b<c B.b<c<a C.a<c<b D.b<a<c【解答】解:令函数g(x)=xf(x),由当x>0时,xf'(x)+f(x)>0,可知g′(x)>0,所以g(x)在(0,+∞)上为增函数.又f(x)在R上是奇函数,所以函数g(x)也为偶函数,又知a=f(1)=g(1),,c=﹣ef(﹣e)=g(﹣e)=g(e),且,所以,即c>a>b,故选:D.命题点2 依据函数单调性求参数【典型例题】若函数f(x)=x3﹣ke x在(0,+∞)上单调递减,则k的取值范围为()A.[0,+∞)B.C.D.【解答】解:∵函数f(x)=x3﹣ke x在(0,+∞)上单调递减,∴f′(x)=3x2﹣ke x≤0在(0,+∞)上恒成立,∴k在(0,+∞)上恒成立,令g(x),x>0,则,当0<x<2时,g′(x)>0,此时g(x)单调递增,x>2时,g′(x)<0,g(x)单调递减故当x=2时,g(x)取得最大值g(2),则k,故选:C.【再练一题】已知函数f(x)=(x﹣3)e x+a(2lnx﹣x+1)在(1,+∞)上有两个极值点,且f(x)在(1,2)上单调递增,则实数a的取值范围是()A.(e,+∞)B.(e,2e2)C.(2e2,+∞)D.(e,2e2)∪(2e2,+∞)【解答】解:f′(x)=(x﹣2)e x+a(1)=(x﹣2)(e x),x∈(1,+∞).∵f′(2)=0,可得2是函数f(x)的一个极值点.∵f(x)在(1,+∞)上有两个极值点,且f(x)在(1,2)上单调递增,∴函数f(x)的另一个极值点x0>2,满意:0,可得:a=x02e2,故选:C.思维升华依据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)f(x)为增函数的充要条件是对随意的x∈(a,b)都有f′(x)≥0且在(a,b)内的任一非空子区间上,f′(x)不恒为零,应留意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.基础学问训练1.【河北省保定市2024-2025学年度第一学期期末调研考试高二】若函数在区间上为单调增函数,则k的取值范围是A.B.C.D.【答案】C【解析】解:,函数在区间单调递增,在区间上恒成立.在区间上恒成立,而在区间上单调递减,.故选:C.2.已知函数上单调递减,则实数的取值范围是( )A.B.C.D.【答案】A【解析】因为函数上单调递减,所以上恒成立,令,设,则上恒成立,所以,解得,所以实数的取值范围是.故选A.3.函数的单调递减区间是( )A.B.C.D.【答案】D【解析】函数的定义域为,由,得,得,即函数的单调递减区间为.故选D.4.【内蒙古集宁一中(西校区)2024-2025学年高二下学期第一次月考】假如函数y=f(x)的图象如图所示,那么导函数y=的图象可能是 ( )A.B.C.D.【答案】A【解析】由原函数图像可知单调性是先增,再减,再增,再减,可得导函数图像应当是先正,再负,再正,再负,只有选项A满意,故选A5.【广东省2024年汕头市一般高考第一次模拟考试】若函数在区间上单调递减,则实数的取值范围是()A.B.C.D.【答案】D【解析】由题意,可得,若在区间上单调递减,则在区间上恒成立,即恒成立,令,则,故的最大值为1,此时,即,所以的最大值为,所以,故选D.6.【湖南省湘潭县一中、双峰一中、邵东一中、永州四中2024-2025学年高二下学期优生联考】已知是函数的导函数,,则不等式的解集为()A. B. C. D.【答案】B【解析】由题意,函数满意已知条件,又由不等式,可变形为,构造新函数,则,由已知条件可得,即,即函数为单调递减函数,令,又由不等式,可变形为,即,由函数的单调性可得,所以不等式的解集为,故选B.7.【陕西省咸阳市2024-2025学年高二上学期期末考试】已知是可导函数,且对于恒成立,则A. B.C. D.【答案】D【解析】由,得,令,则.在R上单调递减,即,.故选:D.8.【湖南省湘西州2024-2025学年高二(上)期末】已知函数在区间上是减函数,则实数a的取值范围是()A. B. C. D.【答案】A【解析】,又上是减函数,上恒有,即上恒成立,因为,所以,所以:.实数a的取值范围是.故选:A.9.【福建省三明市2024-2025学年高二上学期期末质量检测】已知函数,若在区间上存在,使得,则实数的取值范围是()A. B. C. D.【答案】A【解析】解:由,可得,由,即:在有两个解,且,令g(x)= =,可得:,由①可得,由②可得,可得,同理由③可得,可得,由④可得a,综上所述可得:,故选A.10.【福建省福州市八县(市)协作校2024-2025学年高二上学期期末联考】已知定义域为的奇函数的导函数为,当时,,若,则的大小关系正确的是()A. B. C. D.【答案】D【解析】构造函数g(x),∴g′(x),∵xf′(x)﹣f(x)<0,∴g′(x)<0,∴函数g(x)在(0,+∞)单调递减.∵函数f(x)为奇函数,∴g(x)是偶函数,∴c g(﹣3)=g(3),∵a g(e),b g(ln2),∴g(3)<g(e)<g(ln2),∴c<a<b,故选:D.11.【陕西省西安市2024-2025学年高二下学期期末考试】已知奇函数的导函数为,当时,,若,则的大小关系正确的是()A. B. C. D.【答案】D【解析】由题意,令,则,因为当时,,所以当时,,即当时,,函数单调递增,因为,所以,又由函数为奇函数,所以,所以,所以,故选D。

高考数学复习、高中数学 导数与函数的单调性附答案解析

x2+1
A.(-∞,-1) B.(-1,1)C.(1,+∞)
D.(-∞,-1)∪(1,+∞)
2.函数 f(x)=x+2cosx(x∈(0,π))的单调递减区间为________.
考点 2 利用导数讨论函数的单调区间 【例 2】 (2015 江苏节选)已知函数 f(x)=x3+ax2+b(a,b∈R).试讨论 f(x)的单调性.
规律方法 1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项 式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分 情况讨论. 2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为 0 的点和函数的间断 点. 3.个 别 导 数 为 0 的 点 不 影 响 所 在 区 间 的 单 调 性 , 如 fx= x3, f′x= 3x2≥0f′x=0 在 x=0 时取到,fx在 R 上是增函数. 【训练 2】已知函数 f(x)=ex(ax2-2x+2)(a>0),试讨论 f(x)的单调性.
角度2 根据函数的单调性求参数
【例 3-2】已知函数 f(x)=x3-ax-1.
(Ⅰ)若 f(x)在(-1,1)上为减函数,则实数 a 的取值范围为

(Ⅱ)若 f(x)的单调递减区间为(-1,1),则实数 a 的值为

(Ⅲ)若 f(x)在(-1,1)上不单调,则实数 a 的取值范围为
.
【训练 3】
( ) 1 1
(1)若函数Βιβλιοθήκη f(x)=x2+ax+ 在 ,+∞ 上是增函数,则 a 的取值范围是________. x2
[ ) 1 1
2
(2)若函数 f(x)=- x3+ x2+2ax 在 ,+∞ 上存在单调递增区间,则 a 的取值范围是

2021年高中数学 第4章 导数与函数的单调性同步练习 北师大版选修1-1

2021年高中数学第4章导数与函数的单调性同步练习北师大版选修1-1一,选择题:1 .函数是减函数的区间为( )A. B. C. D.2 .在函数的图象上,其切线的倾斜角小于的点中,坐标为整数的点的个数是()A.3 B.2 C.1 D.03.已知函数的图象如右图所示(其中是函数的导函数),下面四个图象中的图象大致是( )4.函数y=ax2+1的图象与直线y=x相切,则a=( )A. B. C. D.15.函数的导数是( )A.y=2sin2x-cosxB. y=sin2x+2cosxC. y=2sin2x-2cosxD. y=sin2x-2cosx6.抛物线y=(1-2x)2在点x=处的切线方程为()A. y=0 B .8x-y-8=0C.x =1 D .y=0或者8x-y-8=07.若函数f(x)=2x2+1,图象上P(1,3)及邻近上点Q(1+Δx,3+Δy),则=()A . 4 B. 4Δx C .4+2Δx D . 2Δx二.填空题:8、函数的单调递增区间是。

9、函数的单调递减区间为三,解答题10、求下列各函数的导数:(1);(2);(3);(4);(5);(6)11、确定函数在哪个区间内是增函数,哪个区间内是减函数。

12、求函数的单调区间。

参 考 答 案一、选择题1.D2..D3..C4..B5.D.6.B7..C 二、填空题8. 和9. 10.解:(1);(2)xxx x x x x x x x x x y 222'2'2'2'sin cos sin 2sin )(sin sin )()sin (⋅-=-==; (3); (4)xe x ex e x e x ey x xxx x2)()()('21'''+=+==;(5)22''''111)1()(ln )1(ln xx x x x x x x y -=-=+=+=; (6)'234'22')43962()]43)(12[(+--+=-+-=x x x x x x x y11、解:由,得令,解不等式得或因此,当时,函数是增函数 令,解不等式得因此,当时,函数是减函数12、解:函数的定义域为由,得2222'3')1)(1)(1(333)3(x x x x x x x x y -++=-=+=令,得或;令,得或所以函数的单调增区间是;单调减区间是KB24884 6134 愴20865 5181 冁26501 6785 枅(26223 666F 景38472 9648 陈20696 50D8 僘27925 6D15 洕423991 5DB7 嶷 ;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1 函数的单调性与极值
1.1 导数与函数的单调性 课时目标 掌握导数与函数单调性之间的关系,会利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.
1.导函数的符号和函数的单调性的关系:
如果在某个区间内,函数y =f (x )的导数________,则在这个区间上,函数y =f (x )是增加的;
如果在某个区间内,函数y =f (x )的导数f ′(x )<0,则在这个区间上,函数f (x )是________的.
2.函数的单调性决定了函数图像的大致形状.
一、选择题
1.命题甲:对任意x ∈(a ,b ),有f ′(x )>0;命题乙: f (x )在(a ,b )内是单调递增的.则甲是乙的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
2.若在区间(a ,b )内,f ′(x )>0,且f (a )≥0,则在(a ,b )内有( )
A .f (x )>0
B .f (x )<0
C .f (x )=0
D .不能确定
3.下列函数中,在(0,+∞)内为增函数的是( )
A .sin x
B .x e x
C .x 3-x
D .ln x -x
4.函数f (x )=2x -sin x 在(-∞,+∞)上是( )
A .增函数
B .减函数
C .先增后减
D .不确定
5.定义在R 上的函数f (x ),若(x -1)·f ′(x )<0,则下列各项正确的是( )
A .f (0)+f (2)>2f (1)
B .f (0)+f (2)=2f (1)
C .f (0)+f (2)<2f (1)
D .f (0)+f (2)与2f (1)大小不定
6.函数y =ax -ln x 在(12
,+∞)内单调递增,则a 的取值范围为( ) A .(-∞,0]∪[2,+∞) B .(-∞,0]
C .[2,+∞) 题 号 1 2 3 4 5 6
答 案
二、填空题
7.函数f (x )=x 3-15x 2-33x +6的单调减区间是____________.
8.已知f (x )=ax 3+3x 2-x +1在R 上是减函数,则a 的取值范围为__________.
9.使y =sin x +ax 在R 上是增函数的a 的取值范围为____________.
三、解答题
10.求函数f(x)=2x2-ln x的单调区间.
11.(1)已知函数f(x)=x3+bx2+cx+d的单调减区间为[-1,2],求b,c的值.(2)设f(x)=ax3+x恰好有三个单调区间,求实数a的取值范围.
能力提升
12.判断函数f(x)=(a+1)ln x+ax2+1的单调性.
13.已知函数f(x)=x3-ax-1.
(1)若f(x)在实数集R上单调递增,求实数a的取值范围;
(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的取值范围;若不存在,请说明理由.
1.利用导数的正负与函数单调性的关系可以求函数的单调区间;在求函数单调区间时,
只能在定义域内讨论导数的符号.
2.根据函数单调性可以求某些参数的范围.
第四章 导数应用
§1 函数的单调性与极值
1.1 导数与函数的单调性
知识梳理
1.f′(x)>0 减少
作业设计
1.A [f(x)=x 3在(-1,1)内是单调递增的,但f′(x)=3x 2≥0 (-1<x<1),故甲是乙
的充分不必要条件.]
2.A [因为f(x)在(a ,b)上为增函数,∴f(x)>f(a)≥0.]
3.B [A 中,y′=cos x ,当x>0时,y′的符号不确定;B 中,y′=e x +x e x =(x +1)e x ,
当x>0时,y′>0,故在(0,+∞)内为增函数;C 中:y′=3x 2-1,当x>0时,y′>
-1;D 中,y′=1x
-1,当x>0时,y′>-1.] 4.A [f′(x)=2-cos x ,∵cos x≤1,
∴f′(x)>0,∴f(x)在(-∞,+∞)上是增函数.]
5.C [当x>1时,f′(x)<0, f(x)是减函数,
∴f(1)>f(2).
当x<1时,f′(x)>0,f(x)是增函数,
∴f(0)<f(1).
因此f(0)+f(2)<2f(1).]
6.C [∵y′=a -1x ,函数y =ax -ln x 在⎝ ⎛⎭
⎪⎫12,+∞内单调递增, ∴函数在(12,+∞)上y′≥0,即a -1x
≥0, ∴a≥1x .由x>12得1x
<2, 要使a≥1x
恒成立,只需a≥2.] 7.(-1,11)
解析 ∵f′(x)=3x 2-30x -33=3(x +1)(x -11).
由f′(x)<0,得-1<x<11,
∴f(x)的单减区间为(-1,11).
8.(-∞,-3]
解析 f′(x)=3ax 2+6x -1≤0恒成立
⇔⎩⎪⎨⎪⎧ a<0Δ≤0,即⎩⎪⎨⎪⎧
a<036+12a≤0, ∴a≤-3.
9.[1,+∞)
解析 ∵f′(x)=cos x +a≥0,∴a≥-cos x ,
又-1≤cos x≤1,∴a≥1.
10.解 由题设知函数f(x)的定义域为(0,+∞).
f′(x)=4x -1x =4x 2-1x
, 由f′(x)>0,得x>12
, 由f′(x)<0,得0<x<12

∴函数f(x)=2x 2-ln x 的单调增区间为⎝ ⎛⎭⎪⎫12,+∞,单调减区间为⎝ ⎛⎭
⎪⎫0,12. 11.解 (1)∵函数f(x)的导函数f′(x)=3x 2+2bx +c ,
由题设知-1<x<2是不等式3x 2+2bx +c<0的解集.
∴-1,2是方程3x 2+2bx +c =0的两个实根,
∴-1+2=-23b ,(-1)×2=c 3
, 即b =-32
,c =-6. (2)∵f′(x)=3ax 2+1,且f(x)有三个单调区间,
∴方程f′(x)=3ax 2+1=0有两个不等的实根,
∴Δ=02-4×1×3a>0,∴a<0.
∴a 的取值范围为(-∞,0).
12.解 由题意知f(x)的定义域为(0,+∞),
f′(x)=a +1x +2ax =2ax 2+a +1x
. ①当a≥0时,f′(x)>0,故f(x)在(0,+∞)上单调递增.
②当a≤-1时,f′(x)<0,故f(x)在(0,+∞)上单调递减.
③当-1<a<0时,令f′(x)=0,解得x =-a +12a
, 则当x ∈⎝ ⎛⎭⎪⎫0,
-a +12a 时,f′(x)>0; 当x ∈⎝ ⎛

⎪⎫ -a +12a ,+∞时,f′(x)<0. 故f(x)在⎝ ⎛⎭⎪⎫0,
-a +12a 上单调递增, 在⎝ ⎛⎭
⎪⎫ -a +12a ,+∞上单调递减. 综上,当a≥0时,f(x)在(0,+∞)上单调递增;
当a≤-1时,f(x)在(0,+∞)上单调递减;
当-1<a<0时,f(x)在⎝ ⎛⎭⎪⎫0, -a +12a 上单调递增,在⎝ ⎛⎭
⎪⎫ -a +12a ,+∞上单调递减.
13.解 (1)由已知,得f′(x)=3x 2-a.
因为f(x)在(-∞,+∞)上是单调增函数,
所以f′(x)=3x 2-a≥0在(-∞,+∞)上恒成立,即a≤3x 2对x ∈(-∞,+∞)恒成
立.
因为3x 2≥0,所以只需a≤0.
又a =0时,f′(x)=3x 2≥0,f(x)在实数集R 上单调递增,所以a ≤0.
(2)假设f ′(x )=3x 2-a ≤0在(-1,1)上恒成立,
则a ≥3x 2在x ∈(-1,1)时恒成立.
因为-1<x <1,所以3x 2<3,所以只需a ≥3.
当a =3时,在x ∈(-1,1)上,f ′(x )=3(x 2-1)<0,
即f (x )在(-1,1)上为减函数,所以a ≥3.
故存在实数a ≥3,使f (x )在(-1,1)上单调递减.。

相关文档
最新文档