苏科版2014-2015学年第二学期初一数学期末试卷含答案
苏科版七年级下_数学期末试卷_A卷_含答案

七年级历史下册复习提纲第一单元繁荣与开放的社会(隋唐时期)1、隋朝的建立:581年,杨坚(隋文帝)建立隋朝2、隋的统一:589年,统一南北3、隋朝统一全国的意义:结束了分裂割据局面。
继秦汉以后,中国又一次实现了统一。
4、●大运河:(这是隋朝对历史最大的贡献)①开凿:隋炀帝②三点:中心是洛阳,最北端是涿郡(今北京)最南端是余杭(今杭州)③四段:自北向南分为永济渠、通济渠、邗沟、江南河④五大水系:海河、黄河、淮河、长江、钱塘江⑤地位:是古代世界上最长的运河⑥作用:大大加强了南北政治、经济、文化联系和交流5、唐朝的建立:618年,李渊(唐高祖)建立唐朝6、唐太宗统治时期,被誉为“贞观之治”。
7、贞观新政主要内容:①在赋役制度方面,唐朝减少百姓服劳役天数,使人身关系束缚逐渐松弛;②沿袭和完善隋代的“三省六部”制;③唐朝在《隋律》的基础上,多次修订法令,删繁就简,化重为轻。
《唐律疏议》是中国现存最早的一部完备的法典,在历史上对亚洲各国产生了重大影响。
8、唐太宗知人善任,虚心纳谏。
魏征,被唐太宗比喻为可以“知得失”的一面镜子。
9、“三省六部”制:是隋朝创立的,唐朝完善。
“三省”是互为牵制的平行机构,中书省替皇帝起草政令,门下省负责审核,尚书省负责政令执行。
尚书省下设有六部,分管具体政务。
例如,唐朝为筹措大型工程的钱粮,首先由中书省长官起草一份诏令,接下来交门下省审议,最后交尚书省执行。
10、武则天:是我国历史上唯一的女皇帝,她的统治有“贞观遗风”。
武则天颁布《姓氏录》,将武氏列为一等,主要是为了巩固统治。
11、武则天统治时期,最值得我们肯定的是(1)大力发展生产,(2)重用有才能的人。
武则天在历史上起到了承上启下的作用,总体上来说,社会是进步的。
12、唐朝的全盛局面出现在唐玄宗在位时期,他统治前期的年号是开元,因而唐玄宗统治的前期被称为“开元盛世“。
13、历史上唐朝三个强盛时期依顺序为唐太宗时的“贞观之治”;武则天时的“贞观遗风”;唐玄宗时的“开元盛世”。
苏教版2014-2015学年七年级上册数学期末考试试卷及分析答案

2014-2015学年七年级上册数学期末考试试卷及分析答案(因本学期已教部分下册内容,故新增部分下册题目。
)一、选择题1.我县2011年12月21日至24日每天的最高气温与最低气温如下表:其中温差最大的一天是………………………………………………………………………………………【 B 】A.12月21日B.12月22日C.12月23日D.12月24日注意:温差计算是正负数相减。
2.如图1所示,A,B两点在数轴上,点A对应的数为2.若线段AB的长为3,则点B对应的数为【A 】A.-1 B.-2 C.-3 D.-43.与算式232233++的运算结果相等的是…………………………………………………………………【 A 】A.33B.32C.53D.634.化简)3232)21(x--x(+的结果是………………………………………………………………【 D 】A.317+x-B.315+x-C.6115x--D.6115+x-7.如图2,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于……………【 A 】A.30°B.45°C.50°D.60°分析:这个题目以前考过的。
注意三角板的每个角的度数都是已知的了。
现在求∠BOC,它是在三角形AOB里,∠AOB是90度,先求∠AOC,∠AOC是大角∠AOD的一部分,因为∠AOD是150度,而∠DOC是90度,所以可以求出∠AOC。
图2 图38.如图3,下列说法中错误..的是……………………………………………………………………………【D 】A.OA的方向是东北方向B.OB的方向是北偏西60°C.OC的方向是南偏西60°D.OD的方向是南偏东60°二、填空题(本大题共4小题,每小题5分,满分20分)11.已知∠α=36°14′25″,则∠α的余角的度数是_53°45′35″.【注意:进率是60】12.王老师每晚19:00都要看央视的“新闻联播”节目,这一时刻钟面上时针与分针的夹角是 150 度.【每二个数字之间的度数是360÷12=30度】13.按下图所示的程序流程计算,若开始输入的值为3=x,则最后输出的结果是__231__ .【第一步把X的值代入进去后,计算,计算结果如果不大于100,就要把这个结果当作X的值,返回到前面的式子里,再继续计算】图114.已知线段AB=10cm,直线AB 上有一点C ,且BC=4cm ,M 是线段BC 的中点,则AM 的长是 8或12 cm .【做的时候要画出这个线段,另外要注意,这个C 点的位置,可以在AB 中间,也可以在B 的右侧】三、解答题(共90分)15.计算下列各式(本题共2小题,每小题8分,共计16分)(1))23(24)32(412)3(22---×++÷÷ (2)24)75.337811()1()21(25.032×++×÷---- =)23(44)23(949--×++×× =244152********)1(441××+×+××---=646--+ =9056331-++ =8- =0【计算时注意负号】20. 如图所示,已知O 为AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、∠AOB 的平分线,若∠MON=40°,试求∠AOC 与∠AOB 的度数.(10分)解题分析: OM 、ON 分别是∠AOC 、∠AOB 的平分线,那么,∠AOM=21∠AOC ,∠AON=21∠AOB ,现在已知的是∠MON=40°,它是∠AOM -∠AON ,所以可以把∠MON =21∠AOC -21∠AOB 这样可以得出∠AOC=∠AOB+80°,∠AOC 与∠AOB 互补,说明这二个角加起来是180度。
苏科初一数学期末下册考试试卷及答案word版

苏科初一数学期末下册考试试卷及答案word 版一、选择题1.计算(﹣2a 2)•3a 的结果是( ) A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.用白铁皮做罐头盒,每张铁皮可制盒身10个或制盒底16个,一个盒身与两个盒底配成一套罐头盒,现有18张白铁皮,设用x 张制作盒身,y 张制作盒底,可以使盒身和盒底正好配套,则所列方程组正确的是( ) A .181016x y x y +=⎧⎨=⎩B .1821016x y x y +=⎧⎨⨯=⎩C .1810216x y x y+=⎧⎨=⨯⎩D .181610x y x y+=⎧⎨=⎩3.如图,P 1是一块半径为1的半圆形纸板,在P 1的右上端剪去一个直径为1的半圆后得到图形P 2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P 3、P 4…P n …,记纸板P n 的面积为S n ,则S n -S n +1的值为( )A .12nπ⎛⎫ ⎪⎝⎭B .14nπ⎛⎫ ⎪⎝⎭C .2112n π+⎛⎫ ⎪⎝⎭D .2112n π-⎛⎫ ⎪⎝⎭4.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x-5.如果多项式x 2+mx +16是一个二项式的完全平方式,那么m 的值为( ) A .4 B .8 C .-8D .±8 6.下列代数运算正确的是( )A .x•x 6=x 6B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 7.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( )A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b8.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( )A .0B .1C .3D .79.已知关于,x y 的二元一次方程组725ax y x y +=⎧⎨-=⎩和432x y x by +=⎧⎨+=-⎩有相同的解,则-a b 的值是( ) A .13B .9C .9-D .13-10.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D .11.计算28+(-2)8所得的结果是( ) A .0 B .216 C .48 D .29 12.一个多边形的每个内角都等于140°,则这个多边形的边数是( )A .7B .8C .9D .10二、填空题13.已知:()521x x ++=,则x =______________.14.已知:12345633,39,327,381,3243,3729,======……,设A=2(3+1)(32+1)(34+1)(316+1)(332+1)+1,则A 的个位数字是__________.15.计算:312-⎛⎫ ⎪⎝⎭= . 16.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.17.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.18.已知代数式2x-3y 的值为5,则-4x+6y=______.19.内角和等于外角和2倍的多边形是__________边形.20.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 21.已知30m -=,7m n +=,则2m mn +=___________.22.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.三、解答题23.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 24.计算:(1)()2202011 3.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++-25.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数. (1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。
苏州市2015-2016学年七年级数学下期末复习要点试卷含答案

苏州市2015--2016学年第二学期初一数学期终复习要点本次考试范围:苏科版义务教育教科书七年级下学期课本全部内容:主要包括第7、8、9、10、11、12章内容。
考试时间:120分钟。
考试题型:选择、填空、解答三类。
分值:130分。
第七章平面图形认识(二)知识点:探索平行线的条件;平行线的性质;图形的平移;认识三角形;多边形内角和与外角和。
1.如图,已知AB∥CD,E是AB上一点,DE平分∠BEC交CD于D,∠C=80°,则∠D的度数是()A.400B.450C.500D.5502.下列各组线段能组成一个三角形的是()A.4 cm,6 cm,11 cm B.4 cm,5 cm,l cmC.3 cm,4 cm,5 cm D.2cm,3 cm,6 cm3.如果一个三角形的两边分别为2和4,则第三边长可能是()A.8 B.6 C. 4 D. 24.若一个多边形的内角和与它的外角和相等,则这个多边形是()A.三角形B.四边形C.五边形D.六边形5.下列四个图形中,线段BE是△ABC的高的是()ABCD6.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠B=∠DCE;④AD∥BC且∠B=∠D.其中,能推出AB∥DC的是()A.①④B.②③C.①③D.①③④7.一个多边形的内角和是1080°,这个多边形的边数是()A.6 B.7C.8 D.98.如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为()A.57°B.60°C.63°D.123°9.如图,△DEF经过怎样的平移得到△ABC()A.把△DEF向左平移4个单位,再向下平移2个单位B.把△DEF向右平移4个单位,再向下平移2个单位C.把△DEF向右平移4个单位,再向上平移2个单位D.把△DEF向左平移4个单位,再向上平移2个单位10.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF.以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC=90°﹣∠ABD;④∠BDC=∠BAC.其中正确的结论有()A.1个B.2个C.3个D.4个11.如图,四边形EFGH是由四边形ABCD通过平移得到,且点A、E、B,在同一条直线上.若AF=14,BE=6.则AB的长度是________.12.如图,AE⊥AB,且AE=AB,BC⊥CD,且BC=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是___________.(第12题)(第13题)13.如图,在△ABC中,∠B=∠C,BF=CD,BD=CE,∠A=50°,则∠FDE=_______°.14.在△ABC中,∠A=100°,当∠B=°时,△ABC是等腰三角形.15.若三角形三条边长分别是1,a,5(其中a为整数),则a的取值为▲.16.如图,将三角尺的直角顶点放在直尺的一边上,∠1=25°,∠3=20°则∠2的度数为▲°.17.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= ▲°.(第16题)(第17题)18.内角和等于外角和2倍的多边形是边形.19.如图,在Rt△ABC中,∠A=90°,∠C=30°,D为斜边上的一点且BD=AB,过点D作BC的垂线,交AC于点E.若△CDE的面积为a,则四边形ABDE的面积为.(第19题)(第20题)20.如图,等边三角形ABC的边长为10厘米.点D是边AC的中点.动点P从点C出发,沿BC的延长线以2厘米/秒的速度作匀速运动,设点P的运动时间为t(秒).若△BDP是等腰三角形,则为t=.21. 叙述三角形内角和定理并将证明过程填写完整.定理:_________.已知:△ABC.求证:∠A +∠B+∠C=180°.证明:作边BC的延长线CD,过C点作CE∥AB.∴∠1=∠A(__________),∠2=∠B( _____________),∵∠ACB+∠1+∠2=180°( ____________),∴∠A+∠B+∠ACB=180°(_____________).22. 如图,在△ABC中,已知AD⊥BC,AE平分∠BAC,∠B=70°,∠C=30°.(1)求∠DAE的度数;(2)小明认为如果只知道∠B-∠C=40°,也能算出∠DAE的度数.你认为可以吗?若能,请能写出解题过程;若不能,请说明理由.23. 请将下列证明过程补充完整:已知:如图,AD是△ABC的角平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠BEF+∠ADC=180°.求证:∠AFG=∠G.证明:∵∠BEF+∠ADC=180°(已知),又∵(平角的定义),∴∠GED=∠ADC(等式的性质),∴AD∥GE(),∴∠AFG=∠BAD(),且∠G=∠CAD(),∵AD是△ABC的角平分线(已知),∴(角平分线的定义),∴∠AFG=∠G.24. △ABC中,∠B>∠C,∠BAC的平分线交BC于点D,设∠B=x,∠C=y.(1)如图1,若AE⊥BC于点E,试用x、y表示∠EAD,并说明理由.(2)如图2,若点F是AD延长线上的一点,∠BAF、∠BDF的平分线交于点G,则∠G=.(用x、y表示)25. 如图,一个三角形的纸片ABC,其中∠A=∠C.(1) 把△ABC纸片按(如图1) 所示折叠,使点A落在BC边上的点F处,.DE是折痕.说明B C∥DF;(2) 把△ABC纸片沿DE折叠,当点A落在四边形BCED内时(如图2),探索∠C与∠1+∠2之间的大小关系,并说明理由;(3)当点A落在四边形BCED外时(如图3),∠C与∠1、∠2的关系是▲.(直接写出结论)26. 如图,在长方形ABCD中,AB=CD=5厘米,AD=BC=4厘米. 动点P从A出发,以1厘米/秒的速度沿A →B运动,到B点停止运动;同时点Q从C点出发,以2厘米/秒的速度沿C→B→A运动,到A点停止运动.设P点运动的时间为t秒(t > 0),(1) 当点Q在BC边上运动时,t为何值,AP=BQ;(2) 当t为何值时,S△ADP=S△BQD.第八章幂运算、第九章整式乘法与因式分解知识点:同底数幂相乘;幂的乘方与积的乘方;同底数幂的除法;零指数与负指数;科学记数法。
2014-2015学年七年级下期末考试数学试卷及答案

2014-2015学年七年级下期末考试数学试卷及答案一、选择题(每小题3分、共30分)1.中国园林网4月22日消息: 为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8 210 000m 2.将8210 000用科学记数法表示应为(A )482110⨯ (B )582.110⨯ (C )68.2110⨯ (D )70.82110⨯ 2.下列各组长度的三条线段能组成三角形的是( ) A.1cm ,2cm ,3cm B.1cm ,1cm ,2cm C.1cm ,2cm ,2cm ; D.1cm ,3cm ,5cm ; 3.下列乘法中,不能运用平方差公式进行运算的是( )A 、(x+a)(x-a)B 、(b+m)(m-b)C 、(-x-b)(x-b)D 、(a+b)(-a-b) 4. 如图,已知AE=CF ,∠AFD=∠CEB ,那么添加下列一个条件后,仍无法判定△ADF ≌△CBE 的是( )A .∠A=∠C B .AD=CB C .BE=DF D .AD ∥BC5、在△ABC 中,∠ABC 与∠ACB 的平分线相交于O ,则∠BOC 一定( )A、大于90° B、等于90° C、小于90° D、小于或等于90° 6、将正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,根据以上操作,若要得到2013个正方形,则需要操作的次数是( )A . 502B . 503C . 504D . 5057、下面是一名学生所做的4道练习题:①(-3)0=1;②a 3+a 3=a 6;③44144m m -=; ④(xy 2) 3=x 3y 6,他做对的个数是( )A .0B .1C . 2D .3AO8、如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( )①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的中垂线上;A . 1B . 2C . 3D . 49、如图,下图是汽车行驶速度(千米/时) 和时间(分)的关系图,下列说法其中正确的个数为( )(1)汽车行驶时间为40分钟;(2)AB 表示汽车匀速行驶;(3)第40分钟时,汽车停下来了(4)在第30分钟时,汽车的速度是90千米/时;.A 1个B 2个C 3个D 4个10、如图,一只蚂蚁以均匀的速度沿台阶12345A A A A A →→→→爬行,那么蚂蚁爬行的高度..h 随时间t 变化的图象大致是( )二、填空题(每小题2分,共20分) 11、已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为___________. 12、将 “定理”的英文单词theorem 中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e 的概率为___________.13、计算: -22+20-|-3|×(-3)-1 =;14、 =⨯-200220035)2.0( 。
苏科版初一数学下册1.1 全等图形(含答案)

1.1 全等图形一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形2.如图所示的图形是全等图形的是()A.B.C.D.3.下列各组的两个图形属于全等图形的是()A.B.C.D.4.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形5.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°6.下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.7.下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )8.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④9.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.二.填空题(共5小题)11.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为.12.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是.13.下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=.14.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为.15.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.三.解答题(共5小题)16.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.17.如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.18.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形19.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.20.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).答案与解析一.选择题(共10小题)1.下列说法正确的是()A.两个面积相等的图形一定是全等图形B.两个长方形是全等图形C.两个全等图形形状一定相同D.两个正方形一定是全等图形【分析】根据全等图形的定义进行判断即可.【解答】解:A:两个面积相等的图形不一定是全等图形,故A错误;B:长方形不一定是全等图形,故B错误;C:两个全等图形形状一定相同,故C正确;D:两个正方形不一定是全等图形,故D错误;故选:C.【点评】本题考查了全等图形,熟练运用“能够完全重合的两个图形叫做全等形”是本题的关键.2.如图所示的图形是全等图形的是()A.B.C.D.【分析】根据能够完全重合的两个图形叫做全等形可得答案.【解答】解:如图所示的图形是全等图形的是B,故选:B.【点评】此题主要考查了全等图形,关键是掌握全等形的定义.3.下列各组的两个图形属于全等图形的是()A.B.C.D.【分析】根据全等形是能够完全重合的两个图形进行分析判断.【解答】解:A、两只眼睛下面的嘴巴不能完全重合,故本选项错误;B、两个正方形的边长不相等,不能完全重合,故本选项错误;C、圆内两条相交的线段不能完全重合,故本选项错误;D、两个图形能够完全重合,故本选项正确.故选:D.【点评】本题考查的是全等形的识别、全等图形的基本性质,属于较容易的基础题.4.下列选项中表示两个全等图形的是()A.形状相同的两个图形B.能够完全重合的两个图形C.面积相等的两个图形D.周长相等的两个图形【分析】直接利用全等图形的定义分析得出答案.【解答】解:A、形状相同的两个图形,不一定是全等图形,故此选项错误;B、能够完全重合的两个图形,一定是全等图形,故此选项正确;C、面积相等的两个图形,不一定是全等图形,故此选项错误;D、周长相等的两个图形,不一定是全等图形,故此选项错误;故选:B.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.5.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3的度数为()A.90°B.105°C.120°D.135°【分析】根据对称性可得∠1+∠3=90°,∠2=45°.【解答】解:观察图形可知,∠1所在的三角形与∠3所在的三角形全等,∴∠1+∠3=90°,又∠2=45°,∴∠1+∠2+∠3=135°,故选:D.【点评】主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.6.下列四个选项中的图形与最左边的图形全等的是()A.B.C.D.【分析】根据全等图形判断即可.【解答】解:只有B选项的图形与已知图形全等,故选:B.【点评】此题考查全等图形问题,关键根据全等图形的定义判断.7.下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解答】解:(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.【点评】本题主要考查了全等三角形的性质,解题时注意:能够完全重合的两个图形叫做全等形.8.下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【解答】解:②和④都可以完全重合,因此全等的图形是②和④.故选:D.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.9.如图,△ABC≌△DEF,则此图中相等的线段有()A.1对B.2对C.3对D.4对【分析】根据两个三角形全等,可以得到3对三角形的边相等,根据BC=EF,又可以得到BE=CF可得答案是4对.【解答】解:∵△ABC≌△DEF∴AB=DE,AC=DF,BC=EF∵BC=EF,即BE+EC=CF+EC∴BE=CF即有4对相等的线段故选:D.【点评】本题主要考查了全等三角形的对应边相等问题;做题时,结合已知,认真观察图形,得到BE=CF是正确解答本题的关键.10.全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图,若运动方向相反,则称它们是镜面合同三角形如图,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合,两个镜面合同三角形要重合,则必须将其中一个翻转180°如图,下列各组合同三角形中,是镜面合同三角形的是()A.B.C.D.【分析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.【解答】解:由题意知真正合同三角形和镜面合同三角形的特点,可判断要使选项B的两个三角形重合必须将其中的一个翻转180°;而其A、D、C的全等三角形可以在平面内通过平移或旋转使它们重合.故选:B.【点评】此题考查了全等图形的知识,学生要注意阅读理解能力及空间想象能力的培养,题目出的较灵活,认真读题,透彻理解题意是正确解决本题的关键.二.填空题(共5小题)11.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为90°.【分析】首先证明△ABC≌△AED,根据全等三角形的性质可得∠1=∠AED,再根据余角的定义可得∠AED+∠2=90°,再根据等量代换可得∠1与∠2的和为90°.【解答】解:∵在△ABC和△AED中,∴△ABC≌△AED(SAS),∴∠1=∠AED,∵∠AED+∠2=90°,∴∠1+∠2=90°,故答案为:90°.【点评】此题主要考查了全等图形,关键是掌握全等三角形的判定和性质.12.如图①,已知△ABC的六个元素,则图②中甲、乙、丙三个三角形中与图①中△ABC 全等的图形是丙.【分析】根据全等三角形的判定定理(SAS,ASA,AAS,SSS)逐个判断即可.【解答】解:已知图①的△ABC中,∠B=62°,BC=a,AB=c,AC=b,∠C=58°,∠A=60°,图②中,甲:只有一个角和∠B相等,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;乙:只有一个角和∠B相等,还有一条边,没有其它条件,不符合三角形全等的判定定理,即和△ABC不全等;丙:符合AAS定理,能推出两三角形全等;故答案为:丙.【点评】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.13.下图是由全等的图形组成的,其中AB=3cm,CD=2AB,则AF=27cm.【分析】根据已知图形得出CD=2AB=6cm,进而求出即可.【解答】解:因为AB=3cm,所以CD=2AB=6cm,所以AF=3AB+3CD=3×3+3×6=27(cm).故答案为:27cm.【点评】此题主要考查了全等图形的性质,得出CD的长是解题关键.14.如图为4×4的正方形网格,图中的线段均为格点线段(线段的端点为格点),则∠1+∠2+∠3+∠4+∠5的度数为225°.【分析】根据正方形的性质可得出∠3=45°,根据长方形的性质即可得出相等的边,由此可得出全等的三角形,进而得出∠1与∠5互余、∠2与∠4互余,再将其代入∠1+∠2+∠3+∠4+∠5中即可得出结论.【解答】解:在图中标上字母,如图所示.∵四边形ABCD为4×4的正方形,∴∠3=45°.∵四边形ANPE为1×1的正方形,∴AE=AN.∵四边形CDEF和四边形BCMN均为4×3的长方形,∴CE=CN.在△ACE和△ACN中,,∴△ACE≌△ACN(SSS),∴∠AEC=∠ANC,∴∠2+∠4+90°=180°,∴∠2与∠4互余.同理可得:∠1与∠5互余.∴∠1+∠2+∠3+∠4+∠5=(∠1+∠5)+(∠2+∠4)+∠3=90°+90°+45°=225°.故答案为:225°.【点评】本题考查了全等图形、全等三角形的判定与性质、长方形及正方形的性质,解题的关键是找出∠3=45°、∠1与∠5互余、∠2与∠4互余.15.下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是①④.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.【点评】此题主要考查了全等图形,关键是掌握能够完全重合的两个图形叫做全等形.三.解答题(共10小题)16.如图,某校有一块正方形花坛,现要把它分成4块全等的部分,分别种植四种不同品种的花卉,图中给出了一种设计方案,请你再给出四种不同的设计方案.【分析】根据正方形的性质,①两条对角线把正方形分成四个全等的三角形;②作一组对边的平行线也能把正方形分成四个全等的矩形;③连接一组对边的中点,把正方形分成两个全等的矩形,再作矩形的对角线就把每个矩形都分成两个全等的三角形,这样就分成了四个全等的三角形;④过正方形的中心做互相垂直的两条线也能把正方形分成四个全等的四边形.【解答】解:设计方案如下:【点评】本题主要考查了全等图形的意义,要利用正方形及全等形的性质解答,方案多种多样,只要是满足要求就可以.17.如图为人民公园中的荷花池,现在测量荷花池两旁A、B两棵大树间的距离(不得直接量得).请你根据图形全等的知识,用一根足够长的绳子及标杆为工具,设计两种不同的测量方案.要求:(1)画出设计的测量示意图;(2)写出测量方案及理由.【分析】(1)本题属于主观性试题,有多种方案,我们可以构造8字形的全等三角形来测得揽月湖的长度(如下图);(2)根据三角形全等的证明得出对应边相等即可得出答案.【解答】解:(1)如图所示;分别以点A、点B为端点,作AQ、BP,使其相交于点C,使得CP=CB,CQ=CA,连接PQ,测得PQ即可得出AB的长度.(2)理由:由上面可知:PC=BC,QC=AC,又∠PCQ=∠BCA,∴在△PCQ与△BCA中,,∴△PCQ≌△BCA(SAS),∴AB=PQ.【点评】此题考查了全等三角形的应用与证明;此题带有一定主观性,学生要根据已知知识对新问题进行探索和对基础知识进行巩固,这种做法较常见,要熟练掌握.18.沿着图中的虚线,用四种不同的方法将下面的图形分成两个全等的图形【分析】直接利用图形形状分成全等的两部分即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,正确把握全等图形的定义是解题关键.19.将4×4的棋盘沿格线划分成两个全等图形,参考图例补全另外几种.【分析】能够完全重合的两个图形叫做全等形,可以利用图形的轴对称性和中心对称性来分割成两个全等的图形.【解答】解:如图所示,(答案不唯一)【点评】本题主要考查了全等图形,解题的关键是掌握全等图形的定义:形状和大小完全相同的两个图形叫全等形.20.如图所示,请你在图中画两条直线,把这个“+”图案分成四个全等的图形(要求至少要画出两种方法).【分析】根据能够完全重合的两个图形叫做全等形画线即可.【解答】解:如图所示:.【点评】此题主要考查了全等图形,关键是掌握全等图形的概念.1、Great works are performed not by strengh, but by perseverance.20.6.176.17.202014:4114:41:37Jun-2014:41 2、I stopped believing in Santa Claus when I was six. Mother took me to see him in adepartment store and he asked for my autograph.。
NEW_苏科版七年级下_数学期末试卷_A卷_含答案
七年级(下)期末练习(6.3)一、选择题(每题2分,共20分) 1.下面式子正确的是( )A.623x x x =⋅B.1055x x x =+C.236x x x =÷D.933)(x x = 2.下列不是等腰三角形的对称轴是( )A . 顶角的平分线B 一边的中线C 底边上的中线D 底边上的高线 3.下列算式能用平方差公式计算的是( ) A.)2)(2(a b b a -+ B.)121)(121(--+x x C.))((n m n m +--- D.)3)(3(y x y x +--4.纳米是一种长度单位,1纳米= 109-米.已知某种植物的花粉的直径约为45000纳米,那么用科学记数法表示该种花粉的直径为( )A.4105.4⨯B.5105.4-⨯C.4105.4-⨯D.9105.4-⨯ 5.任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为( ) A.61 B.31 C.21 D.326.如图,已知AB//CD ,则图中与 互补的角共有( ) A 5个 B 4个 C 3个 D 2个7.在下列条件中,不能说明'''C B A ABC ∆≅∆的是( ) A.'A A ∠=∠ 'C C ∠=∠ ''C A AC = B.'A A ∠=∠ ''B A AB = ''C B BC = C.'B B ∠=∠ 'C C ∠=∠ ''B A AB = D.''B A AB = ''C B BC = ''C A AC = 8.方程5=+y x 的一个解是( )A. 32==y x B. 41-==y x C 31==y x D 83=-=y x9.如图,已知点O 是线段AC 和BD 的中点,要使CDO ABO ∆≅∆还应给出的条件是( ) A.B A ∠=∠ B. B D ∠=∠ C.不需要增加条件 D.不具备全等条件10.下列调查中,哪一项适合用普查( ) A . 夏季冷饮市场上的冰淇淋的质量B . 对学校设立读报角的看法C . 人们环境保护的意识D . 调查青年人对音乐的喜爱情况 二、填空题(每题2分,共28分)11.某种纸张的厚度为0.00873 cm,用科学记数法表示为________cm. 12.直接写出计算结果:2101000-⨯= ______________, )3()2(3xy xy -⋅=______________.13.甲,乙,丙三人排成一列,乙排在中间的概率是___________________. 14.如图,图中内错角的对数是__________.DCBA1OCD BA FEDCBAOED CBA15.如图,点C ,F 在BE 上,21∠=∠,BC = EF ,要使DEF ABC ∆≅∆, 需要补充一个条件:___________________________________.16.你能把图中这个平行四边形分成两个全等的图形吗?最多能找到几种方法?__________17.在对某班的一次数学测验成绩进行统计分析中,各分数段的人数如图所示(分数取正整数,满分100分),请观 察图形,并回答下列问题: a) 该班有______名学生;b) 69.5 ~ 79.5这一组的频数是______,频率是______;18.如图,已知AD = AE ,AEB ADC ∠=∠,BE 和CD 相交于O 点,在不添加任何辅助线的情况下,请你写出由已知可得出的结论(例如,可得出BOC DOE EOC DOB ACD ABE ∠=∠∠=∠∆≅∆,,. 你写出的结论不能含有所举之例,要求写出4个) 结论是_______________ , _______________ ,_______________ , _______________三.解答题19.计算 )3)(9)(3(2-++a a a20.化简求值. )8(2)3)(1()2)(3(2+--+-+-+x x x x x x ( 其中x = 5 )21.若方程52221=+-+--n m n m yx 是二元一次方程,求m,n 的值.EDBA 210.5124.以下四个事件,事件A :投掷硬币时,得到一个正面;事件B :在一个小时内,你步行可以 走80千米;事件C :在一个装有2个红球,3个黄球和5个蓝球的袋子中,球的质量,大小完 全一样,从中摸出一个球是黄球;事件D :若两数之和是负数,则其中必有一数是负数。
苏科版2014-2015学年第二学期期末质量检测七年级数学试题及答案
苏科版2014/2015学年度第二学期期末质量检测七年级数学试卷(时间:100分钟;满分:120分) 2015.7.8一、选择题(本大题共8小题,每小题有且只有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格内,每小题3分,共24分)1.已知a b >,若c 是任意有理数,则下列不等式中总是成立的是A . a c b c ->-B .a c b c +<+C .ac bc <D .ac bc >2.把不等式x ≥1-在数轴上表示出来,正确的是3.下列四个多项式中,能因式分解的是A . a 2+1B .a 2﹣2a +1C .x 2+5yD .x 2﹣5y4.下列运算正确的是A .224a a a +=B .()2121a a a +=+C .()222ab a b =D .632a a a ÷= 5.如图,直线AB ∥CD , EF 分别交AB 、CD 于点M 、N ,若∠AME =125°,则∠CNF 的度数为A .125°B .75°C .65°D .55°6.若一个三角形的两边长分别为5cm ,7cm ,则第三边长可能是A .2cmB .10cmC .12cmD .14cm7.如图,将△ABC 沿BC 方向平移3cm 得到△D EF ,若△ABC 的周长为14cm ,则四边形ABFD 的周长为A .14cmB .17cmC .20cmD .23cm8.下列命题中,①对顶角相等.②等角的余角相等.③若b a =,则a b =.④同位角相等.其中真命题的个数有A .1个B .2个C .3个D .4个 二、填空题(本大题共10小题,每小题2分,共20分)9.“x 的2倍与5的和不小于10”用不等式表示为 .10.七边形的外角和为 °.11.命题“若22a b =,则a b =.”的逆命题是 .12.一滴水的质量约为0.00005千克.数据0.00005用科学记数法表示为 .-1 0 1 A B C DC D E F M B A N 第5题图 第7题图13.计算:5150122⎛⎫-⋅ ⎪⎝⎭= . 14.若代数式b x x +-42可化为2()1x a --,则b a -的值是 .15.若方程组2343223x y x y m +=⎧⎨+=-⎩的解满足15x y +=,则m16.如图,把一根直尺与一块三角尺如图放置,若么∠1=55的度数为 ° .17.如图,边长为2m+3剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,18.如图,将△ABC 的边AB 延长2倍至点A 1,边BC 延长2倍至点B 1,边CA 延长2倍至点C 1,顺次连结A 1、B 1、C 1,得△A 1B 1C 1,再分别延长△A 1B 1C 12C 2,……,依次这样下去,得△A n B n C n ,若△ABC 的面积为1,则△A n B n C n 三、解答题(本大题共9小题,共76分,解答要求写出文字说明,证明过程或计算步骤)19.(本题满分8分)计算:(1)()()101322π--+-- ; (2)()326323a a a a a -⋅+÷20.(本题满分8分)解不等式组,并把解集在数轴上表示出来()211113x x x x ⎧--≤⎪⎨+>-⎪⎩C 1 A 1A B 1B C 第16题图 第18题图 2m+3 m+3 m 第17题图21.(本题满分6分)先化简,再求值()()()()22223x y x y x y x x y +--+--,其中12x =-,y=2.22.(本题满分8分)因式分解(1)34a a - (2)2312182a a a -++23.(本题满分6分)如图,方格中有一条美丽可爱的小金鱼.(1)若方格的边长为1,则小鱼的面积为 .(2)画出小鱼向左平移10格后的图形(不要求写作图步骤和过程).24.(本题满分8分)如图,在△ABC 中,∠B =54°,AD 平分∠CAB ,交BC 于D ,E 为AC 边上一点,连结DE ,∠EAD =∠EDA ,EF ⊥BC 于点F .求∠FED 的度数.F 第24题图某服装店用10000元购进A,B两种新式服装,按标价售出后可获得毛利润5400元(毛利润=售价﹣进价),这两种服装的进价、标价如表所示:类型、价格A型B型进价(元/件)80 100标价(元/件)120 160(1)这两种服装各购进的件数;(2)如果A种服装按标价的8折出售,要使这批服装全部售出后毛利润不低于2000元,则B种服装至多按标价的几折出售?26.(本题满分10分)对x,y定义一种新运算T,规定:T(x,y)=21ax by+-(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=0211a b⋅+⋅-=2b-1.(1)已知T(1,﹣1)=﹣2,T(4,2)=3.①求a,b的值;②若关于m的不等式组()()2,544,32T m mT m m p-≤⎧⎨->⎩恰好有2个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?(1)AB∥CD,如图1,点P在AB、CD外面时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.如图2,将点P移到AB、CD内部,以上结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(2)如图3,若AB、CD相交于点Q,则∠BPD、∠B、∠D、∠BQD之间有何数量关系(不需证明)?(3)根据(2)的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.(4)若平面内有点A1、A2、A3、A4、A5、A6、A7、A8,连结A1A3、A2A4、A3A5、A4A6、A5A7、A6A8、A7A1、A8A2,如图5,则∠A1+∠A2+∠A3+∠A4+∠A5+∠A6+∠A7+∠A8的度数是多少(直接写出结果)?若平面内有n个点A1、A2、A3、A4、A5、······,A n,且这n个点能围成的多边形为凸多边形,连结A1A3、A2A4、A3A5、A4A6、A5A7,······,A n-1A1、A n A2,则∠A1+∠A2+∠A3+∠A4+······+∠A n-1+∠A n的度数是多少(直接写出结果,用含n的代数式表示)?2014/2015学年度第二学期期末质量检测 七年级数学参考答案及评分标准(阅卷前请认真校对,以防答案有误!)一、选择题(每小题3分,共24分)二、填空题(每小题2分,共20分)9.2x+5≥10 10.360 11.若a b =,则22a b =. 12.5×10-5 13.12- 14.1 15.0 16.145 17.3m+618.n 19三、解答题19.(1) -4 (4分,其中每算对一个1分)(2)310a (4分,其中每化简正确一个或一步1分)20.(1)x≥1,x<2,所以1<x ≤2,数轴上表示(略)(各2分,共8分)21.原式=275xy y + (4分,其中每化简正确一部分1分)当1x =-,y=2 原式=13 (6分)22.(1) ()()22a a a +-(提取公因式2分,平方差公式2分,共4分)(2) ()223a a -(提取公因式2分,用公式2分,共4分)23.(1)16 (3分)(2)画图略(6分)24. 证得DE ∥AB (4分)54EDF B ∠=∠=︒(6分)∠FED =36°(8分)25.(1) 设购进A 种服装的件数为x 件,B 种的为y 件,根据题意得:801001000040605400x y x y +=⎧⎨+=⎩ (3分)解得x=75 y=40 (5分)(2) 设B 种服装打m 折出售,根据题意得:(120×0.8-80)×75+(160×10m-100)×40≥2000 (8分)m ≥7.5 (9分)答略 (10分)(第(2)中学生设的m 折,但列方程时没除以10,但在答案中又写出了正确结果,扣1分)26.(1)①2124413a b a b --=-⎧⎨+-=⎩ (1分) 13a =,23b =(2分) ②⎪⎪⎩⎪⎪⎨⎧>--+≤--+p m m m m 13)23(43413)45(432(3分) 解得739145p m -<≤ (4分) 因为原不等式组有2个整数解 所以37392≤-<p 所以354-<≤-p (6分) (2)T (x ,y )=21ax by +- T (y ,x )=21ay bx +-所以21ax by +-= 21ay bx +-所以()()220a b x a b y ---=()()20a b x y --=所以2a b = (10分)27.(1)∠BPD =∠B+∠D (2分) 证明略(4分)(2)∠BPD =∠B +∠D+∠BQD (6分)(3)∠A +∠B +∠C +∠D +∠E +∠F=360°过程略(9分)(4)∠A 1+∠A 2+∠A 3+∠A 4+∠A 5+∠A 6+∠A 7+∠A 8 =720°(10分)∠A 1+∠A 2+∠A 3+∠A 4+······+∠A n-1+∠A n =(n-4)180°(12分)。
完整word版苏科初一数学下学期期末考试试题
完整word 版苏科初一数学下学期期末考试试题一、选择题1.12-等于( )A .2-B .12C .1D .12- 2.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角3.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( )A .﹣4B .2C .3D .4 5.下列四个等式从左到右的变形是因式分解的是 ( )A .22()()a b a b a b +-=-B .2()ab a a b a -=-C .25(1)5x x x x +-=+-D .21()x x x x x+=+ 6.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12 B .15 C .10D .12或15 7.如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中AC 边上的高是( )A .CFB .BEC .AD D .CD8.一元一次不等式312x -->的解集在数轴上表示为( )A .B .C .D .9.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .10.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=111.下列等式由左边到右边的变形中,因式分解正确的是( )A .22816(4)m m m -+=-B .323346(46)x y x y x y y +=+C .()22121x x x x ++=++D .22()()a b a b a b +-=-12.已知x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解,则32a b -的算术平方根为( ) A .4± B .4 C .2 D .2±二、填空题13.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是_____.14.分解因式:m 2﹣9=_____.15.若x +3y -4=0,则2x •8y =_________.16.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.17.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .18.如图,在△ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且△ABC 的面积等于4cm 2,则阴影部分图形面积等于_____cm 219.内角和等于外角和2倍的多边形是__________边形.20.已知关于x ,y 的方程22146m n m n x y --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.21.已知关于x ,y 的二元一次方程(32)(23)11100a x a y a +----=,无论a 取何值,方程都有一个固定的解,则这个固定解为_______.22.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.三、解答题23.已知在△ABC 中,试说明:∠A +∠B +∠C =180°方法一: 过点A 作DE ∥BC . 则(填空)∠B =∠ ,∠C =∠∵ ∠DAB +∠BAC + ∠CAE =180°∴∠A +∠B +∠C =180°方法二: 过BC 上任意一点D 作DE ∥AC ,DF ∥AB 分别交AB 、AC 于E 、F (补全说理过程 )24.(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b )2=a 2+2ab+b 2,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式: .(2)利用(1)中得到的结论,解决下面的问题:若a+b+c =10,ab+ac+bc =35,则a 2+b 2+c 2= .(3)小明同学用图3中x 张边长为a 的正方形,y 张边长为b 的正方形,z 张宽、长分别为a 、b 的长方形纸片拼出一个面积为(2a+b )(a+2b )长方形,则x+y+z = .(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x 的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .25.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.26.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.27.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.28.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4…回答下列三个问题:(1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.29.已知:如图,直线BD 分别交射线AE 、CF 于点B 、D ,连接A 、D 和B 、C ,12180∠+∠=,A C ∠=∠,AD 平分BDF ∠,求证:()1//AD BC ;()2BC 平分DBE ∠.30.如图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△ABC的高CD;(3)在图中能使S△PBC=S△ABC的格点P的个数有个(点P异于A)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=1 2 .故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键. 2.C解析:C【分析】根据同旁内角的定义可判断.【详解】∵∠1和∠2都在直线c的下侧,且∠1和∠2在直线a、b之内∴∠1和∠2是同旁内角的关系故选:C.【点睛】本题考查同旁内角的理解,紧抓定义来判断.3.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A、错误.由∠1=∠4应该推出AB∥CD.B、错误.由∠2=∠3,应该推出BC//AD.C、正确.D、错误.由∠CBA+∠C=180°,应该推出AB∥CD,故选:C.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.4.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.5.B解析:B【分析】根据因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,即可求解.【详解】解:根据因式分解的概念,A 选项属于整式的乘法,错误;B 选项符合因式分解的概念,正确;C 选项不符合因式分解的概念,错误;D 选项因式分解错误,应为2(1)x x x x +=+,错误.故选B .【点睛】本题目考查因式分解的概念,难度不大,熟练区分因式分解与整数乘法的关系是解题的关键.6.B解析:B【分析】求等腰三角形的周长,即是确定等腰三角形的腰与底的长求周长;题目给出等腰三角形有两条边长为3和6,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】由题意,分以下两种情况:(1)当等腰三角形的腰为3时,三边为3,3,6此时336+=,不满足三角形的三边关系定理(2)当等腰三角形的腰为6时,三边为3,6,6此时366+>,满足三角形的三边关系定理则其周长为36615++=综上,该三角形的周长为15故选:B .【点睛】本题考查了等腰三角形的定义、三角形的三边关系定理,依据题意,正确分两种情况讨论是解题关键.7.B解析:B【解析】试题分析:根据图形,BE 是△ABC 中AC 边上的高.故选B .考点:三角形的角平分线、中线和高.8.B解析:B【解析】【分析】先求出不等式的解集,再在数轴上表示出不等式的解集即可.【详解】-3x-1>2,-3x >2+1,-3x >3,x <-1, 在数轴上表示为:,故选B .【点睛】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键. 9.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A 、可以通过平移得到,故此选项正确;B 、可以通过旋转得到,故此选项错误;C 、是位似图形,故此选项错误;D 、可以通过轴对称得到,故此选项错误;故选A .【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.10.D解析:D【分析】通过幂的运算公式进行计算即可得到结果.【详解】A .23235a a a a +==,故A 错误;B .538a a a +≠,故B 错误; C .()23326a a a ⨯==,故C 错误; D .5501a a a ÷==,故D 正确;故选:D .【点睛】本题主要考查了整式乘除中的幂的运算性质,准确运用公式是解题的关键.11.A解析:A【分析】根据因式分解的意义,可得答案.【详解】解:A 、属于因式分解,故本选项正确;B 、因式分解不彻底,故B 选项不符合题意;C 、没把一个多项式转化成几个整式积的形式,故C 不符合题意;D 、是整式的乘法,故D 不符合题意;【点睛】本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是因式分解.12.B解析:B【分析】把方程组24213x y x y -=⎧⎨+=⎩的解求解出来即可得到a 、b 的值,再计算32a b -的算术平方根即可得到答案;【详解】解:24213x y x y -=⎧⎨+=⎩①② 把①式×5得:248x y -= ③,用②式-③式得:55y = ,解得:y=1,把1y = 代入①式得到:24x -= ,即:6x = ,又x a y b =⎧⎨=⎩是方程组24213x y x y -=⎧⎨+=⎩的解, 所以61a b =⎧⎨=⎩, 故3216a b -=,所以32a b -的算术平方根=16的算术平方根,4== ,故答案为:4;【点睛】本题主要考查了二元一次方程组的求解以及算术平方根的定义,掌握用消元法求解二元一次方程组的解是解题的关键;二、填空题13.20cm .【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴D解析:20cm.【分析】根据平移的性质可得DF=AE,然后判断出四边形ABFD的周长=△ABE的周长+AD+EF,然后代入数据计算即可得解.【详解】解:∵△ABE向右平移2cm得到△DCF,∴DF=AE,∴四边形ABFD的周长=AB+BE+DF+AD+EF,=AB+BE+AE+AD+EF,=16+AD+EF,∵平移距离为2cm,∴AD=EF=2cm,∴四边形ABFD的周长=16+2+2=20cm.故答案为20cm.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.14.(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=m2﹣32=(m+3)(m﹣3).故答案为解析:(m+3)(m﹣3)【分析】通过观察发现式子可以写成平方差的形式,故用平方差公式分解,a2﹣b2=(a+b)(a﹣b).【详解】解:m2﹣9=(m+3)(m﹣3).故答案为:(m+3)(m﹣3).【点睛】此题考查的是因式分解,掌握利用平方差公式因式分解是解决此题的关键.15.16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解.【详解】∵x+3y-4=0∴x+3y=4∴2x•8y=2x•(23)y=2x+3y=24=16.故答案为:16.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.16.【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,解析:3 2【分析】先根据多项式的乘法法则展开,再根据题意,二次项的系数等于0列式求解即可.【详解】解:(4x-2)(3x2+mx+1)=12x3+(4m-6)x2+(4-2m)x-2,∵不含x2项,解得m=32. 故答案为32. 【点睛】此题考查多项式与多项式的乘法,运算法则需要熟练掌握,不含某一项就让这一项的系数等于0是解题的关键.17.12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.解析:12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.18.1【分析】由点为的中点,可得的面积是面积的一半;同理可得和的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点是的中点,的底是,的底是,即,而高相等,,是的中点,,,,解析:1【分析】由点E 为AD 的中点,可得EBC ∆的面积是ABC ∆面积的一半;同理可得BCE ∆和EFB ∆的面积之比,利用三角形的等积变换可解答.【详解】解:如图,点F 是CE 的中点,BEF 的底是EF ,BEC ∆的底是EC ,即12EF EC =,而高相等, 12BEF BEC S S ∆∆∴=, E 是AD 的中点,12BDE ABD S S ∆∆∴=,12CDE ACD S S ∆∆=, 12EBC ABC S S ∆∆∴=, 14BEF ABC S S ∆∆∴=,且24ABC S cm ∆=, 21BEF S cm ∆∴=,即阴影部分的面积为21cm .故答案为1.【点睛】本题主要考查了三角形面积的等积变换:若两个三角形的高(或底)相等,其中一个三角形的底(或高)是另一个三角形的几倍,那么这个三角形的面积也是另一个三角形面积的几倍.19.六【解析】【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n 条边,由题意得:1解析:六【解析】【分析】设多边形有n 条边,则内角和为180°(n-2),再根据内角和等于外角和2倍可得方程180(n-2)=360×2,再解方程即可.【详解】解:设多边形有n 条边,由题意得:180(n-2)=360×2,解得:n=6,故答案为:六.【点睛】本题考查多边形的内角和和外角和,关键是掌握内角和为180°(n-2).20.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.21.【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论取何值,方程都有一个固定的解,∴a 值可任意取两个值,解析:41x y =⎧⎨=⎩【分析】根据题意先给a 取任意两个值,然后代入,得到关于x 、y 的二元一次方程组,解之得到x 、y 的值,再代入原方程验证即可.【详解】∵无论a 取何值,方程都有一个固定的解,∴a 值可任意取两个值,可取a=0,方程为23110x y +-=,取a=1,方程为5210x y +-=,联立两个方程解得4,1x y ==,将4,1x y ==代入(32)(23)11100a x a y a +----=,得(32)4(23)111101282311100a a a a a a +⨯--⨯--=+-+--=对任意a 值总成立,所以这个固定解是41x y =⎧⎨=⎩, 故答案为:41x y =⎧⎨=⎩. 【点睛】此题考查了解二元一次方程组,熟练掌握带有参数的方程的解法是解答的关键.22.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a -b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.三、解答题23.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.24.(1)(a+b+c )2=a 2+b 2+c 2+2ab+2ac+2bc ;(2)30;(3)9;(4)x 3﹣x =(x+1)(x ﹣1)x【分析】(1)依据正方形的面积=(a+b+c )2;正方形的面积=a 2+b 2+c 2+2ab+2ac+2bc ,可得等式;(2)依据a 2+b 2+c 2=(a+b+c )2﹣2ab ﹣2ac ﹣2bc ,进行计算即可;(3)依据所拼图形的面积为:xa 2+yb 2+zab ,而(2a+b )(a+2b )=2a 2+4ab+ab+2b 2=2a 2+5b 2+2ab ,即可得到x ,y ,z 的值.(4)根据原几何体的体积=新几何体的体积,列式可得结论.【详解】(1)由图2得:正方形的面积=(a+b+c)2;正方形的面积=a2+b2+c2+2ab+2ac+2bc,∴(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,故答案为:(a+b+c)2=a2+b2+c2+2ab+2ac+2bc;(2)∵(a+b+c)2=a2+b2+c2+2ab+2ac+2bc,∵a+b+c=10,ab+ac+bc=35,∴102=a2+b2+c2+2×35,∴a2+b2+c2=100﹣70=30,故答案为:30;(3)由题意得:(2a+b)(a+2b)=xa2+yb2+zab,∴2a2+5ab+2b2=xa2+yb2+zab,∴225xyz=⎧⎪=⎨⎪=⎩,∴x+y+z=9,故答案为:9;(4)∵原几何体的体积=x3﹣1×1•x=x3﹣x,新几何体的体积=(x+1)(x﹣1)x,∴x3﹣x=(x+1)(x﹣1)x.故答案为:x3﹣x=(x+1)(x﹣1)x.【点睛】本题主要考查的是整式的混合运算,利用直接法和间接法分别求得几何图形的体积或面积,然后根据它们的体积或面积相等列出等式是解题的关键.25.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a2+6a;(2)当a=2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.26.(1)6;(2)8.【分析】(1)先将原式转化为(a+b)2-2ab,再将已知代入计算可得;(2)先将原式转化为(a+b)2-4ab,再将已知代入计算计算可得.【详解】解:(1)当a+b=2,ab=-1时,原式=(a+b)2-2ab=22-2×(-1)=4+2=6;(2)当a+b=2,ab=-1时,原式=(a+b)2-4ab=22-4×(-1)=4+4=8.【点睛】本题主要考查完全平方公式的变形求值问题,解题的关键是熟练掌握完全平方公式及其灵活变形.27.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt△ACD中,根据两锐角互余得出∠DAC度数;△ABC中由内角和定理得出∠ABC度数,再根据AE,BF是角平分线可得∠BAO、∠ABO,最后在△ABO中根据内角和定理可得答案.解:∵AD是BC边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC中,∠ABC=180°-∠BAC-∠C=70°,又∵AE、BF分别是∠BAC 和∠ABC的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°,∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°.28.(1)1, 1, (2)a n b n, a n b n c n,(3)132 .【解析】【分析】(1)先算括号内的乘法,再算乘方;先乘方,再算乘法;(2)根据有理数乘方的定义求出即可;(3)根据同底数幂的乘法计算,再根据积的乘方计算,即可得出答案.【详解】解:(1)(2×12)100=1,2100×(12)100=1;(2)(a•b)n=a n b n,(abc)n=a n b n c n,(3)原式=(﹣0.125)2015×22015×42015×[(﹣0.125)×(﹣0.125)×2]=(﹣0.125×2×4)2015×1 32=(﹣1)2015×1 32=﹣1×1 32=﹣1 32.【点睛】本题主要考查了同底数幂的乘法和积的乘方,掌握运算法则是解答此题的关键.29.(1)见解析;(2)见解析.【解析】【分析】()1求出1BDC∠=∠,根据平行线的判定得出//AB CF,根据平行线的性质得出C EBC∠=∠,求出A EBC∠=∠,根据平行线的判定得出即可;()2根据角平分线定义求出FDA ADB∠=∠,根据平行线的性质得出FDA C∠=∠,ADB DBC∠=∠,C EBC∠=∠,求出EBC DBC∠=∠即可.【详解】()12180BDC∠+∠=,12180∠+∠=,1BDC∴∠=∠,//AB CF∴,C EBC∴∠=∠,A C∠=∠,A EBC∴∠=∠,//AD BC∴;()2AD平分BDF∠,FDA ADB∴∠=∠,//AD BC,FDA C∴∠=∠,ADB DBC∠=∠,C EBC∠=∠,EBC DBC∴∠=∠,BC∴平分DBE∠.【点睛】本题考查了平行线的性质和判定,角平分线定义的应用,考查了学生运用性质进行推理的能力,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.30.(1)见解析;(2)见解析;(3)4.【分析】整体分析:(1)根据平移的要求画出△A´B´C´;(2)延长AB,过点C作AB延长线的垂线段;(3)过点A作BC的平行线,这条平行线上的格点数(异于点A)即为结果.【详解】(1)如图所示(2)如图所示.(3)如图,过点A作BC的平行线,这条平行线上的格点数除点A外有4个,所以能使S△ABC=S△PBC的格点P的个数有4个,故答案为4.。
苏教版2014–2015学年第一学期期末复习卷(3)初一数学含答案
苏教版初一数学2014–2015学年期末复习卷(3)含答案(总分100分时间100分钟)一、选择题(每题2分,共20分)1.-2的倒数是( )A.2 B.12C.-2 D.-122.下列各组运算中,结果为负数的是( )A.3--B.(-3)×(-2) C.-(-3) D.(-3)23.下列计算正确的是( )A.7a+a=7a2B.3x2y-2yx2=x2yC.5y-3y=2 D.3a+2b=5ab4.如图,将正方体的平面展开图重新折成正方体后,“祝”字对面的字是( ) A.新B.年C.快D.乐5.如图,表示点D到AB所在直线的距离的是( )A.线段AD的长度B.线段AE的长度C.线段BE的长度D.线段DE的长度6.如图所示是由若干个相同的小立方体搭成的几何体的俯视图和左视图,则小立方体的个数不可能是( )A.9个B.8个C.7个D.6个7.有理数a、b在数轴上的位置如图所示,则化简a b+-a的结果为( )A.2a+b B.-b C.-2a-b D.68.通信市场竞争日益激烈,某通信公司的手机本地话费标准按原标准每分钟降低a元后,再次下调了20%,现在收费标准是每分钟6元,则原收费标准每分钟是( )A.a+54b B.a-54b C.a+5b D.a-5b9.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗16151413121110987654321…… (第1个正方形) (第2个正方形) (第3个正方形) (第4个正方形)蜡烛的长是细蜡烛的2倍,问:停电( )分钟A .10B .20C .30D .4010.观察下列正方形的四个顶点所标的数字规律,那么2013这个数标在( )A .第503个正方形的左下角B .第503个正方形的右下角C .第504个正方形的左下角D .第504个正方形的右下角二、填空题(每小题2分,共20分)11.万里长城和京杭大运河都是我国古代文明的伟大成就,其中纵贯南北的京杭大运河修建时长度大约为1790000米,是非常杰出的水利工程.将数据1790000米用科学记数法表示为_______米.12.若代数式-4x 6y 与x 2n y 是同类项,则常数n 的值为_______.13.如图,已知AB ∥CD ,∠1=60°,则∠2=_______.14.已知∠α=45°36',则它的余角等于_______.15.已知m 、n 互为相反数,p 、g 互为倒数,且a 为最大的负整数,则代数式2013m n ++pq -a 的值为_______.16.已知a -2b 2=3,则2013-a +2b 2的值是_______.17.如果关于x 的方程-2x +1=12(x +3)和方程2-03k x -=的解相同,那么k 的值_______.18.如图,连接在一起的两个正方形的边长都为1 cm ,一个微型机器人由点A 开始按ABCDEFCGA …的顺序沿正方形的边循环移动.当微型机器人移动了2013 cm 时,它停在_______点.19.如图,将一根绳子对折以后用线段AB 表示,现从P 处将绳子剪断,剪断后的各段绳子中最长的一段为30 cm ,若AP =23PB ,则这根绳子的原长为_______.20.如果α∠和β∠互补,且α∠>β∠,则下列表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠. 其中正确的式子有 (填写所有正确式子的序号).三、解答题(本大题共8个小题,共60分)21.计算:(每小题3分,共12分)(1)(-1)+(-2)-(-3) (2)512.5168⎛⎫⎛⎫-÷-⨯- ⎪ ⎪⎝⎭⎝⎭(3)()()20131252----⨯ (4)()()()2421222316⎛⎫-+-÷-+-⨯- ⎪⎝⎭22.解方程:(每小题3分,共6分)(1)4325x x -=+ (2)123123x x +--=23.(每小题5分,共10分)(1)先化简,再求值3(2x 2y -xy 2)-(5x 2y -4x),其中x ,y 满足1202x y ⎛⎫++-= ⎪⎝⎭(2)已知多项式A ,B ,其中A =x 2-2x +1,小马在计算A +B 时,由于粗心把A +B 看成了A -B 求得结果为-3x 2-2x -1,请你帮小马算出A +B 的正确结果.24.(本题6分)下列物体是由六个小正方体搭成的,分别画出从正面、左面、上面看到的立体图形的形状.25.(本题6分)根据下列要求画图:(1)画直线AB ,射线CA ,线段BC ;(2)过点A画BC的垂线,垂足为D;(3)量出点A到BC的距离是_______.(精确到毫米)26.(本题6分)小明在商店里看中了一件夹克衫,营业员说:“我这儿所有商品都是在进价上加50%的利润再标价的,这件夹克衫我给你按标价打8折,你就付168元,我可只赚了你8元钱啊!”聪明的小明经过思考后觉得营业员的说法不可信,请你通过计算,说明营业员是否诚信?27.(本题6分)如图,直线l上有A,B两点,线段AB=10 cm.(1)若在线段AB上有一点C,且满足AC=4 cm,点P为线段BC的中点,求线段BP 长.(2)若点C在直线l,且满足AC=5 cm,点P为线段BC的中点,求线段BP长.28.(本题8分)2012年底江苏省召开了居民阶梯电价听证会,征求了消费者、经营者和有关方面的意见,对江苏省居民阶梯电价方案的必要性、可行性进行了论证.阶梯电价方案规定:若每月用电量为130度以下,收费标准为0. 38元/度;若每月用电量为131度~230度,收费标准由两部分组成:①其中130度,按0.38元/度收费,②超出130度的部分按0.42元/度收费.现提供一居民某月电费发票的部分信息如下表所示:根据以上提供的信息解答下列问题:(1)如果月用电量用x(度)来表示,实付金额用y(元)来表示,则当0≤x≤130时,y=_______(用含x的代数式表示);当x>130时,y=_______(用含x的代数式表示).(2)请你根据表中本月实付金额计算这个家庭本月的实际用电量;(3)若小芳和小华家一个月的实际用电量分别为80度和150度,则实付金额分别为多少元?参考答案一、选择题1.D 2.A 3.B 4.C 5.D 6.A 7.D 8.A 9.D 10.D 二、填空题11.1.79×10612.3 13.120°14.44°24'15.2 16.2010 17.54518.F 19.75cm或50 cm 20.①②④三、解答题21.(1)0 (2)-1 (3)7 (4)622.(1)x=4 (2)7 923.(1)原式=x2y+xy2 原式=32(2)A+B=5x2-2x+324.25.略26.营业员不诚信.27.(1)3 cm (2)2.5 cm或7.5 cm28.(1)0.38x 0.42x-5.2 (2)200度(3)30.4元57.8元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版2014-2015学年第二学期初一数学期末试卷含答案选择题:(本大题共8小题,每小题3分,共24分.).下列运算中,正确的是( )A .a 2+a 2=2a 4B .a 2 • a 3=a 6C .(-3x ) 3÷(-3x )=9x 2D .(-ab 2) 2=-a 2b 4某种生物细胞的直径约为0.00056米,若用科学记数法表示此数据应为( ) A .0.56×10-3 B .5.6×10-3 C .5.6×104 D .5.6×10-4.下列各式从左边到右边的变形是因式分解的是( ) A .(a +1)(a -1)=a 2-1 B .a 2-6a +9=(a -3)2 C .x 2+2x +1=x (x +2)+1 D .-18x 4y 3=-6x 2y 2·3x 2y.下列命题:①同旁内角互补,两直线平行;②同位角相等;③直角都相等;④相等的角是( )A .1个B .2个C .3个D .4个 .如图所示BC //DE ,∠1=108°,∠AED =75°,则∠A 的大小是( ) A .60° B .33° C .30° D .23°.满足不等式组1124x x -≤⎧⎨>-⎩的正整数解的和为( )A .3B .2C .1D .0.若a >b , 则下列不等式不一定成立的是( )A . a+m >b+mB .a ()12+m >b ()12+m C .-2a <-2b D .2a >2b 如图,∠ABC =∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF .以下结论:①AD ∥BC ;②∠ACB =2∠ADB ;③∠ADC =90°-∠ABD ;④BD 平分∠ADC ;⑤∠BDC =12∠BAC .其中正确的结论有( ) A .2个 B .3个 C .4个 D .5个 二.填空题:(本大题共9小题,每小题2分,共18分.)13题图1ED CB A 第5题图 EA F DB C第8题图9. 代数式113m --值为正数,m 的范围是 . 10.若12,,2m n a a ==则2m na-= . 11.若()032=+-+-m y x x ,当0>y 时,则m 的取值范围是 .12.若a +b =5,ab =4,则a 3b +2a 2b 2+ab 3=_______.13.如图,将一块长方形纸条折成如图的形状,若已知∠1=110°,则∠2= °. 14.用四个完全一样的长方形(长、宽分别设为x 、y )拼成如图所示的大正方形,已知大 正方形的面积为36,中间空缺的小正方形的面积为4,则长方形的面积=xy .15.如图,将边长为4个单位的等边△ABC 沿边BC 向右平移2个单位得到△DEF ,则四 边形ABFD 的周长为 .16.如图,△ABC 的两条中线AM 、BN 相交于点O ,已知△ABC 的面积为12,△BOM 的面积为2,则四边形MCNO 的面积为 .17.如图,长方形ABCD 中,AB =4cm ,BC =3cm ,点E 是CD 的中点,动点P 从A 点出发,以每秒1cm 的速度沿A →B →C →E 运动,最终到达点E .若点P 运动的时间为x 秒,那么当x =____时,△APE 的面积等于52cm .三.解答题:(本大题共9小题,共58分.) 18.(本题满分6分)计算:(1) 0211(3.14)34()2π---+-+ ; (2)()()()34843222b a b a ⋅-+-.19.(本题满分6分)把下列各式分解因式: (1)2x 2-8xy +8y 2(2)()222224yx y x -+B第16题图第15题图第17题图AP第13题图第14题图20.(本题满分8分)解下列方程组(不等式组):5225,(1)3415;x y x y +=⎧⎨+=⎩ (2)解不等式组()432,121.3x x x x -≤-⎧⎪⎨++>⎪⎩21.先化简,再求值(本题满分4分) (1)(2x +y )2—(2x -y )(2x +y )—4xy ;其中x =2014,y =-1.22.(本题满分6分)已知,关于x ,y 的方程组325x y a x y a -=+⎧⎨+=⎩解满足x >y >0.(1)求a 的取值范围; (2)化简2a a --.23.(本题满分5分) 在△ABC 中,∠ADB =100°,∠C =80°,∠BAD =21∠DAC ,BE 平分∠ABC ,求∠BED 的度数.24.(本题满分6分)阅读材料:若m 2-2mn +2n 2-8n +16=0,求m 、n 的值. 解:∵m 2-2mn +2n 2-8n +16=0, ∴(m 2-2mn +n 2)+(n 2-8n +16)=0∴(m -n )2+(n -4)2=0,图1CD∴(m -n )2=0,(n -4)2=0∴n =4,m =4. 根据你的观察,探究下面的问题:(1)已知x 2+2xy +2y 2+4y +4=0,求2x +y 的值;(2)已知△ABC 的三边长a 、b 、c ,且满足a 2+b 2-6a -8b+25=0,求△ABC 的最 大边c 的范围;(3)已知a -b =4,ab +c 2-6c +13=0,则a +b +c = .25.(本题满分8分)为了激发学生学习英语的兴趣,某中学举行了校园英文歌曲大赛,并设立了一、二、三等奖。
学校计划根据设奖情况共买50件奖品,其中购买二等奖奖品件数比一等奖奖品件数的2倍还少10件,购买三等奖奖品所花钱数不超过二等奖所花钱数的1.5倍,且三等奖奖品数不能少于前两种奖品数之和.其中各种奖品的单价如下表所示,如果计划一等奖奖品买x 件,买50件奖品的总费用是w 元.(1)用含有x 的代数式表示:该校团委购买二等奖奖品多少件,三等奖奖品多少件?并用x 的代数式表示w . (2)请问共有哪几种方案?(3)请你计算一下,学校应如何购买这三种奖品,才能使所支出的总费用最少,最少 是多少元?26.(本题满分9分)如图1,直线MN 与直线AB 、CD 分别交于点E 、F ,∠1与∠2 互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由; (2)如图2,∠AEF 与∠EFC 的角平分线交于点P ,EP 与CD 交于点G ,点H 是MN 上一点,且PF ∥GH ,求证:GH ⊥EG ; (3)如图3,在(2)的条件下,连接PH ,K 是GH 上一点使∠PHK=∠HPK ,作PQ 平分∠EPK ,问∠HPQ 的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案一、选择1.C 2.D 3.B 4.B 5.B 6.A 7.D 8.C 二、填空9.4>m ; 10. 8 ; 11. 3->m ; 12. 100 ; 13. 55° ; 14. 8 ; 15. 16; 16. 4; 17. 310,5 三、解答题 18计算(1)原式=1-9+4+2……(2分) (2)原式=161281288b a b a +……(2分)=-2 ……(3分) =24128b a …………(3分)19因式分解(1)原式=2()2244yxy x +-…(2分)=()222y x - ……(3分)(2)原式=()()xy y x xy y x 222222-+++…(2分) =()()22y x y x -+…………(3分)20.解由①得10504=+y x ③ (2)由①得1≥x …(1分) 由③-②得357=x 由②得4<x …(2分) 5=x …………(1分) 所以不等式组的解集: 将5=x 代入得0=y ………(2分) 41<≤x …(4分)所以,原方程组的解为{05==y x …(4分)21.原式=()xy y x y xy x 44442222---++ =22y ………………(3分)当1-=y 时,原式=2………………(4分) 22.解12+=a x ……………(1分) 2-=a y ……………(2分) 因为0>>y x02>-a 且212->+a a 2>a ,3->a所以a 的范围为2>a …………(4分) (2)因为2>a所以 2a a--)2(--=a a2=……………(6分)23. ∵∠DAC =100-80=20……………(1分) ∵∠BAD =21∠DAC ∴∠BAD =10……………(2分)∴∠CBA =180-100-10=70……………(3分) ∵BE 平分∠CBA ∴∠EBA =35……………(4分)∴∠BED =35+10=45……………(5分)(可以有其他解法)24.(1)0442222=+++++y y y xy x()()0222=+++y y x 2=x 2-=y22=+y x ……………(2分)(2)01689622=+-++-b b a a()()04322=-+-b a3=a 4=b ……………(3分)所以最大边C 的范围为74<<c ……………(4分) (3)3=++c b a ……………(6分) 25.①∵买一等奖奖品x 件,∴买二等奖奖品(2x -10)件,三等奖奖品(60-3x )件…(2分) ∴W =)360(5)102(1020x x x -+-+=25x +200 ………(3分)②∴10≤x ≤353 ………(4分)∵x 为整数 ∴x =10,11答:有两种方案,方案一:一等奖10人,二等奖10人,三等奖30人;方案二:一等奖11人,二等奖12人,三等奖27人 ………(6分) ③∵W 随x 的增大而增大,∴x =10时,W 最小=450答: 选择方案一购买才能使费用最少,最少费用为450………(8分)(可以有其他解法) 26.解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°. 又∵∠1=∠BEF ,∠2=∠DFE , ∴∠BEF +∠DFE =180°,∴AB ∥CD ;(2)如图2,由(1)知,AB ∥CD ,∴∠AEF +∠EFC =180°.∵∠AEF 与∠EFC 的角平分线交于点P ,102360)102(5.110)360(5-+≥--⨯≤-x x x xx ……………(1分) ……………(2分) ……………(3分)∴∠FEP +∠EFP =12(∠AEF +∠EFC )=90° ∴∠EPF =90°, ∵PF ∥GH , ∴∠EGH =∠EPF =90 ∴GH ⊥EG (3)∵∠HPK =∠PHK ∴∠PKG =2∠KPH ……………(6分) 又∵GH ⊥EG ∴∠GPK =90-∠GKP =90-2∠KPH ……………(7分) ∴∠EPK =180-∠GPK =180-(90-2∠KPH )=90+2∠KPH ……………(8分)∵PQ 平分∠EPK∴∠QPK =21∠EPK =45+∠KPH ∴∠HPQ =∠QPK -∠KPH =45……………(9分)∴∠HPQ 的大小不发生变化。