风力发电机组偏航系统
风电偏航系统在风力发电场景中的应用前景与挑战

风电偏航系统在风力发电场景中的应用前景与挑战引言随着可再生能源的快速发展,风力发电成为全球清洁能源中的重要组成部分。
而风电偏航系统作为风力发电机组的核心部件之一,在提高风电场景中发电效率和可靠性方面发挥着至关重要的作用。
本文将探讨风电偏航系统的应用前景以及面临的挑战。
一、风电偏航系统的应用前景1. 提高发电效率风电偏航系统能够根据风机的状态和风向稳定地调整风力发电机组的方向,以最大限度地利用风能。
通过将风轮转向风向,避免了风轮朝向背风方向运行的情况,有效提高发电效率。
该系统的应用能够让风力发电场的发电量大幅增加,从而提高风电行业的竞争力。
2. 改善风电场的可靠性风电偏航系统能够帮助风力发电机组迅速适应风向的变化,以避免出现风轮失速或过速的情况。
这对于确保风力发电机组的稳定运行至关重要。
系统能够精确判断风向,及时调整风轮的角度和转速,保持风力发电机组在合适范围内运行,从而减少故障和维修次数,提高风电场的可靠性。
3. 降低运营成本风电偏航系统的应用可以减少风力发电机组在不良风向条件下的损耗。
通过保持风轮面对风向,降低了不必要的风阻和风力的损失,使得风力发电机组的发电效率更高。
此外,系统能够及时发现机组的工作状态和异常情况,提前预警并进行维护,降低了维修和运营成本。
二、风电偏航系统面临的挑战1. 复杂的环境条件风力发电场场址各异,面临着不同的环境条件。
例如,风力发电机组可能面临高温、低温、高湿度、强风等气候条件。
为了确保风电偏航系统的正常运行,需要选择适应不同环境条件的材料和设计。
同时还需要考虑材料的耐久性和性能稳定性,以保证系统在长期使用中不失效。
2. 复杂的风向变化风向在风力发电场景中是不稳定的,经常发生变化。
风力发电机组需要能够快速准确地判断风向,并随之调整风轮的角度和转速。
然而,由于风向变化的不确定性,系统必须具备高精度的感应和反应能力。
这对于风电偏航系统的传感器和控制器提出了更高的要求。
需要通过精确的算法和高性能硬件来实现。
运行与维护4 第四章偏航系统

风力发电机组的偏航系统
风力发电机组的偏航系统主要功能:一是使风轮跟踪变化稳 定的风向;二是保护风力发电机组安全运行;三是当机组由于偏 航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
偏航系统主要由偏航测量、机械传动部分、扭缆保
护装置组成。驱
偏航电机
机械 传动
偏航驱动
减速齿轮箱 偏心盘 偏航小齿轮
偏航过程分自动偏航、90°侧风偏航和手动偏航三个 过程。其中手动偏航优先级最高。
自动偏航 90°侧风偏航
90°侧风偏航过程在风机系统出现意外故障时执行。 采样半分钟风向,执行侧风偏航过程。
偏航的运行
偏航过程分自动偏航、90°侧风偏航和手动偏航三个
过程。其中手动偏航优先级最高。
自动偏航 90°侧风偏航 手动偏航 在机舱顶部有手动左/右偏航开关,在塔架底部计算
磨损
连接
检查内圈和外圈 安装螺栓的预紧 力矩、系统的螺 栓力矩。
偏航制动盘
清洁
第四章 偏航系统 偏航系统的组成
偏航 机械 扭缆 测量 传动 保护
工作原理 系统维护
风力发电机组的偏航系统
风力发电机组的偏航系统主要功能:一是使风轮跟踪变化稳 定的风向;二是保护风力发电机组安全运行;三是当机组由于偏 航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
风力发电机组的偏航系统
风力发电机组的偏航系统主要功能:一是使风轮跟踪变化稳 定的风向;二是保护风力发电机组安全运行;三是当机组由于偏 航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
风能 +
-
控制器
放大器 偏航机构 风力发电机
偏航计数 检测元件
风轮轴方向
偏航的运行
风力发电机组偏航系统详细介绍

风力发电机组偏航系统详细介绍2012-12-15资讯频道偏航系统的主要作用有两偏航系统是水平轴式风力发电机组必不可少的组成系统之一。
使风力发电机组的风轮始终处于迎风状态,其一是与风力发电机组的控制系统相互配合,个。
以保障风力发其二是提供必要的锁紧力矩,充分利用风能,提高风力发电机组的发电效率;被动风力发电机组的偏航系统一般分为主动偏航系统和被动偏航系统。
电机组的安全运行。
舵轮常见的有尾舵、偏航指的是依靠风力通过相关机构完成机组风轮对风动作的偏航方式,常见的有主动偏航指的是采用电力或液压拖动来完成对风动作的偏航方式,和下风向三种;通常都采用主动偏航的齿轮驱动对于并网型风力发电机组来说,齿轮驱动和滑动两种形式。
形式。
1.偏航系统的技术要求1.1. 环境条件在进行偏航系统的设计时,必须考虑的环境条件如下:1). 温度;2). 湿度;3). 阳光辐射;雨、冰雹、雪和冰;4).5). 化学活性物质;机械活动微粒;6).盐雾。
风电材料设备7).近海环境需要考虑附加特殊条件。
8).应根据典型值或可变条件的限制,确定设计用的气候条件。
选择设计值时,应考虑几气候条件的变化应在与年轮周期相对应的正常限制范围内,种气候条件同时出现的可能性。
不影响所设计的风力发电机组偏航系统的正常运行。
1.2. 电缆必须使电缆有足够为保证机组悬垂部分电缆不至于产生过度的纽绞而使电缆断裂失效,电缆悬垂量的多少是根据电缆所允许的扭转角度确定的悬垂量,在设计上要采用冗余设计。
的。
阻尼1.3.偏航系统在机组为避免风力发电机组在偏航过程中产生过大的振动而造成整机的共振,阻尼力矩的大小要根据机舱和风轮质量总和的惯性力矩来偏航时必须具有合适的阻尼力矩。
只有在其基本的确定原则为确保风力发电机组在偏航时应动作平稳顺畅不产生振动。
确定。
阻尼力矩的作用下,机组的风轮才能够定位准确,充分利用风能进行发电。
1.4. 解缆和纽缆保护偏航系统的偏航动解缆和纽缆保护是风力发电机组的偏航系统所必须具有的主要功能。
风力发电机组偏航控制系统设计

风力发电机组偏航控制系统设计一、引言二、偏航控制系统的功能偏航控制系统的主要功能是实时监测风向,并控制风轮的转向,使其与风向保持一致。
具体功能包括以下几个方面:1.风向传感器:获取当前的风向信息。
2.控制算法:根据风向传感器的数据计算需要偏航的角度,并输出控制信号。
3.控制执行部分:根据控制信号,驱动偏航装置,使其实现风轮的转向。
三、偏航控制系统的设计要求1.稳定性:偏航控制系统需要保证在各种天气条件下都能稳定工作,即使在强风或恶劣天气下也能可靠控制风轮的转向。
2.灵敏性:系统需要快速响应风向变化,并及时调整风轮的转向,以最大化风能转化效率。
四、偏航控制系统的设计方案1.风向传感器的选取:选择高精度、高灵敏度的风向传感器,能够准确地获取当前的风向信息。
2.控制算法的设计:采用先进的控制算法,如模糊控制、PID控制等,根据当前风向和期望风向之间的差异,计算偏航的角度,并输出控制信号。
3.控制执行部分的设计:根据控制信号,选择合适的偏航装置,如电动执行器或液压执行器,进行风轮的转向控制。
五、偏航控制系统的实施和测试1.系统的实施:根据设计方案,搭建偏航控制系统的实验装置,进行系统的实施和调试。
2.系统的测试和评估:对实施后的偏航控制系统进行测试和评估,包括稳定性测试、灵敏性测试和抗干扰性测试等。
六、偏航控制系统的性能提升方案1.优化风向传感器:选择更高精度、更高灵敏度的风向传感器,以提高系统的测量精度和响应速度。
2.改进控制算法:采用更先进的控制算法,如模型预测控制、自适应控制等,进一步提高系统的控制精度和响应速度。
3.优化控制执行部分:选择更高性能的偏航装置,如脉冲宽度调制执行器等,以提高风轮转向的准确性和稳定性。
七、结论本文详细介绍了风力发电机组偏航控制系统的设计,包括系统的功能、设计要求和设计方案等。
通过实施和测试,可以验证系统的性能,并提出性能提升方案,进一步提高系统的稳定性和效率,为风力发电行业的发展做出贡献。
风力机偏航系统

限位开关
大齿圈
接近开关
17
18
当然风向变化是一个连续的过程,并不一定瞬时从东南风就 变为南风了,而是一个逐渐变化的过程。
15
机舱是可以顺时针旋转也可以逆时针旋转的,在偏航 过程中,机舱不能总是朝向一个方向旋转,因为机舱底 部大齿圈内部布置着多根电缆,机舱旋转电缆也就跟着 扭转,所以为了防止电缆扭转破坏特地控制机舱同一方 向旋转圈数不得超过650度(从0度开始,0度为安装风 电机组时确定的位置)。这种控制方法就是靠偏航接近 开关和限位开关来实现的,接近开关一左一右共两个, 负责记录机舱位置,当机舱达到+650度或-650度时 发出信号,控制系统控制偏航电机反向旋转解缆。限位 开关是作为极限位置开关使用的,当机舱继续旋转达到 700度时,限位开关被触发而使得风电机组快速停机。
这时,由风速风向仪测得风向变化,并传给控制系统存储 下来,控制系统又来控制偏航驱动装置中的四台偏航电机往 风速变化的方向同步运转,偏航电机通过减速齿轮箱带动小 齿轮旋转。小齿轮是与大齿圈相啮合的,与偏航电机、偏航 齿轮箱统一称为偏航驱动装置,上图可以看出,偏航驱动装 置通过螺栓紧固在主机架上,而大齿圈通过88个螺栓紧固在 塔筒法兰上,不可旋转,那么只能是小齿轮围绕着大齿圈旋 转带动主机架旋转,直到机舱位置与风向仪测得的风向相一 致。
3
尾舵对风
许多农用的多 叶风轮风力机也采 用尾舵对风,有些 尾舵是两叶张开的 样式,对风有较大 的阻力,以抗衡多 叶风轮的阻力,保 证稳定的对风。
4
尾舵对风
5
侧风轮对风
侧风轮对风结构在机舱后部两侧有两个侧风轮(舵轮),两个侧风轮一 般在同一个转轴上,转轴水平并与风力机风轮主轴垂直。在风力机准确对风 时两侧风轮面与风向平行,侧风轮不会旋转;当风力机未对风时侧风轮与风 有夹角就会旋转,并通过齿轮、蜗杆蜗轮推动机舱转动直至风力机风轮对风 后停止。
偏航系统

4.3 偏航系统偏航系统是风力发电机组特有的伺服系统,是风力发电机组电控系统必不可少的重要组成部分。
它的功能有两个:一是要控制风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解除缠绕。
风力机偏航的原理是通过风传感器检测风向、风速,并将检测到的风向信号送到微处理器,微处理器计算出风向信号与机舱位置的夹角,从而确定是否需要调整机舱方向以及朝哪个方向调整能尽快对准风向。
当需要调整方向时,微处理器发出一定的信号给偏航驱动机构,以调整机舱的方向,达到对准风向的目的。
风力机发电机组的偏航系统是否动作,受到风向信号的影响,而偏航系统及其部件的运行工况和受力情况也受到地形状况影响。
本章主要阐述偏航控制系统的功能、原理、以及影响偏航系统工作的一些确定的和不确定的因素。
4.3.1 偏航系统的工作原理偏航系统的原理框图如图4-11 所示,工作原理为:通过风传感器将风向的变化传递到偏航电机控制回路的处理器里,判断后决定偏航方向和偏航角度,最终达到对风目的。
为减少偏航时的陀螺力矩,电机转速将通过同轴联接的减速器减速后,将偏航力矩作用在回转体大齿轮上,带动风轮偏航对风。
当对风结束后,风传感器失去电信号,电机停止工作,偏航过程结束。
图4-11 偏航系统硬件设计框图4.3.1 偏航控制系统的功能偏航控制系统主要具备以下几个功能:(1)风向标控制的自动偏航;(2)人工偏航,按其优先级别由高到低依次为:顶部机舱控制偏航、面板控制偏航、远程控制偏航;(3)风向标控制的90°侧风;(4)自动解缆;4.3.2 偏航系统控制原理风能普密度函数为:432222||1K i W i W S S V ωφωππφ=⎡⎤⎛⎫⎢⎥+ ⎪⎢⎥⎝⎭⎣⎦(1) 其中,1()2i i ωω=-⋅∆,风波动频率;ω∆—积分步长;K S —表面张力因数; φ—风波动范围因数;W V —平均风速。
平均风速W V 附近的瞬时风速()Wv t 为:1()2co s()n W i i i v t t ωφ==⋅+∑(2)对于时变量i 而言,i φ为自由独立变量,0<i φ<2π,n 为积分步长数量。
海上风力发电偏航系统的能量损失分析与优化设计
海上风力发电偏航系统的能量损失分析与优化设计随着可再生能源的快速发展,海上风力发电作为一种清洁能源的最佳选择,逐渐成为解决能源短缺和环境问题的重要方式之一。
海上风力发电机组通过将风能转化为电能,可以有效降低温室气体的排放和对传统能源的依赖。
然而,海上风力发电系统中的偏航系统存在能量损失的问题,这一问题直接影响发电机组的功率输出和整体效率。
因此,本文将探讨海上风力发电偏航系统的能量损失分析与优化设计。
首先,对海上风力发电偏航系统的工作原理进行简要介绍。
风力发电机组通过将风能转化为机械能,再由发电机将机械能转化为电能。
在发电过程中,风力发电机组需要保持旋转方向与风向一致,以确保最大功率输出。
偏航系统的主要作用是通过控制机组的位置和方向,使机组始终面向风向。
然而,在实际运行过程中,偏航系统存在一定的能量损失。
为了分析海上风力发电偏航系统的能量损失,首先需要定量衡量系统能量损失的指标。
常用的指标包括发电机组的功率损失率、转轮损耗率以及偏航系统整体效率。
其中,功率损失率可以通过比较实际能量输出和理论能量输出之间的差异来计算。
转轮损耗率可以通过测量转轮在偏航过程中的摩擦损耗和风压损耗来计算。
偏航系统整体效率可以通过比较实际能量转化和理论能量转化之间的差异来计算。
然后,需要对海上风力发电偏航系统的能量损失进行深入分析。
首先,可以从设计参数的角度考虑,通过调整转轮的叶片材料和形状等设计参数,降低转轮损耗率。
其次,可以从控制策略的角度考虑,通过优化偏航系统的控制算法和降低控制误差,提高偏航系统的整体效率。
此外,还可以考虑使用新兴技术,如智能偏航系统和主动控制系统,以减少偏航误差和能量损失。
最后,可以探讨海上风力发电偏航系统的优化设计。
优化设计的目标是最大限度地减少能量损失并提高发电机组的整体效率。
通过综合考虑转轮设计参数、控制策略和新兴技术等因素,可以采用多目标优化方法,例如遗传算法和粒子群算法,寻找最优设计方案。
偏航系统的作用
偏航系统的作用偏航系统是风力发电机组特有的伺服系统。
它主要有两个功能:一是使风轮跟踪变化稳定的风向;二是当风力发电机组由于偏航作用,机舱内引出的电缆发生缠绕时,自动解缆。
偏航控制系统偏航系统是一个随动系统,风向仪将采集的信号传送给机舱柜的PLC的I/O板,计算10分钟平均风向,与偏航角度绝对值编码器比较,输出指令驱动四台偏航电机(带失电制动),将机头朝正对风的方向调整,并记录当前调整的角度,调整完毕电机停转并启动偏航制动。
偏航控制系统框图如下图所示:下文将对偏航控制系统的各机构进行分析:1、风速仪风力发电机组应有两个可加热式风速计。
在正常运行或风速大于最小极限风速时,风速计程序连续检查和监视所有风速计的同步运行。
计算机每秒采集一次来自于风速仪的风速数据;每10min计算一次平均值,用于判别起动风速和停机风速。
测量数据的差值应在差值极限1.5m/s以内。
如果所有风速计发送的都是合理信号,控制系统将取一个平均值。
2、风向标风向标安装在机舱顶部两侧,主要测量风向与机舱中心线的偏差角。
一般采用两个风向标,以便互相校验,排除可能产生的误信号。
控制器根据风向信号,起动偏航系统。
当两个风向标不一致时,偏航会自动中断。
当风速低于3m/s时,偏航系统不会起动。
3、扭揽开关扭缆开关是通过齿轮咬合机械装置将信号传递PLC进行处理和发出指令进行工作的。
除了在控制软件上编入调向记数程序外,一般在电缆处安装行程开关,当其触点与电缆束连接,当电缆束随机舱转动到一定程度即启动开关。
以国内某知名公司生产的1.5MW风机为例,当机身在同一方向己旋转2转(720度),且风力机不处在工作区域(即10分钟平均风速低于切入风速) 系统进入解缆程序。
解缆过程中,当风力机回到工作区域(即10分钟平均风速高于切入风速),系统停止解缆程序,进入发电程序,但当机身在同一方向己旋转2.5转(900度)偏航限位动作扭缆保护,系统强行进入解缆程序,此时系统停止全部工作,直至解缆完成。
风力发电机组偏航系统详细介绍
风力发电机组偏航系统详细介绍一、引言随着可再生能源的快速发展,风力发电成为了新兴的清洁能源选择之一、风力发电机组的偏航系统是其核心组成部分之一,它能够使风力发电机组在不同风向下旋转,实现最大风能有效利用。
本文将详细介绍风力发电机组偏航系统的原理、构成和工作过程。
二、原理1.风向感知:通过风速传感器和风向传感器,实时感知风的强度和方向。
2.控制系统:根据风向传感器的反馈信息,计算出偏航控制参数,并传递给执行机构。
3.执行机构:根据控制系统的指令,调整风轮的朝向,使其与风向保持一致。
三、构成1.传感器:风力发电机组偏航系统中的传感器主要包括风速传感器和风向传感器。
风速传感器用于感知风的强度,而风向传感器则用于感知风的方向。
2.控制系统:控制系统是风力发电机组偏航系统的核心部分,主要包括控制算法和控制器。
控制算法根据风向传感器的反馈信息计算出偏航控制参数,而控制器则将这些参数传递给执行机构。
3.执行机构:执行机构负责调整风力发电机组的朝向,使其与风向保持一致。
常见的执行机构包括偏航控制器、偏航电机等。
四、工作过程1.感知风向:风力发电机组偏航系统通过风向传感器感知风的方向。
2.计算控制参数:根据风向传感器的反馈信息,控制算法计算出偏航控制参数。
3.传递控制参数:控制器将计算得到的偏航控制参数传递给执行机构。
4.调整朝向:执行机构根据控制参数的指令,调整风力发电机组的朝向,使其与风向保持一致。
5.持续监测:风力发电机组偏航系统持续监测风的方向,根据实时的风向信息进行调整,实现持续稳定的发电。
五、总结风力发电机组偏航系统是风力发电的关键技术之一,它能够在不同风向下实现最大风能有效利用。
本文详细介绍了风力发电机组偏航系统的原理、构成和工作过程。
通过合理的感知、计算和调整机制,风力发电机组能够始终面向风向,实现高效稳定的发电效果。
随着风力发电技术的不断发展,风力发电机组偏航系统也将不断完善,为可再生能源的发展做出更大的贡献。
重点讲解风力发电机组 偏航系统 第1部分
风力发电机组偏航系统第1部分:技术条件(JB/T 10425.1-2004)1范围本部分规定了并网型风力发电机组偏航系统的主要型式、基本参数、技术要求、检验项目与规则、标志和包装运输等基本要求。
本部分适用于水平轴式并网型风力发电机组偏航系统。
2规范性引用文件下列文件中的条款通过JB/T 10425的本部分的引用而成为本部分的条款。
凡是注日期的引用文件,其随后所有的修改善单(不包括勘误的内容)或修订版均不适用于本部分,然而,鼓励根据本部分达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本部分。
GB/T 1228钢结构用高强度大六角头螺栓(GB/T1228-1991,neq ISO 7412:1984)GB/T 1229钢结构用高强度大六角螺母(GB/T1229-1991,neq ISO 4775:1984)GB/T 1230钢结构用高强度垫圈(GB/T 1230-1991,neq ISO 7416:1984)GB/T 1239.4热卷圆柱螺旋弹簧技术条件GB/T 1972碟形弹簧GB/T 2900.53电工术语风力发电机组(GB/T2900.53-2001,idt IEC 60050-415:1999)GB/T 3480渐开线圆柱齿轮承载能力计算方法(GB/F3480-1997,eqv ISO 6336-1^6336-3:1996)GB/T 6391滚动轴承额定动载荷和额定寿命(GB/T6391-1995,idt ISO 281:1990)GB/T 6413渐开线圆柱齿轮胶合承载能力计算方法(GB/T 6413-1986,eqv ISO/DP6336-4)GB/T 13384机电产品包装通用技术条件GB 18451.1风力发电机组安全要求(GB 18451.1-2001,idt IEC 61400-1:1999)JB/T 2300-1999回转支承JB/T 3063烧结金属摩擦材料技术条件JB/T 10300-2001风力发电机组设计要求JB/T 10425.2风力发电机组偏航系统第2部分:试验方法3术语和定义GB/T 2900.53中确立的以及下列术语和定义适用于本部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
风力发电机组偏航系统
偏航系统的功能是驱动风轮跟踪风向的变化,使其扫掠面始终与风向垂直,以最大限度地提升风轮对风能的捕获能力。
偏航系统位于塔架和主机架之间,一般由偏航轴承、偏航驱动装置、偏航制动器、偏航计数器、纽缆保护装置、偏航液压装置等几个部分组成,结构简图如图2-17所示,包含外齿驱动[图2-17(a)]和内齿驱动[图2-17(b)]两种形式。
当风向改变时,风向仪将信号传输到控制装置,控制驱动装置工作,小齿轮在大齿圈上旋转,从而带动机舱旋转使得风轮对准风向。
机舱可以两个方向旋转,旋转方向由接近开关进行检测。
当机舱向同一方向偏航的角度达到700°(根据机型设定)时,限位开关将信号传输到控制装置后,控制机组快速停机,并反转解缆。
偏航驱动装置可以采用电动机驱动或液压马达驱动,制动器可以是常闭式或常开式。
常开式制动器一般是指有液压力或电磁力拖动时,制动器处于锁紧状态;常闭式制动器一般是指有液压力或电磁力拖动时,制动器处于松开状态。
采用常开式制动器时,偏航系统必须具有偏航定位锁紧装置或防逆传动装置。
图2-17 偏航系统结构简图
1.偏航轴承
偏航轴承的轴承内、外圈分别与机组的机舱和塔体用螺栓连接。
轮齿可采用内齿或外齿形式。
内齿形式是轮齿位于偏航轴承的内圈上,啮合受力效果较好,结构紧凑;外齿形式是轮齿位于偏航轴承的外圈上,加工相对来说比较简单。
具
体采用哪种形式应根据机组的具体结构和总体布置进行选择。
偏航齿圈结构简图如图2-18所示。
(1)偏航齿圈的轮齿强度计算方法参照DIN3990—1970《圆柱齿轮和圆锥齿轮承载能力的计算》和GB 3480—1997《渐开线圆柱齿轮承载能力计算方法》及GB/Z 6413.2—2003《圆柱齿轮、锥齿轮和准双曲面齿轮胶合承载能力计算方法:第2部分》进行计算。
在齿轮的设计上,轮齿齿根和齿表面的强度分析,应使用以下系数:
图2-18 偏航齿圈结构简图
>1.0;对轮齿齿根断裂强1)静强度分析。
对齿表面接触强度,安全系数S
H
>1.2。
度,安全系数S
F
>0.6;对轮齿齿根断裂2)疲劳强度分析。
对齿表面接触强度,安全系数S
H
>1.0;一般情况下,对于偏航齿轮,其疲劳强度计算用的使强度,安全系数S
F
=1.3。
用系数K
A
(2)偏航轴承部分的计算方法。
参照DINISO281—2010或JB/T2300—2011《回转支承》进行计算,偏航轴承的润滑应使用制造商推荐的润滑剂和润滑油,轴承必须进行密封。
轴承的强度分析应考虑两个主要方面:①在静态计算时,轴承的极端载荷应大于静态载荷的1.1倍;②轴承的寿命应按风力发电机组的实际运行载荷计算。
此外,制造偏航齿圈的材料还应在-3℃条件下进行V形切口冲击能量试验,要求3次试验平均值不小于27J。
2.偏航驱动装置
驱动装置一般由驱动电动机或驱动电机、减速器、传动齿轮、轮齿间隙调整机构等组成。
驱动装置的减速器一般可采用行星减速器或蜗轮蜗杆与行星减速器串联;传动齿轮一般采用渐开线圆柱齿轮。
传动齿轮的齿面和齿根应采取淬火处理,一般硬度值应达到HRC5562。
传动齿轮的强度分析和计算方法与偏航齿圈的
分析和计算方法基本相同;轴静态计算应采用最大载荷,安全系数应大于材料屈
=1.3的影服强度的1倍;轴的动态计算应采用等效载荷并同时考虑使用系数K
A
响,安全系数应大于材料屈服强度的1倍。
偏航驱动装置要求启动平稳,转速均匀无振动现象。
驱动装置结构简图如图2-19所示。
图2-19 驱动装置结构简图
3.偏航制动器
偏航制动器一般采用液压拖动的钳盘式制动器,其结构简图如图2-20所示。
(1)偏航制动器是偏航系统中的重要部件,制动器应在额定负载下,制动力矩稳定,其值应不小于设计值。
在机组偏航过程中,制动器提供的阻尼力矩应保持平稳,与设计值的偏差应小于5%,制动过程不得有异常噪声。
制动器在额定负载下闭合时,制动衬垫和制动盘的贴合面积应不小于设计面积的50%;制动衬垫周边与制动钳体的配合间隙任一处应不大于0.5mm。
制动器应设有自动补偿机构,以便在制动衬块磨损时进行自动补偿,保证制动力矩和偏航阻尼力矩的稳定。
在偏航系统中,制动器可以采用常闭式和常开式两种结构型式:常闭式制动器是在有动力的条件下处于松开状态;常开式制动器则是处于锁紧状态。
比较两种结构型式并考虑失效保护,一般采用常闭式制动器。
图2-20 偏航制动器结构简图
1—弹簧;2—制动钳体;3—活塞;4—活塞杆;5—制动盘;6—制动衬块;7—
接头;8—螺栓
(2)制动盘通常位于塔架或塔架与机舱的适配器上,一般为环状,制动盘的材质应具有足够的强度和韧性,如果采用焊接连接,材质还应具有比较好的可焊性,此外,在机组寿命期内制动盘不应出现疲劳损坏。
制动盘的连接、固定必须可靠牢固,表面粗糙度应达到Ra3.2。
(3)制动钳。
由制动钳体和制动衬块组成。
制动钳体一般采用高强度螺栓连接,用经过计算的足够的力矩固定于机舱的机架上。
制动衬块应由专用的摩擦材料制成,一般推荐用铜基或铁基粉末冶金材料制成,铜基粉末冶金材料多用于湿式制动器,而铁基粉末冶金材料多用于干式制动器。
一般每台风力发电机组的偏航制动器都备有两个可以更换的制动衬块。
4.偏航计数器
偏航计数器是记录偏航系统旋转圈数的装置,当偏航系统旋转的圈数达到设计所规定的初级解缆和终极解缆圈数时,计数器则给控制系统发信号使机组自动进行解缆。
计数器一般是一个带控制开关的蜗轮蜗杆装置或是与其相类似的程序。
5.纽缆保护装置
纽缆保护装置是偏航系统必须具有的装置,它是出于失效保护的目的而安装在偏航系统中的。
它的作用是在偏航系统的偏航动作失效后,电缆的纽绞达到威
胁机组安全运行的程度而触发该装置,使机组进行紧急停机。
一般情况下,这个装置独立于控制系统,一旦这个装置被触发,则机组必须进行紧急停机。
纽缆保护装置一般由控制开关和触点机构组成,控制开关一般安装于机组的塔架内壁的支架上,触点机构一般安装于机组悬垂部分的电缆上。
当机组悬垂部分的电缆纽绞到一定程度后,触点机构被提升或被松开而触发控制开关。
大型风力发电机组的偏航系统一般均采取如图2-21所示的结构,风力发电机组的机舱安装在旋转支撑上,而旋转支撑的内齿环与风力发电机组塔架用螺栓紧固相连,外齿环与机舱固定。
调向通过两台与调向内齿环相啮合的调向减速器驱动。
在机舱底板上装有盘式刹车装置,以塔架顶部法兰为刹车盘。
图2-21 偏航系统结构。