药物化学总结
《药物化学》复习重点资料整理总结

《药物化学》复习重点资料整理总结名词解释:1.稳态血药浓度:以半衰期为给药间隔时间,连续恒量给药后,体内药量逐渐累积,给药4、5次后,血药浓度基本达到稳态水平。
2.药物:是指调节机体生理、生化和病理过程,用以预防、诊断、治疗疾病的物质。
3.药理学:是研究药物与机体之间相互作用及其规律的一门学科,包括药物效应动力学、药物代谢动力学两个方面。
4.首关消除:有些口服药物在经胃肠壁及肝脏时,会被此处的酶代谢失活。
5.肝肠循环:有的药经胆汁排泄再经肠黏膜上皮细胞吸收,由门静脉重新进入全身循环,这种在小肠、肝脏、胆汁间的循环称为肝肠循环。
6.治疗指数:药物的半数致死量LD5a与半数有效量ED50的比值。
7.处方药:必须凭执业医师或执业助理医师处方才可调配。
8.肾上腺素升压作用的翻转:预先给予α受体阻断药能阻断肾上腺素激动α受体的缩血管作用,保留激动β受体的血管舒张作用,使升压作用翻转为降压作用。
9.耐受性:机体对药物的敏感性降低,需增加剂量才能发挥原有药效。
10.反跳现象:长期大剂量使用某药物后突然停药,导致原有病情再现或加重。
11.二重感染:长期使用广谱抗菌药,使得敏感菌被抑制,不敏感菌大量繁殖,引发新的感染。
模块-1、在机体方面,影响药物作用的因素有哪些?(填空题)年龄性别个体差异病理状态心里精神因素遗传因素2、“三致”反应致畸致癌致突变3、药物的二重作用包括什么?P5~防治作用和不良反应4、药物作用的主要类型包括哪些?P4-5兴奋作用和抑制作用局部作用和吸收作用选择性作用和普遍作用直接作用与间接作用预防作用和治疗作用模块二1、药品贮存条件中阴凉处、凉暗处、冷处、常温的条件P28阴凉处:系指不超过20℃阴暗处:系指避光并不超过20℃冷处:系指2℃~10℃常温:系指10℃~30℃2、批准文号的代表字母和数字各自的含义,批号的含义P27字母:化学药品:H 中药:Z 保健:B 生物制品:S体外化学诊断试剂:T 药用辅:F 进口分包装药品:J数字第1、2位为原批准文号的来源代码,第3、4位为换发批准文号之后(公元年号)的后两位数字,第5~8位为顺序号批号的含义:在药品生产过程中,将同一次投料、同一生产工艺所生产的药品定为同一个批号。
2024年药物化学总结范文

2024年药物化学总结范文引言:____年,药物化学领域取得了重要的进展和突破,为人类健康事业作出了重要贡献。
在这篇总结中,我们将回顾____年发生的一些重要事件和关键成果,并对未来的发展进行展望。
一、分子设计的突破____年,分子设计在药物化学中取得了重大突破。
通过结合生物信息学、计算化学和药理学等领域的最新研究成果,研究人员成功地设计出了一系列具有高度选择性和亲和力的新药分子。
这些分子可以针对特定的靶点,从而更好地治疗各种疾病。
二、靶向治疗的发展靶向治疗是一种基于疾病的分子机制,通过设计和合成特定的药物分子来干预特定的信号通路或靶点。
____年,靶向治疗在癌症治疗领域取得了重要进展。
研究人员不仅成功开发出了一系列具有高度选择性和强效性的抗癌药物,还提出了针对特定靶点的个性化治疗策略,从而提高了治疗效果和减少了不良反应。
三、药物合成的创新____年,药物合成领域也取得了创新性的发展。
通过引入新的合成方法和策略,研究人员成功合成了一系列结构复杂且具有生物活性的化合物。
这些合成方法不仅提高了合成效率和产率,还减少了环境污染和废物产生。
此外,研究人员还通过合成多肽类药物、天然产物衍生物等新的化合物类别,拓展了药物研发的空间。
四、多模态药物的研究多模态药物是指具有多种不同作用机制的药物分子。
____年,多模态药物的研究在治疗神经系统疾病、心血管系统疾病和免疫系统疾病等领域取得了突破。
通过合成具有多种活性基团的化合物或设计具有多种活性的分子配合物,研究人员成功地实现了疾病的多重治疗效果,从而提高了治疗效果和降低了药物耐药性的发生。
五、新药开发的加速____年,新药开发的进程被加速。
通过使用计算化学和同步工作流程等新技术,在研究和开发的不同阶段中进行合作和协同,研究人员成功地将新药的开发周期缩短到3到5年。
这使得更多的新药能够更快地进入临床试验和市场,从而更好地满足患者的需求。
展望未来:虽然____年药物化学取得了重要的进展,但仍面临着许多挑战和机遇。
药物化学重点药物化学结构及类型总结归纳

药物化学重点药物化学结构及类型总结归纳药物化学是药学学科的重要分支,研究药物的化学结构及其在体内的转化代谢过程。
药物化学的目标是寻找新的药物分子,改进已有药物的性质,提高药物的疗效和安全性。
下面对药物化学的重点以及药物化学结构及类型进行总结归纳。
重点药物化学结构:1.天然药物结构:天然药物是从动植物、微生物或矿物中提取的具有治疗作用的化合物。
常见的天然药物结构包括植物碱、生物碱、黄酮类化合物等。
例如:华法林(Warfarin)是一种抗凝药物,其结构中含有香豆素环并有杂原子(柳树苷结构)。
2.合成药物结构:合成药物是通过化学合成的方式制备出来的药物。
常见的合成药物结构包括芳香环、饱和环、杂环等。
例如:阿司匹林(Aspirin)是一种常用的非处方药,其结构中含有芳香环、酯基和醇基。
3.基础结构与活性团:药物分子的活性来自于其基础结构和活性团。
基础结构是药物分子的骨架,而活性团是具有特定活性的功能基团。
药物化学研究着重于发现和优化药物分子的基础结构和活性团,以提高药物的药效和选择性。
4.药物基团及键的导向作用:药物分子中的基团和键可以通过导向作用改变药物的性质和活性。
例如,引入取代基可以改变药物分子的溶解度、稳定性和活性。
导向作用是药物化学的重要概念之一,它指导了药物分子的设计、合成和改进。
药物化学的类型:1.pH敏感药物:pH敏感药物指的是药物的溶解度或释放行为受环境pH值的影响。
例如,肠溶片是一种常见的pH敏感药物,它只在肠道酸性环境下才能溶解释放药物。
2.离子对药物:离子对药物是指药物分子中含有正离子和负离子,它们之间通过离子键结合在一起。
离子对药物通常具有高溶解度和良好的生物利用度,因此被广泛应用于药物设计和合成。
3.靶向药物:靶向药物是指具有选择性作用于特定靶点的药物。
它们通常具有特定的结构特征,能够与靶点发生相互作用,并发挥治疗作用。
例如,酪氨酸激酶抑制剂普利都巴(Imatinib)是一种靶向白血病细胞的药物,其结构能够与癌细胞的激酶结合,从而抑制细胞生长。
药学课程总结模板药物化学

药学课程总结模板药物化学药物化学是药学专业课程中非常重要的一门学科,通过学习药物化学,我们深入了解了药物的结构与性质,掌握了药物的合成方法和药效评价等知识。
本文将从以下几个方面对药物化学课程进行总结。
一、课程目标与重点药物化学课程旨在培养学生对药物分子结构与性质的认识和理解,掌握药物化学基本原理和应用技术,为将来的药学研究和药物设计打下基础。
其主要重点包括:1.药物分子结构分析与对应的性质分析;2.合成药物的方法与技术;3.药效评价与药效预测;4.了解与药物化学相关的药理学知识。
二、知识框架与学习方法1.知识框架在学习药物化学的过程中,我们需要掌握以下知识点:(1)药物的分子结构与功能基团;(2)药物合成的基本原理与方法;(3)药物的性质与活性的关系;(4)药物的药效评价与药效预测。
2.学习方法为了有效学习药物化学课程,我们可以采取以下方法:(1)理论学习:认真听课、做好课堂笔记,结合教材进行系统性学习;(2)实验操作:通过实验操作,提高对药物化学实践的理解;(3)文献阅读:扩大学习视野,阅读相关的文献资料,了解行业最新动态;(4)小组讨论:与同学一起探讨与药物化学相关的问题,提高学习效果。
三、实践应用与意义药物化学是药学专业的基础课程,对于我们今后的学习和研究有着重要的意义:1.药物设计与发现:通过学习药物化学,我们能够掌握药物合成与设计的基本原理,为今后的药物研发打下基础;2.药物安全性评价:了解药物的结构与性质有助于我们评价其安全性与毒性,确保药物在应用过程中的安全性;3.药物质量控制:药物化学知识使我们能够掌握药物质量检测的技术,保证生产合格的药物;4.提高药物治疗效果:通过了解药物的结构活性关系,我们能够更好地优化药物的治疗效果。
总结:药物化学课程是药学专业中不可或缺的一门学科,通过学习,我们深入了解了药物的结构与性质,掌握了药物的合成方法和药效评价等相关知识。
通过合理的学习方法和实践应用,我们可以更好地应用药物化学知识,为药物研发、质量控制以及提高药物治疗效果做出贡献。
药物化学考试重点总结

药物化学考试重点总结
一、药物化学基础知识
1. 药物的分类与作用机制:了解各类药物的基本作用机制和分类,如抗生素、抗肿瘤药、抗炎药等。
2. 药物的化学结构与性质:理解药物的化学结构与其理化性质、稳定性及生物活性的关系。
3. 药物代谢:掌握药物在体内的代谢过程,包括代谢酶及代谢产物的性质和作用。
二、药物合成与工艺
1. 药物合成方法:掌握常见的药物合成方法和技术,如还原反应、氧化反应、酯化反应等。
2. 药物合成工艺:理解工业化生产中药物的合成工艺流程及优化方法。
3. 药物合成路线的设计与选择:了解药物合成路线的评价标准,掌握设计药物合成路线的思路与方法。
三、药物分析
1. 药物分析方法:掌握药物分析中常用的检测方法和技术,如色谱法、光谱法等。
2. 药物质量控制:理解药物质量控制的标准和要求,掌握药品质量控制的常用方法。
3. 药物制剂分析:了解药物制剂的分析方法,掌握药物制剂的质量控制标准。
四、药物设计与新药开发
1. 药物设计的原理与方法:掌握基于结构的药物设计、基于片段的药物设计等原理与方法。
2. 新药发现的途径与方法:了解新药发现的途径和策略,如高通量筛选、虚拟筛选等。
3. 新药开发的流程与评估:理解新药开发的流程和评估标准,掌握新药开发的风险与机遇。
药物化学专业知识点总结

药物化学专业知识点总结一、药物化学的基本概念药物是指能够在生物体内起特定药理活性,并能够预防、治疗、诊断和改善疾病的化合物。
药物化学是研究药物的化学结构、性质及其合成途径的科学。
药物化学的研究内容主要包括:1. 药物的化学结构与性质:药物的化学结构决定了其生物活性和药理效应,药物的理化性质决定了其药代动力学特征。
2. 药物的合成研究:药物的合成方法研究是药物化学的核心内容。
合成药物的目标是简捷、经济且高产率,具有可控性和可重复性。
3. 药物的作用机制研究:药物的作用机制研究是药物化学和药理学的交叉领域。
药物的作用机制包括药物与靶分子的结合、生物途径的调控等。
二、药物分类根据药品的疗效、化学结构和用途,药物可以分为很多类。
根据药物的用途,药物可以分为:1. 治疗药物:用于治疗疾病的化合物,如抗生素、抗癌药、抗感染剂等。
2. 预防药物:用于预防疾病的化合物,如疫苗、预防性抗生素等。
3. 诊断用药:用于帮助诊断疾病的化合物,如放射性核素、造影剂等。
4. 应急药品:用于急救和紧急情况下的药物,如止血剂、解热镇痛药等。
根据药物的化学结构,药物可以分为:1. 有机化合物药物:由有机化合物合成的药物,包括多种结构类型的化合物。
2. 无机化合物药物:由无机化合物合成的药物,如氧化铁、氧化亚铁等。
根据药物的作用机制,药物可以分为:1. 靶向药物:通过作用于特定的生物靶标来发挥药理效应的药物。
2. 非靶向药物:通过影响生物系统其他组成部分的功能来发挥药理效应的药物。
三、药物合成药物的合成方法是药物化学的核心内容。
药物的合成方法主要包括:1. 有机合成:有机合成是药物合成的基础,包括常见的反应类型如亲核-亲电加成反应、消除反应、取代反应等。
2. 天然产物全合成:大部分天然药物都具有复杂的结构,需要进行全合成来得到纯品,这对有机合成技术提出了更高的要求。
3. 合成方法研究:随着有机合成方法学的发展,药物化学家在研究过程中积累了大量合成方法,用于合成更加复杂的分子。
药物化学药物总结归纳

药物化学药物总结归纳近年来,随着医疗技术的迅速发展,药物化学研究取得了长足的进步。
药物化学是一门研究药物的合成、性质和作用机制的学科,它为药物设计和发现提供了重要的理论基础。
本文将对药物化学的一些重要概念和药物总结进行归纳,以期为药物研究和开发提供参考。
一、药物化学的基本概念1. 药物化学的定义药物化学是研究药物的合成、性质和结构与活性关系等问题的学科。
它涉及有机合成、药物分析、药物代谢等多个领域。
2. 药物分子的构成药物分子由原子构成,其中包括元素符号、原子序数和原子价数。
药物分子的结构决定了其化学性质和药理活性。
3. 药物的分类药物可根据其化学结构、作用方式、疗效和应用范围来进行分类。
常见的分类方法有化学分类、药理学分类和治疗用途分类等。
4. 药物化学与药物研发药物化学为药物研发提供了理论和实践基础。
药物研发涉及分子设计、合成优化、构效关系研究和药物代谢等。
药物化学为研究人员提供了工具和技术,加速了新药物的发现和开发过程。
二、药物化学的研究领域1. 药物分子设计与合成在药物研发的过程中,药物分子设计和合成是主要环节之一。
研究人员通过设计和合成不同结构的药物分子,寻找具有良好活性和选择性的化合物。
2. 构效关系研究构效关系研究是药物化学的核心内容之一,它通过改变药物分子的结构来探索药物的生物活性和作用机制。
这些研究为药物的优化提供了理论指导。
3. 药物合成路线开发药物合成路线开发是指通过合成化学方法合成药物分子的过程。
研究人员需要考虑反应选择性、产率、环境友好性等因素,制定高效可行的合成路线。
4. 药物分析与物性研究药物分析和物性研究旨在确定药物化学结构、纯度、溶解度等特性。
通过分析药物的物性,可以评估药物的质量和药效。
三、药物化学的应用与发展1. 新药物的发现与开发药物化学为新药物的发现和开发提供了理论和技术支持。
通过药物化学的研究,研究人员可以合成和优化具有良好活性的化合物,为疾病的治疗提供新的药物选择。
药物化学知识点总结

药物化学知识点总结第一章绪论1药物的概念药物是用来预防、治疗、诊断疾病,或为了调节人体功能、提高生活质量、保持身体健康的特殊化学品。
2药物化学是一门发现与发明新药、合成化学药物、阐明药物化学性质、研究药物分子与机体细胞之间相互作用规律的综合性学科。
3药物化学的研究内容及任务既要研究化学药物的化学结构特征,与此相联系的理化性质,稳定性状况,同时又要了解药物进入体内后的生物效应、毒副作用及药物进入体内的生物转化等化学内容。
为了设计、发现和发明新药,必须研究和了解药物的构效关系,药物分子在生物体中作用的靶点以及药物与靶点结合的方式。
(3) 药物合成也是药物化学的重要内容。
第二章中枢神经系统药物一、巴比妥类1 异戊巴比妥HNN H OOO中等实效巴比妥类镇静催眠药,【体内代谢】巴比妥类药物多在肝脏代谢,代谢反应主要是5位取代基上氧化和丙二酰脲环的水解,然后形成葡萄糖醛酸或硫酸酯结合物排出体外。
异戊巴比妥的5位侧链上有支链,具有叔碳原子,叔碳上的氢更易被氧化成羟基,然后与葡萄糖醛酸结合后易溶于水,从肾脏消除,故为中等时效的药物。
【临床应用】本品作用于网状兴奋系统的突触传递过程,阻断脑干的网状结构上行激活系统,使大脑皮质细胞的兴奋性下降,产生镇静、催眠和抗惊厥作用。
久用可致依赖性,对严重肝、肾功能不全者禁用。
二、苯二氮卓类1. 地西泮(Diazepam, 安定,苯甲二氮卓)【结构】NNOCl结构特征为具有苯环和七元亚胺内酰胺环并合的苯二氮卓类母核【体内代谢】本品主要在肝脏代谢,代谢途径为N -1去甲基、C -3的羟基化,代谢产物仍有活性(如奥沙西泮和替马西泮被开发成药物)。
形成的3-羟基化代谢产物再与葡萄糖醛酸结合排出体外。
第三节 抗精神病药1. 盐酸氯丙嗪(Chlorpromazine Hydrochloride) 【结构】. HClNSClN【体内代谢】主要在肝脏经微粒体药物代谢酶氧化代谢,体内代谢复杂,尿中存在20多种代谢物,代谢过程主要有N -氧化、硫原子氧化、苯环羟基化、侧链去N -甲基和侧链的氧化等,氧化产物和葡萄糖醛酸结合通过肾脏排出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
药物化学总结第一篇:药物化学总结术语解释1.生物烷化剂也称烷化剂,属于细胞毒类药物,在体内能形成缺电子活泼中间体或其他具有活泼的亲电性基团的化合物,进而与生物大分子(如DNA、RNA或某些重要的酶类)中含有丰富电子的基团(如氨基、巯基、羟基、羧基、磷酸基等)进行亲电反应和共价结合,使生物大分子丧失活性或使DNA分子发生断裂。
生物烷化剂是抗肿瘤药物中使用最早,也是非常重要的一类药物。
2.抗代谢药物是一类重要的抗肿瘤药物,通过抑制DNA合成中所需的叶酸、嘌呤、嘧啶及嘧啶核苷途径,从而抑制肿瘤细胞的生存和复制所必需的代谢途径,导致肿瘤细胞死亡。
3.生物电子等排体(bioisosteres)具有相似的物理及化学性质的基团或分子会产生大致相似、相关或相反的生物活性。
分子或基团的外电子层相似,或电子密度有相似分布,而且分子的形状或大小相似时,都可以认为是生物电子等排体。
4.潜效化(1atentiation)就是将具有生物活性而毒性较大的化合物,利用化学方法把结构作适当改造;变为体外括性小或无活性的化合物,进入体内后,通过特殊酶的作用使其产生活性作用,从而提高选择性。
增强疗效、降低毒性。
是前药的同义词。
按化学结构可将目前临床使用的生物烷化剂分为:①氮芥类;②乙撑亚胺类;③磺酸酯及多元醇类;④亚硝基脲类;⑤金属铂类配合物。
这些药物都具有在体内能形成缺电子的活泼中间体的化学结构。
氮芥类药物的结构由两部分组成:通式中的双-β-氯乙胺部分(氮芥基)称为烷基化部分,是抗肿瘤活性的功能基;R为载体部分,主要影响药物在体内的吸收分布等药代动力学性质,也会影响药物的选择性、抗肿瘤活性及毒性,因此通过选择不同的载体可以达到提高药物的选择性和疗效、降低毒性的目的,对氮芥类药物的设计具有重要的意义。
当载体R为脂肪烃基时,称为脂肪氮芥,如盐酸氮芥、氧氮芥等;当载体R为芳香基时,称为芳香氮芥,如苯丁酸氮芥等;当载体R为氨基酸时,称为氨基酸氮芥,如美法伦、氮甲等;当载体R为杂环时,称为杂环氮芥,如环磷酰胺、异环磷酰胺等。
芳香氮芥中氮原子上的孤对电子和苯环产生共轭作用,减弱了氮原子的碱性,其作用机制也发生了改变;不像脂肪氮芥那样很快形成稳定的环状乙撑亚胺离子,而是先失去氯原子生成碳正离子中间体,再与亲核中心作用。
其烷化历程为单分子亲核取代反应(SN1)。
与脂肪氮芥相比,芳香氮芥的氮原子碱性较弱,烷基化能力也比较低,因此抗肿瘤活性比脂肪氮芥弱,毒性也比脂肪氮芥低。
载体部分烷基化部分1.氮芥类烷化剂的代表药物有盐酸氮芥和环磷酰胺。
盐酸氮芥(chlormethine hydrochloride)是最早用于临床的抗肿瘤药物,只对淋巴瘤有效,且毒性大(特别是对造血器官),对其他肿瘤如肺癌、肝癌、胃癌等无效,不能口服,选择性差。
为了减低毒副作用,人们以氮芥为先导化合物进行结构修饰,主要通过减少氮原子上的电子云密度来降低氮芥的反应性,达到降低其毒性的作用,但这样的修饰也降低了氮芥的抗瘤活性。
环磷酰胺含有一个结晶水时为白色结晶或结晶性粉末,失去结晶水后即液化。
其水溶液(2%)在pH 4.0~6.0时,磷酰氨基不稳定,加热时更易分解,而失去生物烷化作用。
本品的抗瘤谱较广,毒性比其他氮芥类药物小,已经成为临床上普遍使用的抗肿瘤药物,广泛用于恶性淋巴瘤、急性淋巴细胞白血病、多发性骨髓瘤、肺癌、神经母细胞瘤等的治疗。
环磷酰胺是运用潜效化概念设计的药物。
在环磷酰胺的分子中氮芥基连在吸电子的磷酰基上,降低了氮原子的亲核性,因此在体外几乎元抗肿瘤活性。
进入体内后,在正常组织中的代谢产物是无毒的酮基环磷酰胺和羧基化合物,而在肿瘤组织中的代谢产物有丙烯醛、磷酰氮芥及去甲氮芥,三者都是较强的烷化剂。
因此环磷酰胺对正常组织的影响较小,其毒性比其他氮芥类药物小。
2.亚硝基脲类烷化剂卡莫司汀(carmustine)具有广谱的抗肿瘤活性,其结构中的β-氯乙基具有较强的亲脂性,易通过血一脑脊液屏障进入脑脊液中,因此适用于脑瘤、转移性脑瘤及其他中枢神经系统肿瘤、恶性淋巴瘤等治疗。
与其他抗肿瘤药物合用时可增强疗效。
其主要副作用为迟发性和累积性骨髓抑制。
在亚硝基脲的结构中,由于N-亚硝基的存在,使得连有亚硝基的氮原子与相邻的羰基之间的键变得不稳定,在生理pH环境下易发生分解,生成亲核性试剂与DNA的组分产生烷基化,达到治疗的作用。
3.金属铂类配合物顺铂(cisplatin)为顺式异构体,其反式异构体无效。
临床用于治疗膀胱癌、前列腺癌、肺癌、头颈部癌、乳腺癌、恶性淋巴癌和白血病等。
目前已成为治疗睾丸癌和卵巢癌的一线药物。
在室温条件下对光和空气稳定、可长期贮存。
本品加热至l70。
C 即转化为反式异构体,继续加热至27℃,熔融同时分解成金属铂。
本品的水溶液不稳定,临床药用的是含有甘露醇和氯化钠的冷冻干燥粉。
第二节抗代谢药物抗代谢药物在肿瘤的化学治疗上占有较大的比重,约为40%。
这类药物的结构与正常代谢物很相似,且太多数抗代谢物是将代谢物的结构作细微的改变而得。
例如利用生物电子等排原理,以F或CH3、代替H,S或CH2代替O,NH2或SH代替OH等。
用的抗代谢药物有三类:①嘧啶拮抗物;②嘌呤拮抗物;③叶酸拮抗物。
氟尿嘧啶用氟原予取代尿嘧啶中的5位氢原子后,由于氟的原子半径和氢的原子半径相近,氟化物的体积与原化合物几乎相等,加之C—F键特别稳定,在代谢过程中不易分解,分子水平代替正常代谢物,因而是胸腺嘧啶合成酶的抑制剂。
在体内首先转变成氟尿嘧啶脱氧核苷酸(FUDRP),与胸腺嘧啶合成酶结合,再与辅酶5,10-次甲基四氢叶酸作用,由于C-F键稳定,导致不能有效地合成胸腺嘧啶脱氧核苷酸(TDRP),使胸腺嘧啶合成酶失活。
从而抑制DNA的合成,最后导致肿瘤细胞死亡2.呤拮抗物的代表药物有巯嘌呤和磺巯嘌呤钠。
巯嘌呤本品是次黄嘌呤的衍生物,在体内经酶促转变为有活性的6-硫代次黄嘌呤核苷酸(即硫代肌苷酸),抑制腺酰琥珀酸合成酶,阻止次黄嘌呤核苷酸(肌苷酸)转变为腺苷酸;还可抑制肌苷酸脱氢酶,阻止肌苷酸氧化为黄嘌呤核苷酸,从而抑制DNA和RNA的合成。
_磺巯嘌呤钠(溶癌呤,sulfomercapririe sodium)是巯嘌呤的衍生物,其结构中引入了磺酸钠基,增加了药物的水溶性,对肿瘤组织有一定的选择性,毒性较低。
3.叶酸拮抗物甲氨蝶呤(methotrexate)本品为叶酸的拈抗剂,和二氢叶酸还原酶的亲和力比二氢叶酸强l000倍,几乎是不可逆地和二氢叶酸还原酶结合,使二氢叶酸不能转化为四氢叶酸,从而影响辅酶F 的生成,进而抑制DNA和RNA的合成,阻碍肿瘤细胞的生长。
本品在强酸性溶液中不稳定,酰胺键会水解,生成谷氨酸及蝶呤酸而失去活性。
第三节抗肿瘤抗生素Anficancer Antibiotics 抗肿瘤抗生素分为两类:①多肽类抗生素;②蒽醌类抗生素。
多柔比星(doxorubicin)和柔红霉素edaunorubicJn)属蒽醌类抗生素。
多柔比星又称阿霉素,主要通过作用于DNA而达到抗肿瘤目的。
柔红霉素为多柔比星的结构类似物。
盐酸米托蒽醌(mitoxantrone hydrochloride)是人们通过研究某些天然和合成的抗肿瘤药物的构效关系而新设计的一个具有蒽醌母核的全合成药物,用有氨基(或烃氨基)的侧链代替多柔比星结构中的氨基糖,有可能保持活性而减小心脏毒性。
盐酸米托蒽醌的抗肿瘤作用是多柔比星的5倍,心脏毒性较小。
用于治疗晚期乳腺癌、非霍奇金病淋巴瘤和成八急性非淋巴细胞白血病复发。
第四节抗肿瘤的植物药有效成分及其衍生物术语解释1.抗生素(antibiotics)是微生物的代谢产物或合成的类似物,在体外能抑制微生物的生长和存活,而对宿主不会产生严重的毒副作用。
多数抗生素用于治疗细菌感染性疾病,某些抗生素还具有抗肿瘤、免疫抑制和刺激植物生长作用。
2.半合成抗生素(semi-synthetic antibiotics)在天然抗生素的基础上发展起来,针对天然抗生素的化学稳定性、毒副作用、抗菌谱等方面存在的问题,通过对天然抗生素进行结构改造,旨在增加稳定性、降低毒副作用、扩大抗菌谱、减少耐药性、改善生物利用度、提高治疗效力及改变用药途径。
半合成抗生素已取得较大的发展,如半合成青霉素和半合成头孢菌素。
因合成的原料来自天然产物,故名。
3.黏肽转肽酶(peptidoglycan transpeptidase)是细菌细胞壁合成过程中的一种酶。
在细菌细胞壁的合成中,首先由N-乙酰胞壁酸、N-乙酰葡萄糖胺和多肽形成线型高聚物,然后在黏肽转肽酶的催化下,经转肽(交联)反应形成网状的细胞壁。
β-内酰胺类抗生素的作用部位主要是抑制黏肽转肽酶,使其催化的转肽反应不能进行,从而阻碍细胞壁的形成,导致细菌死亡。
4.抗菌活性(antibacterial activity)是指药物抑制或杀灭微生物的能力,可用体外抗菌试验来测定。
能够抑制培养基内细菌生长的最低浓度称之为最低抑菌浓度(minimal inhibitory,concentration,MIC),能够杀灭培养基内细菌或使菌数减少99.9%的最低浓度称之为最低杀菌浓度(minimal bactericidal concentration,MBC)。
5.抗菌谱(antibacterial spectrum)每种抗菌药物都有一定的抑制或杀菌范围,称为抗菌谱,包括杀灭或抑菌的种类及浓度。
某些抗菌药物仅作用于单一菌种或局限于某一属细菌,其抗菌谱窄。
另一些药物的抗菌范围广泛,称为广谱抗菌药。
6.β-内酰胺酶抑制剂(13-1actamase inhibitor)是针对细菌对β-内酰胺抗生素产生耐药机制,研究发现的一类药物。
β-内酰胺酶是细菌产生的保护性酶,使某些β-内酰胺抗生素在未到达细菌作用部位之前将其水解开环失活,这是细菌对β-内酰胺抗生素产生耐药性的主要机制。
β-内酰胺酶抑制剂对β-内酰胺酶有很强的抑制作用,本身又具有抗菌活性,通常和不耐酶的β-内酰胺抗生素联合应用以提高疗效,是一类抗菌增效剂。
7.细菌的耐药性(resistance of bacteria)又称抗药性,一般是指细菌与药物多次接触后,对药物的敏感性下降甚至消失,致使药物对耐药菌的疗效降低或无效。
细菌对抗生素(包括抗菌药物)的耐药机制主要有四种:①使抗生素分解或失去活性;②使抗菌药物作用的靶点发生改变;③细菌细胞膜渗透性的改变或其他特性的改变使抗菌药物无法进入细胞内;④细菌产生药泵将已进入细胞的抗菌药物泵出细胞。
主要内容第一节β-内酰胺抗生素β-内酰胺抗生素是指分子中含有由四个原子组成的β-内酰胺环的抗生素。
β-内酰胺环是该类抗生素发挥生物活性的必需基团,在和细菌作用时开环,与细菌发生酰化作用,抑制细菌的生长。