电动汽车再生制动能量优化控制策略的研究
电动汽车的再生制动策略

电动汽车的再生制动策略电动汽车与传统汽车显著的区别之一就是具有再生制动功能,可将制动过程中车辆的部分机械能进行回收,存储在储能装置中并加以利用。
电动汽车的再生制动系统有不同的实现方案,对应的控制策略也不同。
在分析控制策略之前,首要任务是对实现方案进行分析。
一般来说,再生制动系统的控制目标主要为最低的系统成本、最佳的制动性能、最大的能量回收效率。
控制方法可以分为两大类,一是利用效率优化方法提高电机系统的效率,二是从电动汽车的制动力分配人手,合理分配再生制动的比例。
效率优化控制策略的投入成本相对较高且应用较少。
目前,实用的再生制动控制策略基本上都是基于制动力分配的。
典型的再生制动策略有:理想制动力分配策略、最佳能量回收策略和并行能量回收策略。
一般可将能量回收的工况分为两种:一种是滑行工况;另一种是制动工况。
前者没有机械制动的参与,仅靠电机对车辆进行制动;后者当驾驶人踩下制动踏板时,电机制动与机械制动共同对汽车进行制动。
两种工况对应的控制策略不同,约束条件也不相同。
在滑行工况下,基于滚动优化和局部优化的思想开发能量回收策略;在制动工况下,根据再生制动系统的实现方案,采用并行能量回收策略。
(1)再生制动系统方案根据液压制动力矩是否可控,可将电动汽车的液压制动力矩和电机再生制动力矩的分配方式分为液压制动力矩调节方式和电机力矩调节方式两种。
前者通过调节液压制动力矩和电机制动力矩来满足整车制动需求,优先保证电机制动力矩达到最大值;后者液压制动力不做调整,在满足整车需求的范围内调节电机再生制动力矩。
根据以上分析,有如下三种制动能量回收方案:串联复合制动策略、并联复合制动策略及空行程制动策略。
串联复合制动策略要求机械制动力矩可控,通过合理分配机械制动力矩和电机再生制动力矩的大小,以能量回收效率及制动的平顺性为控制目标。
串联复合制动策略的控制策略较复杂,且需要改变传统车的制动系统结构,但能保证较高的能量回收效率。
并联复合制动策略的液压制动过程不可控,电机再生制动可控,只需对电机制动力矩进行控制,控制参数少,易实现,在城市工况下能回收相当可观的制动能量,因而适合在实际电动车开发中采用。
电动汽车制动能量回收控制策略

机电信息工程电动汽车制动能量回收控制策略徐向明(东风悦达起亚汽车有限公司,江苏盐城224051)摘要:本文深入探讨了制动能量回收控制策略,在此基础上提出了制动能量回收方案并做出相应的仿真分析,为控制系统的再开发和优化提供了充足的理论和实验依据&关键词:电动汽车;制动能量回收;控制策略1制动能量的回收1.1制动模式通常情况下,电动汽车制动模式包括紧急制动、正常制动和下长坡制动。
(1)紧急刹车。
该过程机械摩擦制动占主导地位,电制动发挥辅助作用,制动加速度超过2m/s2。
因为紧急制动使用机会不多,持续时间也不长,所以只能回收利用较少的能量。
(2)正常刹车。
汽车在正常行驶出现的制动有减速和停止2类。
前者依靠电制动,并产生制动能量;后者靠机械摩擦起到制动效果。
电机发电特性决定了制动的切换点,掌握切换点的详细情况才能最大程""""""""""""""""""""""""趋势下,如何实现资源的高效利用或重复利用、废物利用是科学技术发展的重要方向。
2.2现阶段存在的问题现阶段电梯控制技术中存在的问题主要有:第一,电梯的节能问题。
随着电梯的广泛应用,电梯需求量不断攀升,其对能源的消耗也在相应增加,实现能源的高效利用是电梯控制技术发展中主要解决的问题之一。
第二,电梯运行效率。
电梯作为载具,在技术改进的过程中如何确保电梯安全的基础上实现运行效率的提升也是未来电梯控制技术发展的重点。
第三,控制器性价比问题。
当前我国研发的电梯技术核心设备同国外成熟的技术相比具有周期长、成本高的问题,部分电梯企业为提高效率从国外引进技术,价格也较高,电梯设备整体性价比不高。
3电梯控制技术发展方向现阶段各行各业的新技术涌现给电梯控制技术的发展提供了“源泉”,诸如近年来已经得到快速发展的同步和异步电动机、能量回馈技术以及节能群控技术等能满足节能的要求,尤其是能量回馈技术,对于度地将制动能量回收利用。
纯电动汽车制动能量回收策略优化研究

纯电动汽车制动能量回收策略优化研究摘要:纯电动汽车的主要缺点之一是续航里程不足,尽可能提升电动汽车制动能量回收率显得尤为重要。
基于某气压制动的电动专用车,综合考虑驱动电机、动力电池和相关法规等多种因素的影响,制订制动能量回收控制策略,运用Cruise和Simulink平台进行联合仿真,分析其对车辆行驶里程的影响,验证该策略的有效性。
关键词:纯电动汽车;制动能量回收;策略引言随着新能源汽车的发展,越来越多的专用车开始使用纯电动汽车。
据相关资料显示,在某些特殊工况,制动所消耗能量的占比甚至超过驱动电机输出能量的30%,因此高效回收制动能量对于提高电动汽车续航里程有着非常积极的作用,同时也可以延长机械制动系统的使用寿命。
1.系统方案设计制定电动汽车制动能量回收控制策略应考虑的关键的问题是:确保制动安全性的前提下如何分配机械制动力与电机再生制动力,尽可能多地回收制动能量。
目前,研究较多的制动能量回收控制策略主要有理想制动力分配策略、最佳制动能量回收策略和并联式制动能量回收控制策略。
理想制动力分配策略是对机械制动和电机再生制动独立控制,分别调节两种制动力在前后轮的分配从而实现前后轮制动力分配满足理想制动力分配I曲线。
最佳制动能量回收策略是在满足制动强度需求下,最大化进行制动能量回收。
并联式是保持原车机械制动系统不变,再生制动与机械制动两者叠加施加到前后轴上。
三种策略对比分析如表1所示。
本文研究的目标车型为纯电动物流运输车,拟选用并联式制动能量回收控制策略。
表1典型制动能量回收控制策略对比2.再生制动限制因素2.1电机最大转矩电机正常工作时的特性为:在额定转速以内,电机以恒转矩运行;在额定转速以外,电机以恒功率运行。
而电机再生制动转矩和电机工作输出转矩具有对称性,同时当电机以发电状态工作时存在一个最低转速,电机所能提供的最大制动转矩为:式中:T m_mot为电机最大制动转矩(N·m);T max为电机峰值转矩(N·m);P max为电机峰值功率(kW);n为电机转速(r/min);n0为电机发电状态最低转速(r/min);n b为电机额定转速(r/min)。
纯电动汽车再生制动能量回收与控制策略研究

当今社会,能源危机和环境污染日趋严重,世界各国政府和汽车 厂商为此大力研发具有清洁、无污染的电动汽车。然而,电动汽 车存在行驶里程不足的缺点,这严重制约了纯电动汽车的应用与 快速发展。
再生制动是用来回收电动汽车制动能量的一种技术,可有效增加 电动汽车的行驶里程。论文选取纯电动汽车作为研究对象,从再 生技术方面着手,分析了电动汽车再生制动系统的结构,对再生 制动的工作原理、再生制动能量转换进行了详细分析。
பைடு நூலகம்
然后考虑了车速、蓄电池SOC、驾驶员所需制动力对纯电动汽车 制动能量回收的影响,设计了一种基于模糊控制的制动力分配策 略,在电动汽车仿真软件ADVISOR中对该制动力分配策略进行了 仿真,并与ADVISOR软件自带的控制策略进行仿真比较,结果表明 新的控制策略提高了再生制动能量回收效率。论文提出的模糊 控制策略简单有效,与ADVISOR软件自带控制模型相比,在保证了 制动安全与稳定性的要求下,整车在再生制动能量回收方面明显 得到提高,充分证明了论文采用的模糊控制策略的有效性,该控 制策略为增加纯电动汽车的行驶里程提供了一种非常有效的方 式。
接着对纯电动汽车再生制动能量回收控制策略进展开了深入研 究,依次对纯电动汽车前后轮制动力、理性制动力分配曲线和F 曲线、ECE法规分配曲线进行了分析,接着对三种典型的再生制 动能量回收控制策略进行了研究,并说明了其优缺点。然后对汽 车前后轮制动力控制策略进行了优化,在保证汽车制动安全性与 稳定性的前提下,为尽可能多的回收制动能量,通过综合考虑,采 取了前轮制动力优先考虑由电机供给,通过对前后轮的机械摩擦 制动力进行调整,使制动力分配点尽量向I曲线靠近,且不越过由 I曲线、ECE法规线以及F曲线所包围的区域边界线的方案。
基于电动汽车制动器的能量回收与系统优化研究

基于电动汽车制动器的能量回收与系统优化研究一、引言电动汽车作为清洁能源的代表,为减少环境污染和化石能源消耗提供了有效的替代方案。
然而,电动汽车的续航里程和能量利用效率仍然是制约其发展的关键问题之一。
对电动汽车制动器的能量回收和系统优化的研究可以提高其能量利用效率,进一步延长续航里程。
二、电动汽车制动器的能量回收原理电动汽车制动器的能量回收是通过将动能转化为电能并储存起来。
主要包括以下两种方式:1.再生制动:在电动汽车制动的过程中,将制动过程中产生的动能转化为电能,并通过储能装置进行储存。
再生制动可以将制动过程中的能量利用起来,提高车辆的能量利用效率。
2.制动能量回收系统:在电动汽车行驶过程中,通过车轮的运动驱动电动机,将电动机反作用力转化为电能,并将电能存储起来。
这种方式可以进一步提高电动汽车的能量回收效率。
三、电动汽车制动器能量回收与系统优化技术1.能量回收优化控制策略电动汽车制动器能量回收系统的优化控制策略是提高能量回收效率的关键。
通过优化制动力的控制,合理利用电动汽车制动时产生的动能,将其转化为电能存储。
同时,结合车辆的运行状态和行驶条件,制定合理的能量回收策略,提高整个系统的能量利用效率。
2.能量储存与管理技术电动汽车制动器能量回收系统的能量储存与管理技术是确保能量储存和释放安全可靠的关键。
目前常用的能量储存技术包括锂离子电池和超级电容器。
对于能量储存装置的选取和管理策略的优化研究,可以提高能量回收系统的稳定性和可靠性。
3.辅助制动系统的优化辅助制动系统的优化可以提高电动汽车制动器的能量回收效率。
例如,通过优化制动器的结构和材料选择,减小制动器的质量和制动器之间的摩擦,进一步减少系统的能量损耗。
此外,采用智能制动控制算法,根据车辆的行驶状态和路况实时调整制动力,可以最大程度地提高能量回收效果。
4.能量再利用与回电网络建设电动汽车制动器能量回收系统的能量再利用与回电网络建设是将回收的能量应用于不同领域的关键。
纯电动汽车再生制动控制策略的研究

纯电动汽车再生制动控制策略的研究昌诚程;郑燕萍;王昕灿;马哲树【摘要】为了提高电动汽车制动能量的回收效率,增加汽车续驶里程,本文针对前、后轮制动力和再生制动力的分配策略进行了研究.结果表明,在制定前、后轮制动力分配策略时,采用以路面特征值识别为前提,将f线、ECE法规线和I曲线相结合的方法,根据当前路面的附着系数选择不同的控制策略,可使汽车在获得较大制动力的同时确保制动的方向稳定性;在制定再生制动力分配策略时,根据车辆实时工况,采用模糊控制的方法分配驱动轮上的再生制动力,可提高制动能量的回收效率.建立了再生制动控制策略的仿真模型,并在CYC_1015和CYC_UDDS两种工况下进行模拟仿真,仿真结果表明,本文提出的控制策略比ADVISOR原车控制策略能更好地实现制动能量回收,提高了纯电动汽车的续驶里程.【期刊名称】《汽车技术》【年(卷),期】2019(000)005【总页数】5页(P33-37)【关键词】纯电动汽车;再生制动;制动力分配;控制策略【作者】昌诚程;郑燕萍;王昕灿;马哲树【作者单位】南京林业大学,南京 210037;南京林业大学,南京 210037;南京林业大学,南京 210037;南京林业大学,南京 210037【正文语种】中文【中图分类】U469.721 前言与内燃机汽车不同,纯电动汽车可以将制动能量回收再生,从而增加汽车的续驶里程,提高整车性能[1]。
目前,再生制动控制策略的研究主要针对理想制动力分配控制策略、制动力按固定比值分配控制策略、最优制动能量回收控制策略和并联制动能量回收控制策略等4种。
如文献[2]采用理想制动力分配控制策略设计了一种以制动强度和电池SOC为输入、电机制动比例为输出的模糊控制器,但这种控制策略会造成驱动轮在低制动强度下获得的制动力较小,能量回收效率不理想;文献[3]以固定比值进行前、后轮制动力的分配,基于模糊控制得到机电复合制动下再生制动的比例,希望在保证汽车制动稳定性的基础上高效地回收制动能量,但这种控制策略存在回收能量不能最大化,而且只能在小于同步附着系数的路面上保证汽车制动的稳定性;文献[4]在保证驱动轮制动力最大化并满足ECE法规的条件下完成了前、后轮制动力分配,然后将电池SOC、制动强度和预估的机械制动效能因数引入模糊控制器,得到再生制动分配比例,但这种控制策略同样只能在部分附着系数路面上保证汽车制动的稳定性。
电动汽车制动能量回收控制措施研究

电动汽车制动能量回收控制措施研究摘要:传统汽车制动方式是以机械制动或摩擦制动为主。
制动过程会消耗部分动能,并且大部分能量会被转化为热能而散失,造成极大的能量浪费。
电动汽车在进行制动时,可以基于驱动电机的可逆性,及时由驱动状态转换为发电状态。
合理利用制动能量回收,能够将制动过程中产生的能量进行利用,并传输回电池系统,达到良好的能量回收效果。
当前,国内外学者在这方面的研究已经逐步深入,并应用于设计方案中。
关键词:电动汽车;制动能量;回收;控制措施1能量回收技术原理随着电动汽车的发展和普及,电动汽车的保有量逐年上升。
与此同时,由于电动汽车续航里程不足、充电困难、电池衰减等问题导致市场上产生大量的客户抱怨。
相对于提升电池容量,缩短充电时间等一系列电池技术突破,高效的能量回收技术能在很大程度上提升电动汽车续航里程。
同时由于能量回收过程将产生一定的减速感,通过执行不同的扭矩策略,在回收部分电能的同时,可提升车辆的驾驶感受。
能量回收包含制动能量回收和滑行能量回收。
当驾驶员踩下刹车踏板进入制动状态,或者同时松开加速踏板和制动踏板进入滑行,整车控制器VCU(VehicleControlUnit)通过CAN总线向电机发送工作模式切换指令,并请求一定的负扭矩,电机执行VCU的扭矩请求,由驱动模式进入能量回收模式。
在能量回收过程中,电机内部将发生以下变化过程:电机转子的旋转速度超过给定频率下的同步转速,也即超过电机内部同步旋转磁场的转速,造成转子切割磁力线的方向相反,转子上感应电势以及感应电流的方向相反。
电机产生的电能通过逆变器的反向二极管回馈到电池中,从而实现动能到电能的转变回收。
在电动汽车上,只有驱动轮的制动能量可沿着与之相连接的驱动轴传送到能量存储系统,另一部分的制动能量将由车轮上的摩擦制动以热的形式散失于大气中。
2能量回收模型介绍车辆制动时,控制器通过对此时整车情况的分析处理,分配电机制动力及机械制动力的比例进而控制驱动电机产生相应的制动力。
混合动力电动汽车再生制动控制策略研究

混合动力电动汽车再生制动控制策略研究•绪论•混合动力电动汽车再生制动系统概述•再生制动控制策略设计•仿真分析与验证•实车试验与结果分析目•总结与展望•参考文献录01绪论1研究背景与意义23混合动力电动汽车在节能减排方面具有重要意义针对混合动力电动汽车再生制动系统的研究能提高车辆的能源利用效率为实现混合动力电动汽车的可持续发展提供技术支持和理论指导国内外研究现状及发展趋势国内外的相关研究主要集中在再生制动系统的建模和控制策略的设计发展趋势是向更加智能化的控制策略方向发展一些研究者提出了基于模糊逻辑和神经网络的再生制动控制策略一些研究者将滑模控制理论应用于再生制动控制策略中研究混合动力电动汽车再生制动系统的控制策略,包括再生制动的建模、控制策略的设计和仿真分析研究内容通过理论推导和仿真分析相结合的方式,设计出更加智能和高效的再生制动控制策略,并进行实验验证研究方法研究内容和方法02混合动力电动汽车再生制动系统概述混合动力汽车结构混合动力汽车主要包括内燃机、电动机、电池等组成。
其中,内燃机与电动机通过变速器和耦合器等连接,提供动力输出。
电池组提供电力给电动机,同时通过能量管理系统实现能源的回收与分配。
工作原理混合动力汽车在起步和低速行驶时,主要依靠电动机提供动力;当速度提升时,内燃机开始介入,同时电动机继续提供辅助动力。
在减速和制动过程中,内燃机停止工作,电动机转换为发电机,将动能转化为电能并存储于电池组中。
混合动力电动汽车结构及工作原理再生制动系统主要由电动机、发电机、控制器、电池组等组成。
再生制动系统组成在制动过程中,电动机转换为发电机,将车辆的动能转化为电能并存储于电池组中。
同时,控制器根据车辆制动需求和电池组的电量状态,调整发电机的发电量,保持车辆制动平顺和稳定。
工作原理再生制动系统组成及工作原理电动机/发电机作为再生制动系统的核心部件,电动机在制动过程中将车辆动能转化为电能,发电机在电动机转换为发电机的状态下,为电池组充电。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电动汽车再生制动能量优化控制策略的研究
随着全球对环保的关注度日益增加,电动汽车成为了未来汽车行业的发展趋势。
在电动汽车的使用过程中,制动能量的再生利用可以大大减少能源的浪费和污染排放。
本文将介绍一种电动汽车再生制动能量优化控制策略的研究,以实现更高效的能量再生利用。
1.现状分析
目前,电动汽车再生制动能量优化控制策略的研究主要分为两类。
一类是基于车速和驾驶人行为的根据车速和驾驶人行为判断能量的回收时间和能量的回收率;另一类是基于路况和驾驶人预测的根据路况和驾驶人预测的路段能量的回收时间和能量的回收率。
这两种方法的差别主要在于对车速和路况的依赖程度不同。
2.研究内容
针对现有方法的不足之处,本文提出了一种针对电动汽车再生制动能量优化控制的方法。
该方法主要包括两个方面:一是通过优化电机控制算法,提高电机平均效率,从而提高制动时的能量回收率;二是通过优化制动器、变速器和动力电池的控制策略,实现更稳定和可靠的制动效果,从而延长电动汽车的寿命。
3.研究方法
在本研究中,首先需要开展实验测试,对电机的效率进行测量,并对电池的储能能力及制动器的效果进行评估。
其次,建立模型,确定变速器、动力电池和制动器的控制算法,以实现自适应控制和优化控制。
最后,通过模拟实验,分析不同控制策略下的能量回收率及制动效果,并根据实验结果优化控制算法。
4.期望成果
本研究的期望成果是开发一种新型的电动汽车再生制动能量优化控制策略,实现制动过程中更高效的能量回收利用和更稳定可靠的制动效果。
此外,该方法的推广应用还能够大幅降低能源浪费和环境污染,为推动环保事业的发展做出积极贡献。
以上是电动汽车再生制动能量优化控制策略的研究方案,通过此项研究的推进,将有助于解决电动汽车制动能量回收与利用的问题,为电动汽车的推广应用提供更为可靠和高效的技术支撑。
电动汽车再生制动能量优化控制的相关数据主要包括:电机效率、电池储能能力、制动器效果、能量回收率等。
下面将对这些数据进行分析。
首先,电机效率是影响电动汽车制动能量回收利用的关键因素之一。
通过实验测试,测量电机的效率,可以得到电机在各种工作条件下的平均效率。
电机效率越高,制动时回收的能量就越多,从而提高整体的能量利用率。
因此,在电动汽车再生制动能量优化控制中,提高电机效率是非常重要的。
其次,电池储能能力和制动器效果也是影响电动汽车制动能量
回收利用的关键因素之一。
电池储能能力是指电池在制动时所能承受的电量,而制动器效果则是指制动器在制动过程中所产生的制动力以及制动效果的稳定性和可靠性。
在制动时,电池和制动器的效果决定着能否快速而稳定地回收能量,进而影响着制动效果和能量回收率。
最后,能量回收率是衡量电动汽车再生制动能量利用效果的一个重要指标。
能量回收率指制动时回收能量与制动时消耗的能量之比。
该比值越大,说明制动时能回收更多能量,实现了更高效的能量回收利用。
因此,在电动汽车再生制动能量优化控制中,提高能量回收率是一个重要的目标。
综上所述,电动汽车再生制动能量优化控制需要关注的关键数据包括电机效率、电池储能能力、制动器效果和能量回收率等。
通过对这些数据的分析,可以更好地优化控制算法,提高制动效果和能量回收利用效率,从而推动电动汽车技术的进一步发展和应用。
以“小鹏汽车”为例,分析其在电动汽车领域中的发展和探索。
在电动汽车领域,小鹏汽车是一家备受关注的公司。
其创始人和CEO何小鹏曾担任腾讯副总裁,对科技和创新有着深刻的
理解和把握。
小鹏汽车在创建之初就秉承“技术为先、用户为本”的理念,不断探索和尝试先进的技术和服务模式,如在生
产制造中采用智能化生产工艺,通过百度地图实现车辆远程控制,提供个性化定制等。
小鹏汽车在产品设计和研发方面所取得的成果也令人瞩目,其
推出的小鹏G3车型在2018年“世界智能驾驶挑战赛”中夺得
冠军,并获得了全球第一张批量生产的自动驾驶公路道路测试许可。
此外,小鹏汽车还针对电池续航问题开展了一系列研究和探索,设计并制造了新一代的三元锂离子电池,获得了更高的能量密度和更长的寿命,提高了电池续航能力和利用效率。
小鹏汽车在服务模式上也进行了尝试和创新,通过线上线下相结合的方式,提供以用户为中心的多项服务。
例如,线上用户可以通过小鹏汽车APP预约试驾、下单购车、在线支付等,
而线下则设立了品牌展厅、体验中心以及维修服务点,提供用车全生命周期的优质服务。
总的来说,小鹏汽车在电动汽车领域中的发展和探索充分展现了其创新和技术实力,不断推动电动汽车产业向着更加智能化和便利化的方向发展。
小鹏汽车在不断探索和前行的道路上还需要克服多方面的挑战,如市场竞争、用户需求、政策环境等。
因此,小鹏汽车需要不断创新和完善,提供更优质的产品和服务,进一步提高品牌的竞争力和市场份额,为电动汽车的未来发展作出更大的贡献。