三动量守恒定律量守恒定律

合集下载

经典力学三大守恒定律和条件

经典力学三大守恒定律和条件

经典力学三大守恒定律和条件经典力学是物理学的一个重要分支,研究物体运动的规律和力的作用。

在经典力学中,有三大守恒定律,它们是动量守恒定律、角动量守恒定律和能量守恒定律。

下面将分别介绍这三大守恒定律及其条件。

一、动量守恒定律动量守恒定律是经典力学中最基本的守恒定律之一,它描述了物体在没有外力作用下的动量不变性。

动量是物体的质量乘以其速度,用p表示。

动量守恒定律可以用以下公式表示:Δp = 0其中,Δp表示物体动量的变化量,当Δp等于0时,即物体动量保持不变,满足动量守恒定律。

动量守恒定律的条件:1. 在一个封闭系统内,没有外力作用于系统;2. 系统内的物体之间没有相互作用力。

二、角动量守恒定律角动量守恒定律描述了物体在没有外力矩作用下的角动量不变性。

角动量是物体的质量乘以其速度和与其速度垂直的距离的乘积,用L表示。

角动量守恒定律可以用以下公式表示:ΔL = 0其中,ΔL表示物体角动量的变化量,当ΔL等于0时,即物体角动量保持不变,满足角动量守恒定律。

角动量守恒定律的条件:1. 在一个封闭系统内,没有外力矩作用于系统;2. 系统内的物体之间没有相互作用力矩。

三、能量守恒定律能量守恒定律是经典力学中最重要的守恒定律之一,它描述了物体在运动过程中能量的转化和守恒。

能量可以分为动能和势能两种形式,动能是物体由于运动而具有的能量,势能是物体处于一定位置而具有的能量。

能量守恒定律可以用以下公式表示:ΔE = 0其中,ΔE表示物体能量的变化量,当ΔE等于0时,即物体能量保持不变,满足能量守恒定律。

能量守恒定律的条件:1. 在一个封闭系统内,没有外力做功;2. 系统内的物体之间没有能量的传递。

除了上述三大守恒定律外,还有一些相关的守恒定律,如动能守恒定律、角动量守恒定律和机械能守恒定律等。

它们都是基于经典力学的基本原理推导出来的。

动能守恒定律是能量守恒定律的一个特例,它描述了物体在运动过程中动能的转化和守恒。

动能守恒定律可以用以下公式表示:ΔK = 0其中,ΔK表示物体动能的变化量,当ΔK等于0时,即物体动能保持不变,满足动能守恒定律。

新教材人教版高中物理选择性必修第一册 1-3动量守恒定律 教学课件

新教材人教版高中物理选择性必修第一册 1-3动量守恒定律 教学课件

第十六页,共二十二页。
5.(单选)如图所示,弹簧的一端固定在竖直墙上,质量为M的光滑弧形槽静止在光滑水平面上,底部与水平面相切,一个
新课讲解 一、相互作用的两个物体的动量改变
1.试用牛顿运动定律推导两物体碰撞前后的总动量的关系
m2
m1
m2 m1
m2
F2
F1
A
B
A
a2
v2 v2 Δt
a2
F2 m2
F1
F2
a1
F1 m1
m1a1 m2a2
m1 B
a1
v1 v1 Δt
m1v1 + m2v2 m1v1 + m2v2
第四页,共二十二页。
Δp 0
第六页,共二十二页。
二、对动量守恒定律的理解?
3、条件: (1)系统不受外力;(理想条件)
(2)系统受到外力,但外力的合力为零;(实际条件)
(3)系统所受外力合力不为零,但系统内力远大于外力,外力相对来说可以忽略 不计,因而系统动量近似守恒;(近似条件)
(4)系统总的来看虽不符合以上三条中的任何一条,但在某一方向上符合以上三条
光滑
观看视频,你有何感想?
第五页,共二十二页。
二、对动量守恒定律的理解?
1、内容: 如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
这就是动量守恒定律。
2、公式: m1v1 + m2v2 m1v1 + m2v2 Δp1 Δp2
m1Δv1 m2Δv2 p p
p p
第十三页,共二十二页。
2.(单选)木块a和b用一根轻弹簧连接起来,放在光滑水平面上,a紧靠在墙壁
上,在b上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法

大学物理动量守恒定律和能量守恒定律

大学物理动量守恒定律和能量守恒定律

04
动量守恒定律和能量守恒定 律的意义与影响
在物理学中的地位
基础定律
动量守恒定律和能量守恒定律是物理学中的两个基础定律,它们 在理论物理学和实验物理学中都占据着重要的地位。
理论基石
这两个定律为物理学理论体系提供了基石,许多物理理论和公式都 是基于这两个定律推导出来的。
验证实验
许多实验通过验证动量守恒定律和能量守恒定律的正确性,来检验 实验的准确性和可靠性。
适用条件
系统不受外力或外力合力为零
动量守恒定律只有在系统不受外力或外力合力为零的情况下才成立。如果系统受到外力作 用,则总动量将发生变化。
系统内力的作用相互抵消
系统内力的作用只会改变系统内各物体的速度,而不会改变系统的总动量。如果系统内力 的作用相互抵消,则总动量保持不变。
理想气体和刚体的动量守恒
未来能源利用的发展需要解决环 境问题和能源短缺问题,动量守 恒定律和能量守恒定律将在新能 源技术、节能技术等领域发挥关
键作用。
感谢您的观看
THANKS
在理想气体和刚体的研究中,由于气体分子之间的相互作用力和刚体之间的碰撞力都可以 忽略不计,因此它们的动量守恒。
实例分析
弹性碰撞
当两个小球发生弹性碰撞时,根据动量守恒定律,它们碰撞后 的速度满足m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'。由于弹性碰撞中能 量没有损失,因此碰撞前后两小球的速度变化量相等。
动量与能量的关系
动量是质量与速度的乘积,表 示物体的运动状态;能量是物 体运动状态的度量,包括动能
和势能。
动量和能量都是矢量,具有 方向性,遵循矢量合成法则。
动量和能量可以相互转化,但 总量保持不变,这是动量守恒 和能量守恒定律的内在联系。

质点动力学的三个基本定律

质点动力学的三个基本定律

质点动力学的三个基本定律
质点动力学的三个基本定律分别是:牛顿运动定律,动量定理和动量守恒定律,角动量定理和角动量守恒定律。

牛顿运动定律第一定律(惯性定律):任何质点如不受力的作用,则将保持原来静止或匀速直线运动状态。

第二定律:质点的质量与加速度的乘积等于作用于质点的力的大小,加速度的方向与力的方向相同。

第三定律:对应每个作用力必有一个与其大小相等、方向相反且在同一直线上的反作用力。

物体在一个过程始末的动量变化量等于它在这个过程中所受力的冲量(用字母I表示),即力与力作用时间的乘积,数学表达式为:
I=FΔt=Δp=mΔv=mv2-mv1
式中F指物体所受的合外力,mv1与mv2为发生Δt的初末态动量。

该式为矢量式,列式前一定要规定正方向!
动量守恒定律是现代物理学中三大基本守恒定律之一,若一个系统不受外力或所受合外力为零时,该系统的总动量保持不变。

角动量守恒定律是物理学的普遍定律之一,反映质点和质点系围绕一点或一轴运动的普遍规律;反映不受外力作用或所受诸外力对某定点(或定轴)的合力矩始终等于零的质
点和质点系围绕该点(或轴)运动的普遍规律。

角动量守恒定律是对于质点,角动量定理可表述为质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。

物理三大守恒定律公式

物理三大守恒定律公式

物理三大守恒定律公式物理学是一门研究自然界中各种现象的科学,它是自然科学中最基础、最根本的一门学科。

在物理学中,有三个重要的守恒定律,它们分别是能量守恒定律、动量守恒定律和角动量守恒定律。

这三个守恒定律是物理学研究中的基础,也是我们理解自然界中各种现象的重要工具。

下面,我们将详细介绍这三大守恒定律公式。

一、能量守恒定律公式能量守恒定律是物理学中最基本的守恒定律之一,它表明在一个封闭系统中,能量总量保持不变。

这个定律可以用一个简单的公式来表示:E1 + Q = E2其中,E1是系统的初始能量,E2是系统的最终能量,Q是系统吸收或放出的热量。

这个公式的意义在于,系统中的能量总量不会因为内部的能量转化或热量的吸收或放出而改变。

这个定律可以应用于各种物理现象的研究,如机械能守恒、热力学过程、电磁能守恒等。

二、动量守恒定律公式动量守恒定律是物理学中另一个重要的守恒定律,它表明在一个封闭系统中,物体的总动量保持不变。

这个定律可以用一个简单的公式来表示:m1v1 + m2v2 = m1v1' + m2v2'其中,m1和m2分别是两个物体的质量,v1和v2是它们的初始速度,v1'和v2'是它们的最终速度。

这个公式的意义在于,系统中的物体总动量不会因为内部的碰撞或运动而改变。

这个定律可以应用于各种物理现象的研究,如弹性碰撞、非弹性碰撞、质点运动等。

三、角动量守恒定律公式角动量守恒定律是物理学中最后一个重要的守恒定律,它表明在一个封闭系统中,物体的总角动量保持不变。

这个定律可以用一个简单的公式来表示:L1 + L2 = L1' + L2'其中,L1和L2分别是两个物体的角动量,L1'和L2'是它们的最终角动量。

这个公式的意义在于,系统中的物体总角动量不会因为内部的转动或运动而改变。

这个定律可以应用于各种物理现象的研究,如刚体转动、自转、公转等。

总结物理学中的三大守恒定律——能量守恒定律、动量守恒定律和角动量守恒定律,是我们理解自然界中各种现象的重要工具。

三大守恒定律与不变性的关系

三大守恒定律与不变性的关系

三大守恒定律与不变性的关系班级机械1202 姓名:皮立泽物理学中存在着许多理论上的“不变性”,存在着诸多的守恒定律。

对称性是自然界最普遍、最重要的特性。

近代科学表明,自然界的所有重要的规律均与某种不变性有关,甚至所有自然界中的相互作用,都具有某种特殊的不变性。

下面将讨论动量守恒、角动量守恒和能量守恒与不变性的关系。

1.空间平移不变性与动量守恒动量守恒定律:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。

一个物理系统沿空间某方向平移一个任意大小的距离后,他的物理规律完全相同,这个事实叫做空间平移的对称性或空间平移不变性,也叫做空间的均匀性。

动量守恒则是表现在空间平移的基础上进行研究的,可以说,动量守恒正反映空间对称性。

2.空间旋转不变性与角动量守恒角动量守恒定律是自然界普遍存在的基本定律之一,角动量的守恒实质上对应着空间旋转不变性。

例如,当考虑到太阳系中的行星受到太阳的万有引力这一有心力时,由于万有引力对太阳这个参考点力矩为零,所以他们以太阳为参考点的角动量守恒,这也说明了行星绕太阳公转单位时间内与太阳连线扫过的面积大小总是恒定值的原因。

3.时间平移不变性与能量守恒能量守恒是对应时间上的守恒,只要在某个时间段内没有对物体做功、加热等,那么在这段时间始末时刻,能量是守恒的。

在讨论力在空间上的积累的时候,实际上你做的是力的方向乘以空间的方向,所以积累出的是一个随时间增大的面积,面积这个东西同样也是不具有方向性的,表达面积只需要大小就行了,而这个面积的大小变化具有时间平移不变性。

从上面的讨论我们可以看到,三个守恒定律都是由于体系的时空不变性引起的,这说明物质运动与时间空间的不变性有着密切的联系,并且这三个守恒定律的确立为后来认识普遍运动规律提供了线索和启示,曾加了我们对不变性和守恒定律的认识。

第十六章 3 动量守恒定律(二)


A.若mA>mB,则小车向右运动
B.若mA>mB,则小车静止 图 16-3-2
C.若mA>mB,且α>β,则小车运动方向无法确定 D.若mA<mB,且α=β,则小车一定向左运动
【解析】小车的最终运动情况与 A、B 在水平方向的分动
量有关, 如果无法确定 pA水平与pB水平的大小关系.就无法
确定小车的运动情况,故选 C、D. 【答案】CD
3
动量守恒定律(二)
动量守恒定律与牛顿定律
分析两个小球在光滑水平桌面上的碰撞,如图 16-3-1 所
示. 第二个小球追碰第一个小球,碰后的速度 v1′、v2′,碰撞 过程中相互作用力为 F1 与 F2.
图 16-3-1
(1)动量守恒定律认为:两个小球组成的系统所受的合外力 为零.这个系统的总动量保持不变.
【答案】(1)5.2 m/s
(2)172.8 J
2.(单选)如图 16-3-4 所示,三辆完全相同的平板小车 a、 b、c 成一直线排列,静止在光滑水平面上.c 车上有一小孩跳 到 b 车上,接着又立即从 b 车跳到 a 车上.小孩跳离 c 车和 b 车时对地的水平速度相同.他跳到 a 车上相对 a 车保持静止, 此后(
乙迅速把它抓住,若不计冰面的摩擦力,求:
(1)甲至少要以多大的速度(相对地面)将箱子推出,才能避
免与乙相撞?
(2)甲推出箱子时对箱子做了多少功?
【解析】(1)设三个物体的共同速度为 v,根据系统动量守 恒,有:(M+m)v0-Mv0=(M+m+M)v, 15×2.0 mv0 v= = m/s=0.40 m/s. 2M+m 2×30+15 设箱子被推出的速度为 v′,根据箱子、乙二者动量守恒有: mv′-Mv0=(M+m)v, M+mv+Mv0 15+30×0.40+30×2.0 v′= = m/s=5.2 m/s. m 15 (2)根据动能定理,甲对箱子所做的功为: 1 1 22 1 2 W=2mv′ -2mv0 =2×15×(5.22-2.02) J=172.8 J.

动力学三大守恒定律

动力学三大守恒定律【知识专栏】动力学三大守恒定律1. 引言及概述动力学三大守恒定律是物理学中非常重要的概念,它们为我们理解和描述物体运动提供了基础规律。

这三大守恒定律分别是动量守恒定律、角动量守恒定律和能量守恒定律。

本文将以从简到繁、由浅入深的方式来逐步探讨这三大守恒定律的背后原理和应用,以帮助读者更全面地理解这一主题。

2. 动量守恒定律2.1 动量的基本概念为了更好地理解动量守恒定律,首先需要了解动量的基本概念。

动量是物体运动的数量度,表示物体在运动过程中所具有的惯性。

动量的大小与物体的质量和速度相关,可以用数学公式 p = m * v 表示,其中 p 为动量,m 为物体的质量,v 为物体的速度。

2.2 动量守恒定律的表述根据动量守恒定律,一个封闭系统中物体的总动量在没有外力作用的情况下保持不变。

也就是说,如果一个物体的动量发生改变,那么系统中其他物体的动量总和将相应地发生改变,以保持系统的总动量守恒。

2.3 动量守恒定律的应用动量守恒定律在多个领域中都有应用,例如力学、流体力学和电磁学等。

在碰撞问题中,我们可以利用动量守恒定律来分析碰撞前后物体的速度和质量变化。

在交通事故中,通过应用动量守恒定律,我们可以了解事故发生时车辆的速度和冲击力对乘客的影响,并提出相应的安全建议。

3. 角动量守恒定律3.1 角动量的基本概念角动量是物体绕某一轴旋转时所具有的运动状态,它是描述物体旋转惯性的量度。

角动量的大小与物体的惯性和旋转速度相关,可以用数学公式L = I * ω 表示,其中 L 为角动量,I 为物体的转动惯量,ω 为物体的角速度。

3.2 角动量守恒定律的表述根据角动量守恒定律,一个封闭系统中物体的总角动量在没有外力矩作用的情况下保持不变。

即使系统中发生了旋转速度的改变,但系统的总角动量仍然保持恒定。

3.3 角动量守恒定律的应用角动量守恒定律在天体物理学、自然界中的旋转现象等领域中具有广泛的应用。

它被用来解释行星和卫星的自转、陀螺的稳定性以及漩涡旋转等自然现象。

三大守恒定律

4-2 力矩 转动定律 转动惯量(一) 4-3 角动量 角动量守恒定律(一)
七. 内力的力矩和冲量矩
质点系 定理:一对内力的力矩之 和和冲量矩之和均为零 (证明略)!
F1
F21 F12
m1
F2
m2
4-2 力矩 转动定律 转动惯量(一) 4-3 角动量 角动量守恒定律(一)
八 . 质点系的角动量定理
一. 动量守恒定律
定律:当合外力为零时,质点系的动量守恒。 说明:有时合外力不为零,但在某一方向上的 投影为零,则质点系的动量在该方向上的投影 守恒(证明略)。
3-2 动量守恒定律
3-3 系统内质量移动问题
课外阅读!
3-3 系统内质量移动问题
4-2 力矩 转动定律 转动惯量(一)
4-3 角动量 角动量守恒定律(一)
O
x
3-1 质点和质点系的动量定理
思考:在中学做本题时常选 t 时 间(或单位时间)内打到墙面上的 水为研究对象,试问这种做法在什 么情况下将不可用?
v
答:当水速为变量时(显然此时冲 击力为变力)。因为中学做法所选 过程为有限过程,必须用动量定理 的积分形式:
O
x
I 外 t Ndt p
第三章 三大守恒定律
dv d (mv ) 推导: F ma m dt dt Fdt d (mv ) 定义 1 :冲量(元冲量): dI Fdt 定义 2 :动量: p mv 则有动量定理: dI dp (微分形式)
t2
4-2 力矩 转动定律 转动惯量(一) 4-3 角动量 角动量守恒定律(一)
六. 应用直角坐标系中的投影式时应注意的两个 问题(以力矩为例)
1. 定理:力矩 M 在

课件4:1.3 动量守恒定律


4.如图所示,木板A质量mA=1kg,足够长的木板B质量mB=4kg,质量为mC=1kg的 木块C置于木板B上,水平面光滑,B、C之间有摩擦,开始时B、C均静止,现使A 以v0=12m/s的初速度向右运动,与B碰撞后以4m/s速度弹回。求: (1)B运动过程中的最大速度大小。 (2)C运动过程中的最大速度大小。 解:(1)A与B碰后瞬间,C的运动状态未变,B速度最大。由A、B系统动量守恒(取 向右为正方向)有:mAv0+0=-mAvA+mBvB,代入数据得:vB=4m/s。 (2)B与C相互作用使B减速、C加速,由于B板足够长,所以B和C能达到相同速度, 二者共速后,C速度最大,由B、C系统动量守恒,有mBvB+0=(mB+mC)vC 代入数据得:vC=3.2m/s
与木箱的初速度v0方向相同。
例3 在光滑水平面上有一质量M=4 kg的滑块,滑块的一侧为一光滑的14圆弧, 水平面恰好与圆弧相切,圆弧半径R=1 m。一质量m=1 kg的小球以速度v0向 右运动冲上滑块,g取10 m/s2。若小球刚好没有冲出14圆弧的上端,求: (1)小球的初速度v0的大小; (2)滑块获得的最大速度。
三、动量守恒定律
1.内容:如果一个系统不受外力或者所受外力的矢量和为零,这个系统 的总动量保持不变。
2.表达式:p1+p2=p1′+p2′或m1v1+m2v2=m1v1′+m2v2′ 3.适用条件: ①理想守恒:系统不受外力或所受外力的矢量和为0。 ②近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。 (炸弹在空中爆炸) ③某一方向守恒:如果系统在某一方向上所受外力的合力为0,则系统在 该方向上动量守恒。
例2 一人站在静止于冰面的小车上,人与车的总质量M=70 kg,当它接到一个质量 m=20 kg、以速度v0=5 m/s 迎面滑来的木箱后,立即以相对于 自己v′=5 m/s的速度逆着木箱原来滑行的方向推出,不计冰面 阻力。则小车获得的速度是多大?方向如何? 解:设推出木箱后小车的速度为v,此时木箱相对地面的速度为(v′-v), 由动量守恒定律得mv0=Mv-m(v′-v)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三动量守恒定律量守恒定律————————————————————————————————作者:————————————————————————————————日期:第三章 动量守恒定律和能量守恒定律1.质量为m 的小球自高为y 0处沿水平方向以速率v 0抛出,与地面碰撞后跳起的最大高度为21y 0,水平速率为21v 0,则碰撞过程中 (1) 地面对小球的竖直冲量的大小为________________________;(2) 地面对小球的水平冲量的大小为________________________.2.一物体质量M =2 kg ,在合外力i t F)23( (SI )的作用下,从静止开始运动,式中i 为方向一定的单位矢量, 则当t=1 s 时物体的速度1v=__________.3. 图示一圆锥摆,质量为m 的小球在水平面内以角速度 匀速转动.在小球转动一周的过程中, (1) 小球动量增量的大小等于__________________.(2) 小球所受重力的冲量的大小等于________________.(3) 小球所受绳子拉力的冲量大小等于_______________.4. 两球质量分别为m 1=2.0 g ,m 2=5.0 g ,在光滑的水平桌面上运动.用直角坐标OXY 描述其运动,两者速度分别为i 101 v cm/s ,)0.50.3(2j iv cm/s .若碰撞后两球合为一体,则碰撞后两球速度v 的大小v =_________,v与x 轴的夹角 =__________.5. 一物体质量为10 kg ,受到方向不变的力F =30+40t (SI)作用,在开始的两秒内,此力冲量的大小等于________________;若物体的初速度大小为10 m/s ,方向与力F的方向相同,则在2s 末物体速度的大小等于___________________.6. 一吊车底板上放一质量为10 kg 的物体,若吊车底板加速上升,加速度大小为a =3+5t (SI),则2秒内吊车底板给物体的冲量大小I =___________;2秒内物体动量的增量大小P =__________________.7. 粒子B 的质量是粒子A 的质量的4倍,开始时粒子A 的速度j i43 0A v ,粒子B 的速度j i72 0B v ;在无外力作用的情况下两者发生碰撞,碰后粒子A的速度变为j i 47 A v ,则此时粒子B 的速度B v=______________.xyOmy 0021v 021y 0v8. 质量为M 的车以速度v 0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u 竖直上抛,则此时车的速度v =______.9. 静水中停泊着两只质量皆为M 的小船.第一只船在左边,其上站一质量为m 的人,该人以水平向右速度v 从第一只船上跳到其右边的第二只船上,然后又以同样的速率v水平向左地跳回到第一只船上.此后(1) 第一只船运动的速度为v1=__________________________.(2) 第二只船运动的速度为v2=__________________________. (水的阻力不计,所有速度都相对地面而言)10. 质量为0.05 kg 的小块物体,置于一光滑水平桌面上.有一绳一端连接此物,另一端穿过桌面中心的小孔(如图所示).该物体原以3 rad/s 的角速度在距孔0.2 m 的圆周上转动.今将绳从小孔缓慢往下拉,使该物体之转动半径减为0.1 m .则物体的角速度=_____________________.11. 一质量为m 的质点沿着一条曲线运动,其位置矢量在空间直角座标系中的表达式为j t b i t a rsin cos ,其中a 、b 、 皆为常量,则此质点对原点的角动量L =________________;此质点所受对原点的力矩M = ____________.12. 两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =_______;它们各自收拢绳索,到绳长为5 m 时,各自的速率v=_______.13. 质量为m 的质点以速度v沿一直线运动,则它对该直线上任一点的角动量为__________.14.图中,沿着半径为R 圆周运动的质点,所受的几个力中有一个是恒力0F ,方向始终沿x 轴正向,即i F F 00 .当质点从A 点沿逆时针方向走过3 /4圆周到达B 点时,力 0F所作的功为W =__________.15. 某质点在力F =(4+5x )i(SI)的作用下沿x 轴作直线运动,在从x =0移动到x =10 m 的过程中,力F所做的功为__________.16. 二质点的质量各为m 1,m 2.当它们之间的距离由a 缩短到b 时,它们之间万有引力所做的功为____________.ROBxA17. 如图所示,质量为m 的小球系在劲度系数为k 的轻弹簧一端,弹簧的另一端固定在O 点.开始时弹簧在水平位置A ,处于自然状态,原长为l 0.小球由位置A 释放,下落到O 点正下方位置B 时,弹簧的长度为l ,则小球到达B 点时的速度大小为v B =________________________. 18.质量m =1 kg 的物体,在坐标原点处从静止出发在水平面内沿x 轴运动,其所受合力方向与运动方向相同,合力大小为F =3+2x (SI),那么,物体在开始运动的3 m 内,合力所作的功W =________________;且x =3 m 时,其速率v =________________________.19. 劲度系数为k 的弹簧,上端固定,下端悬挂重物.当弹簧伸长x 0,重物在O 处达到平衡,现取重物在O 处时各种势能均为零,则当弹簧长度为原长时,系统的重力势能为____________;系统的弹性势能为________;系统的总 势能为____________. (答案用k 和x 0表示)20. 一长为l ,质量均匀的链条,放在光滑的水平桌面上,若使其长度的21悬于桌边下,然后由静止释放,任其滑动,则它全部离开桌面时的速率为_______.21. 一弹簧原长l 0=0.1 m ,劲度系数k =50 N /m ,其一端固定在半径为R =0.1 m 的半圆环的端点A ,另一端与一套在半圆环上的小环相连.在把小环由半圆环中点B 移到另一端C 的过程中,弹簧的拉力对小环所作的功为_____________ J .22. 一质量为M 的质点沿x 轴正向运动,假设该质点通过坐标为x 的位置时速度的大小为kx (k 为正值常量),则此时作用于该质点上的力F =__________,该质点从x = x 0点出发运动到x = x 1处所经历的时间 t =________.23. 一个质量为m 的质点,沿x 轴作直线运动,受到的作用力为i t F Fcos 0 (SI)t = 0时刻,质点的位置坐标为0x ,初速度00 v.则质点的位置坐标和时间的关系式是x=______________________________________24. 一个力F 作用在质量为 1.0 kg 的质点上,使之沿x 轴运动.已知在此力作用下质点的运动学方程为3243t t t x (SI).在0到4 s 的时间间隔内,(1) 力F 的冲量大小I =__________________.(2) 力F 对质点所作的功W =________________.25. 质量为m 的物体,初速极小,在外力作用下从原点起沿x 轴正向运动.所受外力方向沿x 轴正向,大小为F kx .物体从原点运动到坐标为x 0的点的过程l kBA mml 0Ok x 0OBA R OC中所受外力冲量的大小为__________________.26. 如图,两个用轻弹簧连着的滑块A 和B ,滑块A 的质量为m 21,B 的质量为m ,弹簧的劲度系数为k ,A 、B 静止在光滑的水平面上(弹簧为原长).若滑块A 被水平方向射来的质量为m 21、速度为v 的子弹射中,则在射中后,滑块A 及嵌在其中的子弹共同运动的速度v A =________________,此时刻滑块B 的速度v B =__________,在以后的运动过程中,滑块B 的最大速度v max =__________.答案1. 0)21(gy m 3分0v m 212分2. 2 m/s 3分3. 0 1分2 mg / 2分 2 mg / 2分4. 6.14 cm/s 2分35.5° 2分 5. 6.14 cm/s 2分35.5° 2分6. 140 N·s 2分24 m/s 2分参考解: 212s N 140d )4030(d t t t t t F I1212;v v v v m I m I m m m /s 24/)(12 m m I v v7. j i5 3分 8. v0 3分9. vMm m22分 v)/2(M m 2分10. 12 rad/s 3分11. m ab 3分0 2分12. 2275 kgm 2·s 1 2分kABm21v13 m·s 1 2分 13. 零 3分 14. -F 0R 3分15. 290 J 3分 16. )11(21ba m Gm 3分 17.ml l k gl 20)(23分 18. 18 J 2分 m/s 6 2分19. 20kx 2分2021kx 2分2021kx1分20..gl 3213分21. -0.207 3分 22. x Mk 2 1分1ln 1x x k 2分 23.02)cos 1(x t m F (SI) 3分 24. 16 N ·s 2分 176 J 2分 25. 20mkx 3分26.v 212分 0 1分 v 212分。

相关文档
最新文档