石灰石、白云石化学分析方法 二氧化硅量的测定(标准状态:被代替)

石灰石、白云石化学分析方法 二氧化硅量的测定(标准状态:被代替)
石灰石、白云石化学分析方法 二氧化硅量的测定(标准状态:被代替)

论陶瓷中材料二氧化硅不同含量的测定方法

论陶瓷中材料二氧化硅不同含量的测定方法 论文关键词:陶瓷原料,二氧化硅,测定 论文摘要:本文介绍了陶瓷原料中SiO2含量的多种检测方法,针对不同含量的SiO2都做了一定的介绍,并且对其中常用的几种方法作了较详细的介绍,比较了各种方法的优缺点,并指出了我们在检测的过程中应注意的事项。 1引言 陶瓷是陶器和瓷器的总称。SiO2是陶瓷的主要化学成分,是硅酸盐形成的骨架,它的存在可以提高陶瓷材料的热稳定性、化学稳定性、硬度、机械强度等,从而直接影响陶瓷产品的生产工艺和使用性能,同时SiO2也是各种釉料配方的重要参数。因此,准确测定陶瓷原料中SiO2的含量,对陶瓷和釉料生产非常重要,它关系到原材料的用量、产品的质量和性能等。 中国人早在约公元前8000-2000年(新石器时代)就发明了陶器。陶瓷材料大多是氧化物、氮化物、硼化物和碳化物等。常见的陶瓷材料有粘土、氧化铝、高岭土等。陶瓷材料一般硬度较高,但可塑性较差。除了在食器、装饰的使用上,在科学、技术的发展中亦扮演重要角色。陶瓷原料是地球原有的大量资源黏土经过淬取而成。而粘土的性质具韧性,常温遇水可塑,微干可雕,全干可磨;烧至700度可成陶器能装水;烧至1230度则瓷化,可完全不吸水且耐高温耐腐蚀。其用法之弹性,在今日文化科技中尚有各种创意的应用。 不同的陶瓷原料,其SiO2的含量不同,测量方法也有多种。我们可根据陶瓷中SiO2的含量而选择合适的方法对其进行测定,本文对陶瓷原料中SiO2的常见检测方法逐一作了介绍。 2氢氟酸挥发法 2.○1硫酸-氢氟酸法(SiO2含量在98%以上) 具体方法如下:

将测定灼烧减量后的试料加数滴水湿润,然后加硫酸(1+1)0.5ml,氢氟酸(密度1.14g/cm3)10ml,盖上坩埚盖,并稍留有空隙,在不沸腾的情况下加热约15min,打开坩埚盖并用少量水洗二遍(洗液并入坩埚内),在普通电热器上小心蒸发至近干,取下坩埚,稍冷后用水冲洗坩埚壁,再加氢氟酸(密度 1.14g/cm3)3ml并蒸发至干,驱尽三氧化硫后放入高温炉内,逐渐升高至950~1000℃,灼烧1h后,取出置于干燥器中冷至室温后称量,如此反复操作直至恒重。二氧化硅含量的计算公式如下: SiO2(%)=(m1-m2)/m ×100 式中: m1 ——灼烧后坩埚与试料的质量,g m2 ——氢氟酸处理后坩埚的质量,g m ——试料的质量,g 2.○2硝酸-氢氟酸法(SiO2含量大于95%而小于或等于98%时) 具体方法如下: (1)将试料置于铂坩埚中,加盖并稍留缝隙,放入 1000~1100℃高温炉中,灼烧1h。取出,稍冷,放入干燥器中冷至室温,称量。重复灼烧,称量,直至恒重。 (2)将坩埚置于通风橱内,沿坩埚壁缓慢加入3ml硝酸、7ml氢氟酸,加盖并稍留缝隙,置于低温电炉上,在不沸腾的情况下,加热约30min(此时试液应清澈)。用少量水洗净坩埚盖,去盖,继续加热蒸干。取下冷却,再加5ml 硝酸、10ml氢氟酸并重新蒸发至干。 (3)沿坩埚壁缓缓加入5ml硝酸蒸发至干,同样再用硝酸处理两次,然后升温至冒尽黄烟。 (4)将坩埚置于高温炉内,初以低温,然后升温至1000~1100℃灼烧30min,取出,稍冷,放入干燥器中冷至室温,称量。重复灼烧,称量,直至恒重。二氧化硅含量的计算公式如下: SiO2(%)=[(m1-m2)+(m3-m4)]/m×100 式中: m1——试料与坩埚灼烧后的质量,g m2——氢氟酸处理并灼烧后残渣与铂坩埚的质量,g m3——试剂空白与铂坩埚的质量,g m4——测定试剂空白所用铂坩埚的质量,g m ——试料的质量,g 3重量-钼蓝光度法(所测定的范围是SiO2含量小于95%。) 具体方法如下:

石灰石化学分析方法

石灰石化学分析方法 分析化验联系电话0519886339130找李主任1. 烧失量的测定称取1.0000克试样,至于瓷坩埚中,放在马弗炉内,从低温逐渐升高温度,在900~1000℃下灼烧1h。2. 二氧化硅的测定称取约0.6g试样,精确至0.0001g ,置于铂坩埚中,将盖斜置于坩埚上,并留有一定缝隙,在900~1000℃下灼烧5min,取出坩埚冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g无水碳酸钠混匀,再将坩埚置于950~1000℃下灼烧10min ,取下冷却至室温。将烧结块移入瓷蒸发皿中,加少量水润湿,盖上表面皿,从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解安全,用热盐酸(1+1)清洗坩埚数次,洗液合并于蒸发皿中,将蒸发皿置于沸水浴上,皿上放一玻璃三角架,再盖上表面皿,蒸发至糊状后,加入1g氯化氨,充分搅匀,在沸水浴上蒸发至干后继续蒸发10~15min 。取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶性盐溶解。用中速滤纸过滤,用胶头檫棒以热水檫洗玻璃棒及蒸发皿,用热水洗涤10~12次。滤液及洗液保存于250mL容量瓶中。将沉淀连同滤纸一并移入原铂坩埚中,干燥、灰化后,放入已升温至950~1000℃的马弗炉内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。向坩埚内加数滴水润

湿沉淀,加3滴硫酸(1+4)和5mL氢氟酸,放入通风橱缓慢加热,蒸发至干,升高温度继续加热至三氧化硫白烟完全散尽。将坩埚放入已升温至950~1000℃内灼烧30min,取出坩埚至于干燥器中,冷却至室温,恒量。经氢氟酸处理后得到的残渣中加入1g焦硫酸钾,在500~600℃下熔融至透明,熔块用热水和数滴盐酸(1+1)溶解,溶液并入分离二氧化硅后得到的滤液和洗液中,用水稀释至标线,摇匀。 3. 氧化钙的测定吸取25mL于400mL烧杯中,加水稀释约200mL,加5mL三乙醇胺(1+2)及适量的CMP(1.000g钙黄绿素、1.000g甲基百里香酚蓝、0.200g酚酞、50g已在105℃烘干过的硝酸钾)混合指示剂,在搅拌下加入氢氧化钾(200g/L)至出现绿色荧光后再过量5~8mL ,以EDTA(0.015mol/L)滴定至绿色荧光消失并出现红色。 4. 氧化镁的测定吸取25mL于400mL烧杯中,加水稀释约200mL,依次加入1mL 酒石酸钾钠(100 g/L)和5mL三乙醇胺(1+2),搅拌,然后加入25mL、pH10缓冲溶液(67.5g氯化氨、570mL氨水)及适量的酸性铬蓝K—萘酚绿B混合指示剂(1.000g酸性铬蓝K、0.200g萘酚绿B、50g硝酸钾),以EDTA(0.015mol/L)滴定,近终点时应缓慢滴定至纯蓝色。5. 浆液pH值的测量电极每天使用前用缓冲溶液进行检查和校核pH值测量必须在现场流动的浆液中进行,并同时观测温度,通过pH计所显示的数字,对浆液在线pH计的读数进行对比。测量完毕

二氧化硅的处理方法研究2

二氧化硅处理方法的研究 第一章前言 1、选题的目的、意义 由于二氧化硅内部的聚硅氧和外表面存在的活硅醇基及其吸附水,使其呈亲水性,在有机相中难湿润和分散,与有机基体之间结合力差,易造成界缺陷,使复合材料性能降低[1-3],而二氧化硅可用于橡胶制品、塑料制品、粘合剂、涂料等领域,要想改善这种缺陷,我们需要通过对二氧化硅进一步处理,使原来亲水疏油的表面变成亲油疏水的表面,这种表面功能的改变在实际应用中有重要价值。据此我们利用一些表面改性方法如沉淀法二氧化硅表面改性、十二醇二氧化硅表面改性、气相法二氧化硅表面改性、两亲性聚合物改性二氧化硅等来使亲水性的二氧化硅通过表面处理改性为疏水的二氧化硅,以提高产品的亲油性、分散性和相容性,并能使二氧化硅在某些乳液中既能长期稳定分散,又能保证它与基料在成膜后能有良好的界面结合。 第二章、二氧化硅处理方法的研究现状 目前我们对二氧化硅处理方法的研究主要分为:纳米级二氧化硅的改性处理和非纳米级的二氧化硅的改性处理。 2.1非纳米级二氧化硅的研究 2.1.1二氧化硅的概念:SiO2又称硅石。在自然界分布很广,如石英、石英砂等。白色或无色,含铁量较高的淡黄色。密度2.2 ~2.66。熔点1670℃(麟石英);1710℃(方石英)。沸点2230℃,相对介电常数为3.9。不溶于水微溶于酸,呈颗粒状态时能和熔融碱类起作用。用于制玻璃、水玻璃、陶器、搪瓷、耐火材料、硅铁、型砂、单质硅等。 2.1.2非纳米级二氧化硅表面改性 由于在二氧化硅表面存在有羟基,相邻羟基彼此以氢键结合,孤立羟基的氢原子正电性强,易与负电性原子吸附,与含羟基化合物发生脱水缩合反应,与亚硫酰氯或碳酰氯反应,与环氧化台物发生酯化反应。表面羟基的存在使表面具有化学吸附活性,遇水分子时形成氢键吸附。二氧化硅表面是亲水性的,无论气相法或沉淀法都是如此,差异仅是程度不同这导致了在与橡胶配合时相容性差,在配合胶料内对硫化促进剂吸附而迟延硫化。此外,白炭黑比表面积大、粒径小,在与

可溶性二氧化硅的测定硅钼黄分光光度法

可溶性二氧化硅的测定硅钼黄分光光度法 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

水质可溶性二氧化硅的测定硅钼黄分光光度法 1.主要内容 本标准规定了用硅钼黄分光光度法测定水中可溶性二氧化硅。 适用于天然水样分析,也用于一般环境水样分析。适用的浓度范围为 0.04~20mg/L。本方法二氧化硅最小检出浓度为0.04mg/L,检出上限为25mg/L。 1.1干扰及消除 1.1.1色度干扰测定,可以采用补偿法予以消除。 1.1.2丹宁、大量的铁、硫化物和磷酸盐干扰测定,加入草酸能破坏磷钼酸,消除其干扰并降低丹宁的干扰。样品中含铁20mg/L;硫化物 10mg/L、磷酸盐0.8mg/L丹宁酸30mg/L以下时,不干扰测定。 1.1.3样品贮存及实验过程中尽量少与玻璃器皿接触。用玻璃器皿时,应先进行全程序空白试验,用扣除空白方法消除玻璃器皿的影响。 2 原理 在pH约1.2时,钼酸铵与水中硅酸反应,生成柠檬黄色可溶的硅钼杂多 酸络合物〔H 4Si(Mo 3 O 10 ) 4 〕,在一定浓度范围内,其黄色与二氧化硅的浓度 成正比,于波长410nm处测定其吸光度,求得二氧化硅的浓度。 3 仪器 3.1 铂坩埚:30~50mL。 3.2 分光光度计。 3.3常用实验设备。 4 试剂

本标准所用试剂除另有说明外,均应使用符合国家标准或专业标准的分析试剂和蒸馏水或同等纯度的水。 试剂用水应为蒸馏水。离子交换水可能含胶态的硅酸而影响测定,不宜使用。 4.1硅酸溶液:1+1。 4.2钼酸铵试剂:溶解10g 钼酸铵〔(NH 4)6MoO 24·H 2O 〕于水中(搅拌并微 热),稀释至100mL 。如有不溶物应过滤。用氨水调节至pH7~8。 4.3草酸溶液;7.5%(m/V ) 溶解7.5g 草酸(H 2C 2O 4·2H 2O )于水中,稀释至100mL 。 4.3二氧化硅贮备液:C (SiO 2)=1000mg/L 。 称取高纯石英砂(二氧化硅)0.2500g 置于铂坩埚(3.1)中,加入无水碳酸钠4g ,混匀。于高温炉中,在1000℃熔融1h 。取出冷却后,放于塑料烧杯中用热水浸取,用水洗净坩埚及盖,移入250mL 容量瓶中,用水稀释至标线,混匀。贮于聚乙烯瓶中,密封保存。 4.5二氧化硅标准溶液:100mg/L 。 吸取50.0mL 二氧化硅贮备液(4.4)移入500mL 容量瓶中,稀释至标线,用聚乙烯瓶密封保存。 5.测定步骤 5.1标准曲线 取二氧化硅标准溶液(4.5)0.0、0.50、1.00、3.00、5.00、7.00、10.00mL ,分别移于50mL 比色管中,加入稀释至标线。迅速顺次加入 1.0mL 盐酸溶液(4.1), 2.0mL 钼酸铵试剂(4.2)。至少上下倒置6次

游离二氧化硅的测定作业指导书

游离二氧化硅的测定作业指导书 D⒔1方法提要 利用焦磷酸在245~250℃温度下能溶解各种矿石,而不能溶解石英质的二氧化硅的性质来测定游离二氧化硅的含量。 D⒔2分析步骤 称取试样0.1g置于50mL锥形瓶中,加入15mL焦磷酸,用玻璃棒至全部样品粉末被酸浸湿,内插入一温度计并放在低电炉或电热板上,加温至250℃,在加热过程中,时刻用玻棒搅拌,并保持245~250℃温度下15min,取下冷却至100~150℃,移入冷却槽中继续冷至50~60℃,取出,将内溶物逐滴倒入盛有100mL蒸馏水之250mL 烧杯中,然后用水洗涤锥形瓶,此时体积为150~200mL,煮沸,趁热用致密滤纸过滤,先用0.1mol/L的盐酸洗涤3~次,然后用蒸馏水洗涤至无氯离子反应为止。将滤纸及沉淀物放入已知恒量的瓷坩埚中灰化,灼烧冷却称量。如果要准确的测定,则用热水洗涤至无磷酸根离子为止(一般20次或用钼酸铵与抗坏皿酸等溶液检验之)。将沉淀物放入清洁已知恒量铂坩埚中,先在电炉上灰化,然后在900~950℃高温炉中灼烧30min,冷却,称量,再在铂坩埚中滴入硫酸(1+1),使二氧化硅全部为硫酸所浸湿,再加入5~10mL氢氟酸,放于砂浴上加热,直至蒸发不冒白烟为止,再于900~950℃的高温炉中灼烧20min,冷却称量,二次重量差即为游离二氧化硅的质量。 D⒔3游离二氧化硅的质量百分数按下式计算: m1 ×m2

X SiO2 =——————×100 m 式中: m1—氢氟酸处理前残渣及铂坩埚重,g; m2 —氢氟酸处理后残渣及铂坩埚重,g; m—试料的质量,g。 D⒔4注意事项 焦磷酸在制备时即将85%之磷酸(二级品)加热至沸腾逐渐蒸发部份水至250℃,不再冒气泡为止,放冷待用,注意温度应达250℃,不得低于150℃,不得低于150℃,因为高于150℃才开始失去结晶水而转变为焦磷酸。 若样品中含有硫化物需在加热焦磷酸溶液溶解时加数毫克硝酸铵结晶,并加120~170℃加热,硝酸铵分解时,对硫化物起氧化作用同时冒出二氧化氮棕色气体,在此温度多保持一会儿,使硫化物完全溶解再提高温度(注意温度不能太高,否则会引起爆炸)。 若样品中含碳酸盐,在加酸后加热时必须由低温开始,否则作用太激试样会溅出,造成分析不准确。 焦磷酸溶解温度及时间是245~250℃下15min。温度超过252℃时则生成胶状沉淀,试样必须重做。 稀释时速度不宜太快或太慢,应一滴接一滴的倾入。

石灰石及白云石化学分析方法 第9部分:二氧化碳含量的测定 烧

I C S73.080 D52 中华人民共和国国家标准 G B/T3286.9 2014 代替G B/T3286.9 1998 石灰石及白云石化学分析方法 第9部分:二氧化碳含量的测定 烧碱石棉吸收重量法 M e t h o d f o r c h e m i c a l a n a l y s i s o f l i m e s t o n e a n dd o l o m i t e P a r t9: T h e d e t e r m i n a t i o no f c a r b o nd i o x i d e c o n t e n t T h e c a u s t i c a s b e s t o s a b s o r p t i o n g r a v i m e t r i cm e t h o d 2014-06-09发布2015-01-01实施中华人民共和国国家质量监督检验检疫总局

目 次 前言Ⅲ 1 范围1 2 规范性引用文件1 3 原理1 4 试剂1 5 仪器及装置2 6 制样3 7 分析步骤4 7.1 测定次数4 7.2 试料量4 7.3 仪器及装置的检查4 7.4 仪器及装置的校验4 7.5 测定4 8 分析结果计算及其表示5 8.1 分析结果的计算5 8.2 分析结果的确定和表示5 9 允许差5 10 试验报告5 附录A (规范性附录) 试样分析结果接受程序流程图7 附录B (资料性附录) 燃烧气体容量法测定冶金石灰中二氧化碳量8 附录C (资料性附录) 温度二气压补正系数表12

前言 G B/T3286‘石灰石及白云石化学分析方法“分为九个部分: 第1部分:氧化钙和氧化镁含量的测定络合滴定法和火焰原子吸收光谱法; 第2部分:二氧化硅含量的测定硅钼蓝分光光度法和高氯酸脱水重量法; 第3部分:氧化铝含量的测定铬天青S分光光度法和络合滴定法; 第4部分:氧化铁含量的测定邻二氮杂菲分光光度法和火焰原子吸收光谱法; 第5部分:氧化锰含量的测定高碘酸盐氧化分光光度法; 第6部分:磷含量的测定磷钼蓝分光光度法; 第7部分:硫含量的测定管式炉燃烧-碘酸钾滴定法二高频燃烧红外吸收法和硫酸钡重量法; 第8部分:灼烧减量的测定重量法; 第9部分:二氧化碳含量的测定烧碱石棉吸收重量法三 本部分为G B/T3286的第9部分三 本部分按照G B/T1.1 2009给出的规则起草三 本部分代替G B/T3286.9 1998‘石灰石二白云石化学分析方法二氧化碳量的测定“三 本部分与G B/T3286.9 1998相比,主要技术变化如下: 将标准名称改为‘石灰石及白云石化学分析方法第9部分:二氧化碳量的测定烧碱石棉吸收重量法“; 规范性引用文件取消了引用标准年号,并增加了部分引用标准; 增加了对分析中所用试剂和水的质量等级要求; 增加了分析结果的确定和表示; 分析步骤中增加了测定次数及说明; 增加了试验报告; 增加了 试样分析结果接受程序流程图 作为规范性附录A,将原附录A和附录B分别改为附录B和附录C作为资料性附录三 本部分由中国钢铁工业协会提出三 本部分由全国钢标准化技术委员会(S A C/T C183)归口三 本部分起草单位:武汉钢铁(集团)公司二武汉科技大学二冶金工业信息标准研究院三 本部分主要起草人:闻向东二徐建平二邵梅二张穗忠二陈士华二曹宏燕二王洪红二仇金辉二高建平二王姜维三本部分所代替标准的历次版本发布情况为: G B/T3286.9 1982二G B/T3286.9 1998三

多糖化学结构鉴定方案总结..

经过分级纯化的多糖在测定结构前须检查其纯度及测定分子量。 检查纯度最常用的判断方法: (1)用G C 、HPLC测定组成多糖的单糖的摩尔比是否恒定。 用不同的柱型测定结果更为可靠。 (2)电泳只出现一条带。 如可用聚丙烯酰胺凝胶电泳、乙酸纤维素薄膜电泳及玻璃纤维纸电泳。对于中性多糖可采用高压电泳,以硼酸盐为缓冲液,可增大其迁移速度。 (3)凝胶柱层析图呈现对称的单峰。若有“拖尾”现象,说明其均一性不够好。 阴离子交换层析纯化 用DEAE一纤维素52(2.6x100cm)柱层析,0.lmol/LNaCl洗脱,流速6ml/h,按2ml一管分部收集,苯酚一硫酸法逐管检测,绘制收集体积与糖含量之间的关系曲线。看是否有单一对称峰。 按照Ye等报道,采用DEAE一52一纤维素交换柱层析法(2.6x30cm)对鲍氏层孔菌菌丝体粗多糖进行初步分离。DEAE一纤维素凝胶预处理:称取DEAE一52一纤维素凝胶干粉,加入约10倍体积质量比(ml/g)的0.5mol/LNa0H溶液浸泡30分钟,倒出上清液,用大量去离子水反复浸洗至pH值近中性;再用相同体积的0.5mol/LHCI溶液浸泡30分钟,倒出上清液,用大量去离子水反复浸洗至pH值近中性;最后用相同体积的0.5mol/lNaOH溶液再浸泡30分钟,用大量去离子水反复浸洗至pH值中性。处理完毕后,进行湿法装柱,用去离子水0.5mol/LNaCl溶液,去离子水依次分别平衡(流速1.0ml/min)2一3个柱体积备用. 糖样100mg溶于5ml的去离子水中,离心除去不溶物,上样于DEAE一52一纤维素阴离子层析柱(2.6x30cm,Cl-1型),分别采用去离子水0.1和0.3mol/LNaCI溶液进行分段梯度洗脱,流速1.0ml/min,自动收集器分部收集(10ml/管),每梯度20管。用硫酸一苯酚法跟踪检测各管多糖含量(490nm处吸收值),以收集的管数为横坐标。吸光值(490nm)为纵坐标绘制DEAE 一52一纤维素色谱柱洗脱曲线。依据洗脱峰型,合并相同组分,50℃旋转蒸发浓缩,对去离子水透析48h以去除NaCI及小分子杂质,最后将透析内液冷冻干燥,得初步纯化产品。 初步纯化多糖得率计算公式: 多糖得率(%)=纯化多糖质量/粗多糖质量x100% 葡聚糖凝胶层析纯化 采用Sephadex G-100凝胶层析法对DEAE-52一纤维素初步纯化的不同组分的多糖样品进一步纯化。葡聚糖凝胶(sephadexG一100)的预处理:称取sephadexG一100凝胶干粉,加入30倍体积质量比(ml/g )的去离子水,沸水浴5小时使其溶胀。冷却后用去离子水反复浸洗,减压脱气后进行湿法装柱,用0.1MNa2SO4;溶液平衡(流速0.25ml/min)2一3个柱体积备用。

二氧化硅测定方法

二氧化硅测定方法 二氧化硅的测定方法有原子吸收分光光度法、重量法和光度法。光度法包括钼酸盐光度法(即硅钼黄法)和钼酸盐还原光度法(硅钼蓝法)。钼酸盐还原光度法的灵敏度较钼酸盐光度法约高5倍。钼酸盐还原法运用的浓度范围为0.04—2mg/L,钼酸盐法为0.4—25 mg/L。 水样应保存于聚乙烯瓶中,因为玻璃瓶会溶出硅而污染水样,尤其是碱性水。 硅钼黄光度法 一、原理 ●在PH约1.2时,钼酸铵与硅酸,生成黄色可溶性的硅钼杂多酸络合物,在一定浓度范 ●围内,其黄色与二氧化硅的浓度成正比,可于波长410nm处测定其吸光度并与硅标准曲线对照, 求得二氧化硅的浓度。 ●色度及浊度的干扰,可以采用补偿法(不加钼酸铵的水样为参比)予以消除。 ●丹宁、大量的铁、硫化物和磷酸盐干扰测定,加入草酸能破坏磷钼酸,消除其干扰并降低丹宁 的干扰。在测定条件下,加入草酸(3 mg/ml),样品中含铁20 mg/L、硫化物10 mg/L、磷酸盐 0.8 mg/L、丹宁酸30 mg/L以下时,不干扰测定。 ●本法最低检测浓度为0.4 mg/L,测定上限25 mg/L二氧化硅。 ●测定最适宜范围为0.4-20 mg/L。适用于天然水样分析,也可用于一般环境水样分析。 二、仪器 ●铂坩埚,30-50ml ●分光光度计 三、试剂 配制试剂用水应为蒸馏水,离子交换水可能含胶态的硅酸而影响测定,不宜使用。 ●1:1盐酸溶液 ●钼酸铵试剂:溶解10g钼酸铵{(NH4)6Mo7O24·4H2O}于水中(搅拌并微热),稀至100 ml。 如有不溶物可过滤,用氨水调至PH 7-8。 ●7.5%(M/V)草酸溶液:溶解7.5g草酸(H2C2O4)于水中,稀释至100 ml。 ●二氧化硅贮备液:称取高纯石英砂(SiO2)0.2500g置于铂坩埚中,加入无水碳酸钠4g,混匀, 于高温炉中,在1000℃溶融1小时,取出冷却后,放入塑料烧杯中用热水溶取。用水洗净坩埚 与盖,移入250 ml容量瓶中,用水稀释至标线,混匀。贮于聚乙烯瓶中,此溶液每亳升含1.00 mg二氧化硅(SiO2)。 ●二氧化硅标准溶液:吸取50.0ml贮备溶液,稀释至500ml。用聚乙烯瓶密封保存,此溶液每毫 升含0.10mg二氧化硅。 四、步骤 1.标准曲线的绘制 ●取每毫升含0.10mg的二氧化硅标准溶液0、0.50、1.00、3.00、5.00、7.00、10.00 ml,分别移

建筑石灰试验方法化学分析方法

建筑石灰试验方法化学分析方法 时间: 2004-01-18 11:57:13 | [<<][>>] 1 主题内容与适用范围 本标准规定了建筑石灰化学分析的仪器设备、试样制备、试验方法和结果计算以及化学分析允许误 差。 本标准适用于建筑生石灰、生石灰粉和消石灰粉化学分析方法,其他品种石灰可参照使用。 2 总则 2.1送检试样应具有代表性,数量不少于100g,装在磨口玻璃瓶中,瓶口密封。检验时,将试样混均以 四分法缩取25g,在玛钵内研细全部通过80um方孔筛用磁铁除铁后,装人磨口瓶内供分析用。 2.2分析天平不应低于四级,最大称量200g,天平和砝码应定期进行检定。 2.3称取试样应准确至0.0002g,试剂用量与分析步骤严格按照本标准规定进行。 2.4化学分析用水应是蒸馏水或去离子水,试剂为分析纯和优级纯。所用酸和氨水,未注明浓度均为浓

酸和浓氨水。 2.5滴定管、容量瓶、移液管应进行校正。 2.6做试样分析时,必须同时做烧失量的测定,容量分析应同时进行空白试验。 2.7分析前,试样应于100-105℃烘箱中干燥2h。 2.8各项分析结果百分含量的数值,应保留小数点后二位。 3 分析方法 3.1二氧化硅的测定 3.1.1氟硅酸钾容量法 3.1.1.1方法提要 在有过量的氟,钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(KaSiF 6)沉淀,经过滤、洗涤、中 和滤纸上的残余酸后,加沸水使氟硅酸钾沉淀水解生成等当量的氢氟酸,然后以酚酞为指示剂,用氢氧化钠 标准溶液进行滴定。 3.1.1.2试剂

a.硝酸(浓); b.氯化钾(固体) c.氟化钾溶液(150s/L):将15g氟化钾放在塑料杯中,加50mL水溶解后,再加20mI硝酸,用 水稀释至100mL,加固体氯化钾至饱和,放置过夜,倾出上层清液,贮存于塑料瓶中备用; d.氯化钾-乙醇溶液(50g/L):将5g氯化钾溶于50mL水中,用95%乙醇,稀至100mL混匀; e.酚酞指示剂乙醇溶液(10g/L):将1g酚酞溶于95%乙醇,并用95%乙醇稀释至100mL; f.氢氧化钠标准溶液(0.05mol/L):将10g氢氧化钠溶于5L水中,充分摇匀,贮于塑料桶中; 标定方法:准确称取0.3000g苯二甲酸氢钾置于400mL烧杯中,加入约15 0mL新煮沸的冷水 (用氢氧化钠熔液中和至酚酞呈微红色),使其溶解,然后加入7 ̄ 8滴酚酞指示剂乙醇溶液(10g/L), 以氢氧化钠标准溶液滴定至微红色为终点,记录V。 氢氧化钠溶液对二氧化硅的滴定度按式(1)计算:

化学结构分析讲义

化学结构分析--科标检测 化学结构分析主要是研究原子结构,分子结构,晶体结构以及结构与性质之间的关系,从而从多种手段来确定分子的化学结构以及其物化性质,该分析在生物、化工、材料、科研、食品等领域有着举足轻重的作用。 科标分析实验室可以通过多种大型仪器对样品进行全方位的测试,对有机和无机样品的结构进行描述,不单可通过核磁、红外、质谱、元素分析等手段推出样品的结构式,并通过标准谱图及标准样品进行确定,同时也能够通过X-射线单晶衍射分析方法再现物质的空间结构,其结果准确可信。公司通过了中国国家认证认可监督管理委员会和中国合格评定国家认可委员会的二合一(CMA、CNAS)实验室认证认可,能出具权威的第三方检测报告。 化学结构分析 一、实验原理 科标分析实验室对样品提纯后,利用核磁、红外、质谱、元素分析等多种现代波谱技术对样品进行元素种类、官能团、碳氢相关的分析,综合所得数据分析出样品的化学结构,如果样品适合培养单晶,本公司可对样品进行单晶分析,从而得到样品的立体空间结构,包括各个原子之间的键长与键角,结果真实可靠。 二、仪器和试剂 仪器:核磁共振仪、元素分析仪、红外光谱仪、质谱仪、X-射线单晶衍射仪、高效气相色谱、高效液相色谱。 试剂:相关分析纯试剂、氘代试剂、二次水。 三、实验过程 将样品纯化后,通过元素分析检测出样品的元素组成,采用高分辨质谱确定样品的相对分子量,利用红外检测确定分子结构中所存在的官能团,最后通过全套的核磁(包括一维谱的1H NMR、13C NMR,以及二维谱的COSY、NOSY)结合之前测试确定物质的分子结构。所做的谱图可以与标准图库中的谱图进行比对,若有标准样品,可以通过GC或者LC的方法进行再次确认,并与相关的标准图库进行对比。倘若样品条件适合,可以对其进行单晶培养,我们推荐进行X-射线单晶衍射分析,得到其空间完整的分子结构。

浅谈矿石中二氧化硅的测定方法_0

浅谈矿石中二氧化硅的测定方法 矿石中二氧化硅的测定有重量法、挥散法、比色法、容量法等四种方法,每种方法都有其各自的局限性,应根据矿石本身的性质选择相应的方法。文章将对这4种方法的准确性、时间及影响因素进行一一分析比较。 标签:二氧化硅;重量法;挥散法;比色法;容量法 二氧化硅是一种化学性质稳定的原子晶体,主要存在于石英矿中,而石英矿又是各种矿石最主要的组成物质,因此在日常化验工作中我们会经常与之接触。对矿石中二氧化硅的分析,通常使用重量法、挥散法、比色法、容量法等4种方法。笔者经过长时间的摸索研究和大量的分析检验数据表明,这4种方法各有利弊。 1 分析比较 1.1 分析准确性 1.1.1 重量法。重量法的准确度较高。但是对于一些特殊样品,如萤石氟化钙,由于含有较大量的氟,会使试样中的硅以四氟化硅的形式挥发掉。某些样品在用酸溶解形成硅酸的同时,生成其他沉淀,夹杂在硅酸沉淀中,影响硅酸的重量。如重晶石、含量较高的锆石、钛含量较高的样品。这些情况下,不能使用重量法测定。 1.1.2 挥散法。若某个试样中SiO2的含量在98%以下,此时采用挥散法测定二氧化硅将会引起较大的误差。这种情况下,不宜使用挥散法来测定。 1.1.3 比色法。试样中二氧化硅的含量在2%以上时,不宜用比色法测定。 1.1.4 容量法。容量法与操作者掌握操作的熟练程度有很大关系,但只要能够熟练掌握操作方法,其检测结果将非常准确。 1.2 分析时间 1.2.1 重量法。需要先后经过熔融、蒸发、酸解、凝聚、溶解、过滤、灰化和灼烧,过程极其复杂,分离过程耗费时间相当长。 1.2.2 挥散法。该方法需要在低温溶解挥发后经高温炉中反复的灼烧至恒重,整个过程耗时长。 1.2.3 比色法。试样中的硅需全部转入溶液并以单分子硅酸状态而存在后,才能进行下一步的操作。

SiO2含量测定

烧失量的测定 (1)原理:试样在1025±25℃的马弗炉中灼烧,驱除水分和二氧化碳,同时将存在的易氧化元素氧化。 (2)仪器设备: ①马弗炉。 ②瓷坩埚。 (3)步骤: 称取试样1g,精确至0.0001g,置于已灼烧恒重的坩埚中,将盖斜置于坩埚上,放于高温炉中,从低温逐渐升温至1025±25℃,灼烧1h,取出坩埚于干燥器中,冷却至室温称重,再灼烧15min,称量,反复操作直至恒重。 (4)结果表述: 烧失量的质量分数按下式计算。 式中ωLOI——烧失量的质量分数,%; m样——试样的质量,g; m1——灼烧后试样的质量,g。 所得结果应表示至两位小数。 (5)允许差 含量范围允许差(%) ≤1.00 0.05 1.01~5.00 0.10 >5.00 0.15 (6)讨论:

①骤加高温会引起试样中烧失量急速挥发,造成试样的飞溅损失,使分析结果有误差; ②灼烧后试样吸水性很强,所以冷却时间必须固定,称量迅速,以免吸收空气中的水分使结 果偏低。 二氧化硅的测定 (1)原理:硅的测定可利用重量法。将试样与固体氯化铵混匀后,再加盐酸分解,其中的硅成硅酸盐凝胶沉淀下来,经过滤、洗涤,在瓷坩埚中于950℃灼烧至恒重,称 量求其质量,得到二氧化硅含量。本法测定结果约较标准法高0.2%左右。若改用铂 坩埚在1100℃灼烧恒重、经氢氟酸处理后,测定结果与标准法结果误差小于0.1% 。 (2)仪器试剂:马弗炉、瓷坩埚、干燥器和坩埚钳; NH4Cl(固),HCl(浓,6 mol·dm-3, 2 mol·dm-3),HNO3(浓),AgNO3(0.1 mol·dm-3)。 (3)步骤: 准确称取0.4g试样,置于50cm3烧杯中,加入2.5~3g固体NH4Cl,用玻璃棒混匀,滴加浓HCl至试样全部润湿(一般约需2cm3),并滴加浓HNO3 2~3滴,搅匀。盖上表面皿,置于沸水浴上,加热1min,加热水约40cm3,搅动,以溶解可溶性盐类。过滤,用热水洗涤烧杯和沉淀,直至滤液中无Cl-离子为止。(用AgNO3检验),弃去滤液。 将沉淀连同滤纸放入已恒重的瓷坩埚中,低温干燥、炭化并灰化后,于1000℃灼烧30 min 取下,置于干燥器中冷却至室温,称重。再灼烧,直至恒重。计算试样中SiO2的含量。 (4)结果表述: 二氧化硅含量(%)=(m2-m1)/m 式中:m1 ——恒重坩埚质量,g; m2 ——灼烧后坩埚与试样质量,g; m ——试料质量,g。 所得结果应表示至二位小数。 (5)允许差:

白云石、石灰石、方解石化学分析

白云石、石灰石、方解石化学分析 1.主要内容与适用范围 本标准规定了玻璃工业用白云石、石灰石、方解石化学成分分析的原理,使用的试剂、仪器,分析步 骤和结果处理。 本标准适用于玻璃工业用白云石、石灰石、方解石的化学成分分析。 2.试样的制备 试样必须具有代表性和均匀性,没有外来杂质混入,经过缩分,最后得到约20g试 样,在玛瑙钵中研磨至全部通过孔径150μm(100目)筛,然后装于称量瓶中备用。 3.分析方法 3.1一般规定 3.1.1 标准中同一成分所列不同分析方法,可根据具体情况选用,如发生争议。以第一种方法为准。 3.1.2 所用分析天平感量应为0.0001g,天平与砝码应定期进行校验。“恒重”系指 连续两次称重之差不大于0.0002g。 5.1.3 所用仪器和量器应经过校正。 3.1.4 分析试样应于烘箱中在105-110℃烘干1h以上,冷却至室温,进行称量。

3.1.5 分析用水应为蒸馏水或去离子水;所用试剂应为分析纯或优级纯;用于标定溶 液的试剂应为基准试剂。对水和试剂应做空白试验。 3.1.6 标准中试剂的浓度采用下列表示法: 3.1.6.1当直接用名称表示下列试剂时,系指符合下列百分浓度的浓试剂: 试剂名称试剂浓度(%) 盐酸 36-38 氢氟酸 40以上 硝酸 65-68 高氯酸 70-72 硫酸 95-98 氨水 25-28 3.1.6.2 被稀释的试剂浓度以下列的形式表示: 盐酸(5+95),系指5份体积的盐酸加95份体积的水配成之溶液。3.1.6.3 固体试剂配制的溶液浓度用重量/体积的百分浓度表示(作标准溶液时除外 ),例如:20%氢氧化钾是指每20g氢氧化钾溶于100mL水而制成之溶液。在没有特别指 明时,均指水溶液。 3.1.7 吸光度测量所用之“试剂空白溶液”指不含待测组分之溶液。3.2 烧失量的测定

二氧化硅的测定

二氧化硅的测定——氟硅酸钾法(代用法) 1 适用范围 本方法规定了水泥化学分析方法。水泥化学分析方法分为基准法和代用法。 本标准适用于通用硅酸盐水泥和制备上述水泥的熟料、生料及指定采用本方法的其他水泥和材料。 2 规范性引用文件 GB/T 6682 分析实验室用水规格和试验方法; GB/T 12573 水泥取样方法; GB/T 176-2008 水泥化学分析方法。 3 方法提要 在有过量的氟离子、钾离子存在的强酸性溶液中,使硅酸形成氟硅酸钾(K2SiF6)沉淀。经过滤、洗涤及中和残余酸后,加入沸水,使氟硅酸钾沉淀水解生成等物质的量的氢氟酸。然后以酚酞为指示剂,用清扬酸钠标准滴定溶液进行滴定。 4 试剂 除非另有说明,分析室均使用符合国家标准的分析纯试剂。 4.1氯化钾:颗粒大时,研细后使用; 4.2氯化钾溶液(50g/L):将50g氯化钾(KCl)溶于水中,稀释至1L; 4.3 氯化钾-乙醇溶液(50g/L):将5g氯化钾(KCl)溶于50ml水后,加入50ml95%乙醇,摇匀; 4.4 氟化钾溶液(150g/L):将150g氟化钾(KF·2H2O)置于塑料杯中,加水溶解后,加水稀释至1L贮存于塑料瓶中; 4.5 酚酞指示剂溶液(10g/L):将1g酚酞溶于100ml95%乙醇中; 4.6氢氧化钠标准滴定溶液[c(NaOH)=0.15mol/L]:称取30g氢氧化钠(NaOH)溶于水中,加水稀释至5L,充分摇匀,贮存于塑料瓶或带胶塞(装有钠石灰干燥管)的硬质玻璃瓶内; 4.7浓硝酸;

4.8 热盐酸(1+5) 5 仪器 5.1 分析天平; 5.2 银坩埚; 5.3 表面皿; 5.4 电炉; 5.5 高温炉:隔焰加热炉,在炉膛外围进行电阻加热。应使用温度控制器准确控制炉温,可控制温度(700±25)℃、(800±25)℃、(950±25)℃; 5.6 塑料烧杯300ml; 5.7 塑料棒; 5.8 计时器; 5.9 容量瓶250ml; 5.10移液管。 6 采样 6.1 取具有代表性的均匀样品,采用四分法或缩分器将试样缩分至约100g,经80μg方孔筛筛析,用磁铁吸去筛余物中金属铁,将筛余物经过研磨后使其全部通过孔径为80μg方孔筛,充分混匀,装入试样瓶中,密封保存,供测定用。 6.2 称取约0.5g试样(m),精确至0.0001g,置于银坩埚中,加入6g~7g氢氧化钠,盖上坩埚(留有缝隙),放入高温炉,从低温升起,在650℃~700℃的高温下熔融20min,期间取出摇动1次。取出冷却,将坩埚放入已盛有约100ml烧杯中,盖上表面皿,在电炉上适当加热,待熔块完全浸出后,取出坩埚,用热盐酸洗净坩埚和盖。再用水洗净坩埚和盖。在搅拌下一次加入25ml~30ml盐酸,再加入1ml浓硝酸,将溶液加热煮沸,冷却至室温后,移入250ml容量瓶中,用水稀释至标线,摇匀。制得试样溶液A。此溶液A供测定二氧化硅、三氧化二铁、三氧化二铝、氧化钙、氧化镁。 7 烧失量的测定 称取1g试样(m1),精确至0.0001g,置于已灼烧衡量的瓷坩埚中,将盖斜置于坩埚上,放在马弗炉内从低温开始逐渐升高温度,在(950±25)℃下灼烧15min~20min,取出坩埚置于干燥器中,冷却至室温,称量。反复灼烧,直至恒量。

“测定有机物分子结构的常用分析方法”题型几例

龙源期刊网 https://www.360docs.net/doc/8c1074984.html, “测定有机物分子结构的常用分析方法”题型几例 作者:蒋赵军 来源:《化学教学》2009年第08期 文章编号:1005-6629(2009)08-0094-03中图分类号:G424.74文献标识码:B 通过对苏教版《有机化学基础》专题1“有机化合物分子结构”教学后,结合新课标要求和各地近年来所命试题,将有关有机物分子结构测定方法的试题归纳为以下几种题型,介绍如下。 题型一: 1H核磁共振类 1H核磁共振法的原理:氢原子核具有磁性,如用电磁波照射氢原子核,它能通过共振吸收电 磁波能量,发生跃迁,用核磁共振仪可以记录到有关信号。处于不同化学环境中的氢原子因产生 共振时吸收的频率不同,在谱图上出现的位置也不同,且吸收峰的面积与氢原子数成正比。因此,从核磁共振氢谱图(1H-NMR)上可以推知该有机物分子有几种不同类型的氢原子及它们的数 目。分子式为C2H6O的有机物有下述两种图谱: [例1]在有机物分子中,处于不同环境的氢原子在核磁共振谱中给出的峰值(信号)也不同,根据峰值(信号)可以确定有机物分子中氢原子的种类和数目。例如二乙醚的结构简式为CH3—CH2—O—CH2—CH3。其核磁共振谱中给出的峰值(信号)有两个如图2所示: (1)下列物质中,其核磁共振氢谱中给出的峰值(信号)只有一个的是______。 A.CH3CH3 B.CH3COOH C.CH3COOCH3 D.CH3COCH3 (2)化合物A和B的分子式都是C2H4Br2,A的核磁共振氢谱如图3所示,A的结构简式为 ______,请预测B的核磁共振氢谱上有______个峰(信号)。 (3)请简要说明根据核磁共振氢谱的结果来确定C2H6O分子结构的方法是 ______________。 解析:本题考查了根据1H核磁共振谱确定有机化合物的分子结构。(1)AD; (2)BrCH2CH2Br; 2 (3)若图谱中给出了3个吸收峰(信号),则说明C2H6O的结构是CH3CH2OH;若图谱中给出了1个吸收峰(信号),则说明C2H6O的结构是CH3OCH3

水泥厂原料的化学分析方法

水泥厂原料的化学分析方法 D1石灰石的化学分析方法 D⒈1试样的制备 试样必须具有代表性和均匀性。由大样缩分后的试样不得少于100g,试样通过0.08mm 方孔筛时的筛余不应超过15%。再以四分法或缩分器减至约25g,然后研磨至全部通过孔径为0.008mm方孔筛。充分混匀后,装入试样瓶中,供分析用。其余作为原样保存备用。 D⒈2烧失量的测定 D⒈⒉1方法提要 试样中所含水分、碳酸盐极其他易挥发性物质,经高温灼烧即分解逸出,灼烧所失去的质量即为烧失量。 D⒈⒉2分析步骤 称取约1g试样(m),精确至0.0001g,置于已灼烧恒量的瓷坩锅中,将盖斜置于坩锅上,放入马弗炉内,从低温开始逐渐升温,在950~1000℃下灼烧1h,取出坩锅置于干燥器中,

冷却至室温,称量。反复灼烧,直至恒量。 D⒈⒉3结果表示 烧失量的质量百分数X LOI 按式(D1.1)计算: m-m 1 X LOI =————×100 ......................(D1.1) m 式中: X LOI—烧失量的质量百分数,%; m 灼烧后试料的质量,g; 1— m—试料的质量,g。 D⒈⒉4允许差 同一实验室的允许差为:0.25%; 不同实验室的允许差为:0.40%。 D⒈3二氧化硅的测定(基准法) D⒈⒊1方法提要

试样以无水碳酸钠烧结,盐酸溶解,加固体氯化铵于沸水浴中加热蒸发,使硅酸凝聚,灼烧称量。用氢氟酸处理后,失去的质量即为二氧化硅含量。 D⒈⒊2分析步骤 称取约0.6g试样(m2 ),精确至0.0001g,置于铂坩锅中,将盖斜置于坩锅上,在950~1000℃下灼烧5min,取出铂坩锅冷却至室温,用玻璃棒仔细压碎块状物,加入0.3g研细无水碳酸钠混匀。再将坩锅置于950~1000℃下灼烧10min,取出冷却至室温。 将烧结物移入瓷蒸发皿中,加少量水润湿,盖上表面皿。从皿口加入5mL盐酸(1+1)及2~3滴硝酸,待反应停止后取下表面皿,用平头玻璃棒压碎块状物使分解完全,用热盐酸(1+1)清洗坩锅数次,洗液合并于蒸发皿中。将蒸发皿置于沸水浴上,皿上放一玻璃三角驾,再盖上表面皿,蒸发至糊状后,加入氯化铵充分搅匀,放入沸水浴中蒸发至干后继续蒸发10~20min。 取下蒸发皿,加入10~20mL热盐酸(3+97),搅拌使可溶

锅炉水二氧化硅含量测定方法的研究

锅炉水二氧化硅含量测定方法的研究 摘要:二氧化硅含量是评价锅炉水水质好坏的一个重要指标,目前我们采用《GB12148—89锅炉用水和冷却水分析方法全硅的测定—低含量氢氟酸转化法》来进行测定。但在测定中发现,各个化验分析人员的分析结果忽高忽低,误差较大,在经过大量实验分析后发现,引起这一误差的原因是由于分析纯氢氟酸中的氟硅酸类化合物含量较高所引起的。如不对氢氟酸进行处理对分析测定结果影响较大,造成测定值偏高,不能准确反映锅炉水中二氧化硅的含量,导致锅炉水水质不稳定,同时加大生产控制的难度。因此我们必须对氢氟酸进行处理,以消除其中的氟硅酸类干扰物质。 关键词:锅炉水二氧化硅氢氟酸 第一章序言 1.1 锅炉水水质分析的意义 目前我们云煤能源股份公司安宁分公司的干熄焦锅炉水水汽质量由我们化验室负责分析检测,长期的实践使人们认识到,水质不良是影响锅炉安全,经济运行的重要因素之一,所以我们必须加强对工业锅炉水水质的管理,为防止锅炉及其热力系统的结垢、腐蚀和积盐等故障,确保锅炉安全运行,水质、汽质必须达到一定的标准。国家标准对锅炉水水质做了明确要求,按照国家锅炉水水质要求我们开展了各项目的分析。我们化验室分析化验的目的,就是对水、汽质量进行准确测定,看其是否符合标准,发现水质出现问题时及时采取措施,保证锅炉水的水质稳定。 1.2二氧化硅测定对锅炉水水质管理的重要性 我们公司的干熄焦锅炉属于中压锅炉,压力为,对于压力较高的锅炉,锅炉水中的某些成分,比如硅,会选择性的溶解在蒸汽中,使蒸汽中的杂质含量大量增加而引起过热器管及汽轮机积盐。在锅炉水处理中水中的硅均与SiO表示。由于硅化物在锅炉的金属表面上或者在汽轮机的叶片上形成沉积物后,非常难以清除。同时在锅炉金属受热面一旦形成水垢,对锅炉的危害有以下4方面:一.导致锅炉受热面金属损坏,降低锅炉使用寿命;二.降低热效率,增加能耗或降低锅炉出力;三.增加化学清洗次数,多消耗化学清

相关文档
最新文档