高速铁路信号与控制系统
高速铁路通信信号的传感器与控制系统

高速铁路通信信号的传感器与控制系统随着科技的不断发展,高速铁路的建设与使用已经成为现代交通运输的重要组成部分。
而在高速铁路运行中,一个关键的因素是通信信号的传感器与控制系统。
本文将介绍高速铁路通信信号的传感器与控制系统的重要性以及其工作原理和发展趋势。
高速铁路的安全性和正常运行离不开通信信号的传感器与控制系统。
这些系统的主要功能是监测铁路线路上的信号,并根据信号的变化来控制列车的运行。
这种系统的设计旨在确保列车之间的距离和速度的安全性,以避免碰撞和减少事故的发生。
高速铁路通信信号的传感器主要由各种传感器组成,包括光电传感器、压力传感器、速度传感器等。
这些传感器在铁路线路上安装,并通过检测列车的位置和速度来实现信号的传输。
传感器将检测到的列车信息发送给控制系统,控制系统根据这些信息来进行列车的控制。
传感器在高速铁路通信信号系统中起着至关重要的作用。
光电传感器用于检测列车的位置和速度,通过光电传感器感知列车的运动并将信息传输到控制系统中。
压力传感器主要用于监测车轮与轨道之间的接触面压力,以及铁轨的振动情况,以确保铁路线路的稳定性和安全性。
速度传感器用于检测列车的速度,并根据需要发送信号以调整列车的运行速度。
控制系统是高速铁路通信信号系统中的核心部分。
它接收传感器发送的信息,并根据这些信息来控制列车的运行。
控制系统可以通过控制信号灯、信号音、路线切换器等设备来引导列车的运行。
同时,控制系统还能及时检测列车的异常情况,并采取适当的措施来确保列车和乘客的安全。
高速铁路通信信号的传感器与控制系统正不断发展和改进。
随着技术的进步,传感器和控制系统的精确度和响应速度也不断提高。
此外,随着自动化技术的应用,高速铁路的通信信号系统正在向更智能化和自动化的方向发展。
人工智能的应用使得控制系统能够更加准确地判断列车的运行状态,并做出适当的反应。
同时,无线通信技术的发展也使得传感器与控制系统之间的数据传输变得更加高效和可靠。
高速铁路信号与控制系统—调度集中

调度集中CTC
• 11、限速命令管理
临时限速命令由调度所集中管理,通过CTC系 统向临时限速管辖车站下达限速调度命令。车 站列控中心从限速调度命令中获取限速命令控 制信息,设置限速命令。临时限速调度命令在 调度所、车站以统一的“窗口方式”模板输入、 显示、签收(确认)及回执。在CTC的车站车 务终端上增加列控中心设备的人机界面,用以 发送列控指令、显示列控中心相关设备工作状 态。
调度集中CTC
• 8、调车作业管理 CTC系统调车作业遵循的基本原则是调车作业 不得干扰列车作业。调车作业是以列车运行调 整计划为基础,在不影响列车正常运行的情况 下,寻找列车与列车之间的空档适时进行。 CTC系统提供调车作业管理功能,便于相关人 员编制调车作业计划,并进行调车进路卡控。
调度集中CTC
调度集中CTC
• CTC系统功能 • 1、运行计划管理
运行计划管理是全路列车运行组织的基础。表 现在时机运输组织工作中为运行图,分为计划 运行图和实际运行图。运行计划管理包括基本 图管理、日班计划管理、阶段计划管理、实际 图自动铺画、列车编组管理、命令自动生成等 功能。
调度集中CTC
• 2、控制模式 在《分散自律调度集中系统技术条件(暂行修 订稿)》中,规定CTC应具有分散自律控制模 式和非常站控模式。
调度集中CTC
• 4、进路预告 列车进路预告是行车安全的重要保障,CTC系统根据 车次自动跟踪结果选择适当时机发送既定车次的列车 进路上机车,以告知机车在前方车站需要进行的相关 作业标准。机车在收到进路预告以后与既有作业计划 进行对比,不一致时进行报警。
调度集中CTC
• 5、综合维修管理 系统在车站设有综合维修终端,协调进行系统 综合维修方面的管理。综合维修终端用于车站 电务、工务、电力、桥隧等部门在施工、维修 和抢险等情况下,现场人员和调度中心的联系, 以及设备日常维护、天窗修、施工以及故障处 理方面的登销记手续的办理。
高速铁路信号控制系统优化研究

高速铁路信号控制系统优化研究第一章:引言高速铁路作为一种重要的交通运输方式,其安全性和运行效率至关重要。
而信号控制系统作为高速铁路运行的核心部分,直接影响着列车的运行安全和准时性。
本文将针对高速铁路信号控制系统进行优化研究,从提高列车运行安全性和运行效率两个方面展开讨论。
第二章:高速铁路信号控制系统概述2.1 高速铁路信号控制系统的功能与作用高速铁路信号控制系统主要负责列车的进路分配、时刻表的制定、信号灯的控制以及运行冲突的预防等任务。
2.2 高速铁路信号控制系统的组成与原理高速铁路信号控制系统由调度系统、信号系统、车载设备等模块组成,通过信息的交互与传输实现列车的安全运行。
第三章:高速铁路信号控制系统存在的问题3.1 运行安全性问题3.1.1 进路冲突问题3.1.2 信号灯控制不准确问题3.2 运行效率问题3.2.1 进发车间隔不合理问题3.2.2 时刻表制定不科学问题第四章:高速铁路信号控制系统优化方法4.1 运行安全性优化方法4.1.1 引入自动化信号控制技术4.1.2 加强信号设备维护与管理4.2 运行效率优化方法4.2.1 优化进发车间隔算法4.2.2 基于列车运行数据的时刻表优化算法第五章:案例研究:某高速铁路信号控制系统的优化实践5.1 系统分析与问题提出5.2 优化方案设计与实施5.3 优化效果评估与分析第六章:结论与展望6.1 结论总结通过对某高速铁路信号控制系统的优化研究,改善了系统的运行安全性和运行效率。
6.2 发展展望未来可以进一步研究和探索新的技术手段,如人工智能和大数据分析等,来进一步提高高速铁路信号控制系统的性能。
注:文章仅为示例,实际文章内容需根据具体情况进行撰写。
高速铁路信号控制系统的设计与仿真

高速铁路信号控制系统的设计与仿真随着现代化交通方式的发展,高速铁路作为一种高效、快速、安全的出行方式正变得越来越重要。
而在高速铁路系统中,信号控制系统扮演着至关重要的角色。
本文将探讨高速铁路信号控制系统的设计与仿真。
高速铁路信号控制系统是用于确保列车运行的安全和顺利的系统,它包括信号设备、线路电气设备、通信设备和中央监控系统等。
其主要功能有列车位置检测、列车控制和列车通信三个方面。
首先,列车位置检测是信号控制系统的核心功能之一。
通过安装在铁路线路上的轨道电路和车载设备,系统能够准确地检测列车的位置和速度。
轨道电路通过电气脉冲来感应列车的位置和通过计算来计算速度,而车载设备通过接受轨道电路发出的信号来获取位置和速度信息。
这样,系统就可以实时监控列车的位置,从而做出相应的信号控制。
其次,列车控制是高速铁路信号控制系统的另一个重要功能。
通过系统内置的车辆检测器、信号机、道岔和闭塞装置等,可以实现列车的控制。
车辆检测器可以检测列车的到站、发车等状态,并发送相应的信号给信号机和中央监控系统。
信号机则通过颜色、灯光等方式向列车驾驶员传递行车指令。
此外,道岔和闭塞装置也起到了关键作用,它们可以确保列车可以进行安全的转换和防止两列车同时进入同一段轨道。
最后,列车通信是高速铁路信号控制系统的重要组成部分。
通过使用现代通信技术,如微波通信、光纤通信等,系统可以实现列车之间、列车与地面的双向通信。
这样,驾驶员可以及时地接收到中央监控系统发出的相关信息,如速度限制、下一站信息等。
同时,系统也可以通过通信设备实时监测列车的运行状况和故障情况,从而确保系统的正常运行。
为了保证高速铁路信号控制系统的性能和安全性,设计与仿真是必不可少的环节。
设计阶段应该充分考虑系统的可靠性、稳定性和扩展性。
通过使用合适的建模工具,如MATLAB、Simulink等,可以对系统进行仿真。
仿真能够帮助工程师模拟真实的运行环境,并评估系统的性能。
例如,可以检测系统在不同速度下的反应时间,以确保系统能够及时地做出反应。
高速铁路列车信号控制系统设计与实现

高速铁路列车信号控制系统设计与实现现代社会里,交通运输对于人们的生活和经济发展都起着至关重要的作用。
高速铁路作为高效、便捷的交通工具,日益受到人们的青睐。
然而,高速铁路技术的发展和使用,离不开先进的信号控制系统。
本文将介绍高速铁路列车信号控制系统的设计和实现。
一、高速铁路列车信号控制系统的基本原理高速铁路列车信号控制系统,是将信号机、电子设备和列车设备整合在一起,以实现铁路的安全行车和高效运输。
信号控制系统信号的传递,以及传递的信息内容,是确保高速铁路行车安全的关键因素。
其作用是监测列车的行驶状态,包括列车的位置、速度、加速度等信息,通过电子信号向调度中心、信号机和列车司机发送,以保证铁路的行车安全和准确性。
二、高速铁路列车信号控制系统的构成和功能高速铁路列车信号控制系统由以下几大组成部分构成:1.信号机组成的信号设备系统2.电子装置和网络交换机构3.自动控制装置和配套设备4.列车设备及联锁设备以上四个部分的组成,共同构成高速铁路列车信号控制系统,并完成以下几大功能:1.实现列车运营控制和保护2.实现列车的运行管理和决策3.监测列车的实时运行状态4.快速反应和处理故障事件高速铁路列车信号控制系统的设计是基于先进技术和高可靠性的原则,通过不断的改进和优化,使其达到更高的性能和精度要求,以提高高速铁路的安全性和准确性。
三、高速铁路列车信号控制系统的实现方法高速铁路列车信号控制系统的实现方法有两种:手动和自动控制。
手动控制是通过列车司机的手动操纵,以完成列车的启动、停车、变速和控制等操作。
而自动控制则是通过电子装置和网络交换机构的实现,将列车的运行状态、位置和速度等信息,实时传递给调度中心和信号机等设施,以实现列车的智能化控制。
高速铁路列车信号控制系统的实现方法,需要考虑到系统的性能和可靠性,以及相关设备的精度和稳定性,以保障安全并提高列车的运营效率和准确性。
四、高速铁路列车信号控制系统的未来发展随着信息技术和人工智能的发展,高速铁路列车信号控制系统也将会不断升级和优化。
面向未来的高速铁路信号控制系统设计与实现

面向未来的高速铁路信号控制系统设计与实现第一章:绪论近年来,随着高铁网络的持续扩张和技术水平的不断提高,高速铁路体系越来越成为我国经济社会发展的支柱性基础设施。
而在高速铁路网络中,信号控制系统是保障列车运行安全、提高运行效率的必要设备,其在高速铁路建设和运营中起着不可替代的作用。
因此,本文将以面向未来的高速铁路信号控制系统设计与实现为主题,全面探讨如何构建一个安全、稳定、高效的信号控制系统,以应对未来高铁网络的发展和运营需求。
第二章:高速铁路信号控制系统的现状和发展趋势高速铁路信号控制系统是指利用一定的技术手段对高铁列车进行操控和管理的系统。
目前,国内外主要的高铁信号控制系统有欧洲ETCS系统、美国Purchased ATC系统以及中国RTCS系统等,这些系统的特点是具有较高的安全性和运行效率,可适用于各种复杂的操作环境。
同时随着高速铁路的不断扩张和技术进步,信号控制系统也在不断地发展和完善,主要表现为以下几个方面:1.智能化:信号控制系统通过引入智能化技术,实现对列车的自动化控制和运营管理,提高了系统的运营效率和安全性。
2.网络化:信号控制系统在进行监控和管理时,通过建立数据传输和通信网络,实现相关信息的实时共享,使得系统运营更加透明、精细化。
3.模块化:信号控制系统通过模块化设计,实现了各个功能模块的分离和部署,使得系统具有更高的灵活性和可扩展性。
4.全球化:信号控制系统支持各种标准和协议,充分发挥了国际互操作性,方便系统与其他国家的高速铁路建设接轨。
第三章:高速铁路信号控制系统的设计原则高速铁路信号控制系统的设计需要考虑其独特的操作环境和运营需求,因此需要遵循一些基本的设计原则,以确保系统在运营过程中能够保证高效、安全和稳定。
主要有以下几个方面:1.可靠性:信号控制系统一旦出现故障,将会对列车的运营造成极大的影响,因此系统的可靠性必须得到充分的保障。
这包括对系统硬件、软件、通信设备以及与其他设备的协同等因素都需要进行充分的测试和保证。
高速铁路信号控制系统设计与仿真
高速铁路信号控制系统设计与仿真随着现代城市的快速发展和交通需求的增长,高速铁路成为了现代化交通系统中不可或缺的一部分。
高速铁路的快速、便捷和安全性对信号控制系统提出了更高的要求。
本文将介绍高速铁路信号控制系统的设计和仿真,并分析其在运行中的作用和优势。
一、高速铁路信号控制系统的设计高速铁路信号控制系统的设计需要考虑到列车的运行速度、安全性和路段的状况。
系统的设计目标是确保列车在高速运行过程中可以保持安全的距离,并在出现故障或紧急情况下能够及时制动或停车。
1. 系统元件的选择和布置高速铁路信号控制系统由多个元件组成,包括轨道电路、信号机、检测器以及控制中心等。
这些元件需要根据铁路线路的具体情况进行合理的选择和布置。
例如,在区间较短的区段,可以选择使用电缆代替传统的轨道电路,以提高系统的可靠性和安全性。
2. 信号机的种类和位置信号机是高速铁路信号控制系统中最关键的部分之一。
根据列车的运行速度和行驶方向,信号机需要根据预定的信号灯组合发出不同的信号。
这些信号需要准确地告知列车的驾驶员停车、减速或行驶。
信号机的位置应根据铁路线路的曲线和坡度等因素进行合理选择,以确保列车可以及时接收到信号并作出相应的行动。
3. 控制中心的功能和作用控制中心是高速铁路信号控制系统中的指挥中心,负责监控和控制整个系统的运行。
在紧急情况下,控制中心可以迅速响应并采取相应的措施,如关闭信号、制动列车等。
同时,控制中心还可以与其他交通系统进行联动,以确保高速铁路的运行安全和高效。
二、高速铁路信号控制系统的仿真高速铁路信号控制系统的设计需要在实际运行之前进行充分的仿真测试。
通过仿真可以模拟各种运行场景,评估系统的性能和安全性,以及取得改进和优化的方法。
1. 仿真技术的选择和应用在高速铁路信号控制系统的仿真中,常用的技术包括仿真软件、虚拟现实和实时模拟等。
这些技术可以模拟列车的运行、信号机的工作和系统的响应等,以提供准确的测试结果。
通过仿真技术,可以更好地预测和解决潜在的问题,提高信号控制系统的可靠性和安全性。
高速铁路通信信号系统
二、列车运行控制系统 6、CTCS-3列控系统
(3)系统组成——地面子系统 其中GSM-R不属于CTCS设备,但是CTCS的重要组成部分。
概述 列车运行控制系统 调度集中CTC 计算机联锁系统
内 容 概 要
调度集中系统CTC
临时限速服务器、联锁
无线闭塞中心(RBC)
概述 列车运行控制系统 调度集中CTC 计算机联锁系统
内 容 概 要
二、列车运行控制系统 6、CTCS-3列控系统
(3)系统组成——车载子系统 轨道电路接收模块(TCR)——用于接收地面轨道电路传输的信息,并通过解调后传送给车载ATP和LKJ。 测速测距模块(SDU)——一般采用多普勒雷达和车轮传感器来实现列车的测速和测距,所得到的距离和速度信息送给ATP和LKJ,用于防护列车运行。车载列控设备利用多普勒雷达和车轮传感器的数据配合,可识别列车发生的“空转”和“滑行”现象。
01
内 容 概 要
02
二、列车运行控制系统 6、CTCS-3列控系统
(1)概述 CTCS-3级列控系统是CTCS技术体系中的一个应用等级,是基于现代移动通信系统(GSM-R)完成车地通信的列控系统,符合了CBTC (Communication Based Train Control System)列控系统的发展潮流,是世界高端水平的列控系统。
概述 列车运行控制系统 调度集中CTC 计算机联锁系统
内 容 概 要
二、列车运行控制系统 6、CTCS-3列控系统
概述 列车运行控制系统 调度集中CTC 计算机联锁系统
工作原理
内 容 概 要
ห้องสมุดไป่ตู้
在CTCS-3级列控系统中,无线通信系统(GSM-R)完成车地双向通信得知其管辖区域内的列车运行情况从而得到轨道占用情况,并结合运行时刻表、线路数据等信息生成列车的移动授权,再由无线通信网络告知列车。列车通过移动授权得到目标速度、目标距离、线路数据,结合自身制动性能产生一次制动曲线,监控列车运行。
高速铁路技术中信号控制系统的使用教程
高速铁路技术中信号控制系统的使用教程随着科技的发展和城市化进程,高速铁路的建设在世界各地正在飞速推进。
而在高速铁路系统中,信号控制系统是至关重要的一部分,它对于确保列车运行的安全和高效起着重要作用。
本文将介绍高速铁路技术中信号控制系统的使用教程。
一、高速铁路信号控制系统概述高速铁路信号控制系统是一种基于先进技术的列车运行控制系统,它通过信号来指示列车运行状态、速度和安全情况,保障列车的运行安全和正常。
信号控制系统主要有三大组成部分:信号机、轨道电路和列车自动控制系统。
1.1 信号机信号机是信号控制系统中的重要装置,用于向列车驾驶员和乘客传递信息。
信号机采用灯光和数字显示来指示列车行驶速度、安全情况以及列车停车和发车的指令。
信号机的种类多样,例如:信号灯、信号显示器等。
1.2 轨道电路轨道电路是信号控制系统中的传感设备,通过轨道上的电流变化来实时监控列车位置。
轨道电路根据列车的位置将信息发送给信号机,以便及时调整信号的显示和控制列车的行驶速度。
通过轨道电路,信号控制系统可以实现列车的自动控制。
1.3 列车自动控制系统列车自动控制系统是一个用于监控和控制列车的系统,它集成了列车的运行信息、信号机的指令和轨道电路的监测数据,通过计算机算法来实现列车的自动驾驶和速度控制。
列车自动控制系统可以确保列车运行的安全和高效。
二、高速铁路信号控制系统的使用教程2.1 信号机的使用在高速铁路中,信号机主要用于向列车驾驶员和乘客传递信息。
驾驶员需要密切关注信号机的指示,遵循其要求进行操作。
不同的信号指示含义不同,例如,绿灯表示行驶、黄灯表示减速、红灯表示停车等。
驾驶员需要根据信号机指示的灯光变化做出相应的反应,确保列车行驶的安全。
2.2 轨道电路的使用轨道电路是高速铁路信号控制系统中的重要传感设备,用于实时监测列车位置并发送信息给信号机。
驾驶员需要理解轨道电路的工作原理和监测方法。
同时,在驾驶列车的过程中,注意避免轨道电路故障和干扰,保证传感器正常工作。
高速铁路信号与控制系统
高速铁路信号与控制系统
(2)为了提高行车效率,高速铁路都建有调度中心。 由调度员统一指挥全线列车运行。调度集中系统远距离 控制全线信号、转辙机和列车进路,正常行车不需要车 站本地控制。
(3)在各车站及区间信号室附近设置车次号核查等
这是由调度中心指挥列车运行所必需的基础设备。
高速铁路信号与控制系统
高速铁路信号与控制系统
双机热备切换技术的基本思路是对模 块不间断地进行检测,发现故障时就将 该模块从系统中隔离出来,并及时将备 用模块投入使用。双机热备切换技术的 主要方法有自诊断切换法、比较切换法 和仲裁切换法等。
高速铁路信号与控制系统
高速铁路信号与控制系统
(3)二乘二取二结构。随着高速 铁路建设的发展,对计算机联锁的安 全性和可靠性提出了更高的要求,需 要计算机联锁技术在双机热备的基础 上有一个很大的提升,以适应高速铁 路的信号控制要求。
(4)车站采用计算机联锁和大号码 道岔,道岔转换采用多台转辙机多点牵引。
(5)重视安全防护。高速铁路信号 与控制系统配备了热轴探测、限界检查、 自然灾害报警等监测点并与调度中心联网, 防患于未然。
高速铁路信号与控制系统
(6)通信信号一体化在高速铁路中 得到充分体现。专用通信系统承载业务以 数据为主,辅以话音和图像。信息传递的 时效性、安全性和可靠性要求更高。车站 和调度中心大都采用局域网。
高速铁路信号与控制系统
2. 计算机联锁子系统的基本结构
为了满足系统对可靠性、安全性的要求,计算机 联锁子系统采用冗余设计的方法。近年来,计算机联 锁子系统已由最初的单机系统、双机冷备系统发展成 为双机热备、三取二、二乘二取二等高级别冗余结构。
高速铁路信号与控制系统
(1)双机热备结构。双机热备型联锁系统是目 前被大量应用的联锁制式,其基本思想是:单机双软 件保证安全,双机提高可靠性。双机热备属于动态冗 余结构,可以通过切换来动态地改变系统配置。当主 用系统发生故障时,备用系统可以自动转换为主用系 统进行控制,大大地提高了系统的可靠性和可用性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高速铁路信号与控制系统
高速铁路的信号与控制系统,是高速列车安全、高密度运行的基本保证。
因此,世界各国发展高速铁路,都十分重视行车安全及其相关支持系统的研究和开发。
高速铁路的信号与控制系统是集微机控制与数据传输于一体的综合控制与管理系统,是当代铁路适应高速运营、控制与管理而采用的最新综合性高技术,一般通称为先进列车控制系统(Advanced Train Control Systems)。
如北美的先进列车控制系统(ATCS)和先进铁路电子系统(ARES),欧洲列车控制系统(ETCS),法国的实时追踪自动化系统(ASTREE),日本的计算机和无线列车控制系统(CARAT),等等。
先进列车控制系统是铁路在技术上的一次突破,它将使铁路和整个国民经济取得巨大的经济效益。
从80年代初开始研究的先进列车控制系统,现仍处于研究、试验与完善之中。
近年来,许多国家为先进列车控制系统研制了多种基础技术设备,如列车自动防护系统、卫星定位系统、车载智能控制系统、列车调度决策支持系统、分散式微机联锁安全系统、列车微机自动监测与诊断系统等。
世界上许多国家如美国、加拿大、日本和西欧各国都将在20世纪末到21世纪初,逐步推广应用这些新技术。
目前一些国家已经开始分层次的实施。
ARES系统是为了提高铁路运输的安全和效率而研制的两种基本控制系统之一。
它采用全球定位卫星接收器和车载计算机,通过无线通信与地面控制中心连接起来,实现对列车的智能控制。
中心计算机根据线路状态信息和机车计算机报告的本身位置和其他列车状态信息等,随时计算出应采取的措施,使列车有秩序地行驶,并能控制列车实现最佳的制动效果。
全球定位卫星系统定位精确,误差不超过1m。
ARES并利用全球定位卫星来绘制实时地图,使司机能在驾驶室的监视器上清楚地了解列车前方的具体情况,从而解决了夜间和雨雾天气时的观察困难。
ATCS,即先进列车控制系统则采用设在地面上的查询应答器(Transponder),而不用全球定位卫星。
应当指出,ARES和ATCS的功能不限于列车自动驾驶,它们的潜力还很大。
计算机还可以在30S以内,计算出一条铁路线的最佳运行实时计划,以便随时调整列车运行,达到安全效率和节能的最佳综合指标。
除美国研制的ATCS与ARES系统外,其他发展高速铁路的各国也都十分重视行车安全与控制系统的开发研究。
作为世界高速铁路发展较快的“三强”国家,即日本、法国和德国,在地面信号设备中,区间设备都采用了符合本国国情的可靠性高、信息量大、抗干扰能力强的微电子化或微机化的不同形式的自动闭塞制式;车站联锁正向微机集中控制方向发展;为了实现高速铁路道岔转换的安全,转辙装置也向大功率多牵引点方向发展,同时开发研究了道岔装置的安全监测系统。
在车上,世界各国的高速铁路都积极安装了列车超速防护和列车自动控制系统。
首先,日本在东海道新干线采用了ATC系统,法国TGV高速线采用了TVW300
和TVM430系统,德国在ICE高速线上采用了LZB系统。
这些系统的共同点是新系统完全改变了传统的信号控制方式,可以连续、实时监督高速列车的运行速度,自动控制列车的制动系统,实现列车超速防护;另外,通过集中运行控制,系统还可以实现列车群体的速度自动调整,使列车均保持在最优运行状态,在确保列车安全的条件下,最大限度的提高运输效率,进而系统还可以发展为以设备控制全面代替人工操作,实现列车控制全盘自动化。
这些系统的不同点主要体现在控制方式、制动模式及信息传输的结构方面。
德国的LZB连续式列车运行控制系统,其运营速度可达270km/h。
它是目前世界上唯一采用以轨道电缆为连续式信息传输媒体的列车控制系统,可实现地面与移动列车之间的双向信息传输,同时还可利用轨道电缆交叉环实现列车定位功能,控制方式是以人工控制为主。
LZB系统首先将连续式速度模式曲线应用于高速列车的制动控制,打破了过去分段速度控制的传统模式,可以进一步缩短列车运行的时隔时分,因此能更好地发挥硬件设备在提高线路运输效率方面的潜在能力。
法国的TVM300系统是早期产品,TVM430型是在它的基础上进行数字化改造后的列车控制系统,在TGV北方线上采用,列车运行速度可达320km/h。
TVM430系统的地面信息传输设备采用UM71型无绝缘数字式轨道电路,由地面向移动列车之间实现地对车信息的单向传输。
信号编码总长度为27个信息位,其中有效信息为21位。
列车的定位功能也是由轨道电路完成的。
TVM430型系统制动模式采用的是分段连续式速度监督曲线,控制方式以人工控制为主。
只有当司机没有按要求操作时,控制设备才自动完成其应执行的任务。
日本是世界上最早实现高速铁路运营的国家,目前列车时速可达270km/h。
当列车时速一步提高到300km/H以上时,由于模拟式轨道电路由地面向列车的传输的信息量不够,而增设了地面与机车之间的应答器设备做为辅助信息传输装置。
日本ATC系统的安全信息传输媒介采用有绝缘模拟式轨道电路,因此地面与移动列车之间为单向信息传输,信息量较少。
近年来,日本对原有ATC系统进行了数字化改造,使地面向移动列车传输的信息量增加到40,60位bit(比特)数据。
因此使新的日本高速铁路列车运行控制系统能够适应更高的列车运行时速的要求。
日本新干线的信号与控制系统到现在已运营35年,法国TGV东南线运营了10多年,都保持了良好的安全运行纪录,从未发生过一件有关人员伤亡的行车重大事故,在世界高速铁路的发展中展现出一幅美好的前景。
目前,世界高速铁路列车自动控制系统的控制方式主要分为两类。
一类是以设备为主、人控为辅的控制方式。
这种方式以日本为代表。
另一类是人机共用、人控为主的方式,以法国为代表。
法国北部线的列车速度和运行密度更高,需要更先进的列车控制技术。
高速铁路的信号与控制设备,是以电子器件或微电子器件为主的集中管理、分散控制为主的所谓集散式控制方式,分为行车指挥自动化与列车运行自动化两大部分。
信号显示应以机车自动信号为主,车站与区间的地面信号为辅。
由于列车行车速度高,列车密度大,因此区间行车采用四显示——红、黄、黄绿、绿。
从20世纪60年代起,电子设备开始引入铁路信号及控制系统。
例如,大站与小站电子集中及移频自动闭塞等制式,由于这类系统动作速度加快,可靠性提高,为发展高速铁路的信号与控制设备奠定了技术基础。
70年代初期第一代微处理机的问世,使信息与控制技术飞速发展。
高速铁路信号与控制系统的发展也属于其中之一。
在微机控制系统中,容错技术得到了发展。
所谓容错控制(Fault-Tolerance Control),是指通过设计方法,保证控制系统的基本功能不受元部件故障的影响,即在有故障的情况下,系统仍能维持原定功能或系统性能仍可保持在可接受的范围内。
其次是信息技术沿着信息化、自动化、最优化与智能化等四个层次的发展。
信息化是把客观的物理概念进行数字化,便于计算机处理,这是最初层次;自动化是按某一固定规则进行必须的重复处理,达到预期的目的;最优化是按某种预定指标,在一定约束条件下求得最优解;智能化是信息处理的最高层次,包括理解、推理、分析、判断等步骤。
智能化的标志是知识的表达与应用。
由于新技术及微型计算机的发展及应用,高速铁路信号与控制系统的主要特点是:
(一)管理集中、控制分散的微机综合列车自动控制系统。
(二)具有较高的容错能力及安全性,即使调度中心计算机发生故障,各站微机也能按计划很好地完成各项控制功能。
(三)具有较大的信息处理能力及系统运用上的灵活性,可以构成包括行车指挥、运行控制和运营管理在内的综合控制系统。
(四)人,机关系合理,构成系统的主要设备及计算机的软、硬件都已模块化,功能综合,设备一体化。
综合以上特点用英文缩写的高速铁路列车控制系统为C4I系统(即由微机、控制、指挥、通信与信息五个英文字的第一字母组成)。
这种控制系统不仅使控制范围扩大了,速度加快了,而且还使系统的可靠性与安全性提高了。
例如安全型继电器的可靠性指标为10-7~10-10,而STD总线制的微机控制系统,其可靠性指标可达10-12。
可靠性指标的提高,促使世界各国大力发展和应用新一代的列车自动控制系统。