【高中数学课件】抛物线的几何性质1 ppt课件
合集下载
抛物线的性质ppt课件

x
p
2
P1
l
p
p
端点为
(
, p )
特别地, 当x1 x2 时, AB 2 p, 此时 AB 为抛物线的通径.
2
2
y
y
设P ( x0 , y0 ),
l
P
P1
F
P
O
l
则由抛物线的定义,
|PF| | P1 P | x0
p
2
设P ( x0 , y0 ),
P1
x
O
则由抛物线的定义,
p
y k ( x 1)
联立 2
得k 2 x 2 (2k 2 4) x k 2 0(k 0).
y 4x
4
4
x1 x2 2 2 . PQ PF QF x1 x2 2 4 2 8.
k
k 2 1. k tan [1,0) (0,1].
(1)若直线l的倾斜角为60, 求 AB 的值.
(2)若 AB 9, 求线段AB的中点M到准线的距离.
3
3
解 : (1) F ( ,0), l : y 3 ( x )
2
2
3
9
y 3( x ) 2
联立
2 得x 5 x 0. 设A( x1 , y1 ), B( x2 , y2 ).
F
B
p
AF AA' p AF cos AF (1 cos ) p AF
1 cos
p
BF p BF cos BF
1 cos
上-下+
为直线的倾斜角.
高中数学抛物线的几何性质总结课件

开口大小与函数值随x变化的幅度有关,开口越小,函数值变化幅度越小;开口 越大,函数值变化幅度越大。
开口方向与开口大小的关系
开口方向与开口大小的相互影响
开口方向和开口大小是相互影响的,一般来说,向上开口的抛物线开口会逐渐变小,向下开口的抛物线开口会逐 渐变大。
特殊情况下的关系
当a=0时,抛物线退化为一条直线,此时开口方向和大小无法定义。
04 抛物线的对称性
抛物线的对称轴
抛物线关于其对称轴对称,对称轴是 一条垂直于x轴的直线。
对称轴是抛物线几何性质的一个重要 特征,它决定了抛物线的形状和位置 。
对于标准形式的抛物线 y=ax^2+bx+c,其对称轴的方程是 x=-b/2a。
抛物线的对称中心
抛物线的对称中心是其顶点的位 置,顶点坐标可以通过二次函数 的顶点式y=a(x-h)^2+k得到。
抛物线上的任意一点 到焦点的距离等于该 点到准线的距离。
抛物线的标准方程
开口向右的抛物线方程为 $y^2 = 2px$,其中 $p$ 是焦 距。
开口向左的抛物线方程为 $y^2 = -2px$,其中 $p$ 是 焦距。
ቤተ መጻሕፍቲ ባይዱ
抛物线的标准方程可以根据焦 点和准线的位置进行变换。
抛物线的几何性质
01
02
03
开口方向与函数值变化趋势
开口方向与函数值随x的变化趋势一致,向上开口时函数值随x增大而增大,向 下开口时函数值随x增大而减小。
抛物线的开口大小
开口大小与二次项系数的绝对值大小
开口大小由二次项系数的绝对值|a|决定,|a|越大,抛物线开口越小;|a|越小,抛 物线开口越大。
开口大小与函数值变化幅度的关系
开口方向与开口大小的关系
开口方向与开口大小的相互影响
开口方向和开口大小是相互影响的,一般来说,向上开口的抛物线开口会逐渐变小,向下开口的抛物线开口会逐 渐变大。
特殊情况下的关系
当a=0时,抛物线退化为一条直线,此时开口方向和大小无法定义。
04 抛物线的对称性
抛物线的对称轴
抛物线关于其对称轴对称,对称轴是 一条垂直于x轴的直线。
对称轴是抛物线几何性质的一个重要 特征,它决定了抛物线的形状和位置 。
对于标准形式的抛物线 y=ax^2+bx+c,其对称轴的方程是 x=-b/2a。
抛物线的对称中心
抛物线的对称中心是其顶点的位 置,顶点坐标可以通过二次函数 的顶点式y=a(x-h)^2+k得到。
抛物线上的任意一点 到焦点的距离等于该 点到准线的距离。
抛物线的标准方程
开口向右的抛物线方程为 $y^2 = 2px$,其中 $p$ 是焦 距。
开口向左的抛物线方程为 $y^2 = -2px$,其中 $p$ 是 焦距。
ቤተ መጻሕፍቲ ባይዱ
抛物线的标准方程可以根据焦 点和准线的位置进行变换。
抛物线的几何性质
01
02
03
开口方向与函数值变化趋势
开口方向与函数值随x的变化趋势一致,向上开口时函数值随x增大而增大,向 下开口时函数值随x增大而减小。
抛物线的开口大小
开口大小与二次项系数的绝对值大小
开口大小由二次项系数的绝对值|a|决定,|a|越大,抛物线开口越小;|a|越小,抛 物线开口越大。
开口大小与函数值变化幅度的关系
3.3.2抛物线的简单几何性质第1课时PPT课件(人教版)

(2)关于y轴对称,准线经过点E(5,-5);
(3)准线在y轴右侧,顶点到准线的距离是4;
(4)焦点F在y轴负半轴上,经过横坐标为16 的点P,且FP平行于准线.
例2 斜率为1的直线经过抛物线 y2=4x的焦点,与抛物线 相交于两点A、B,求焦点弦长AB的长.
解:方法一:由抛物线的标准方程可知,抛物线焦点的坐标为 F (1,0), 所以直线 AB 的方程为 y 0 1 ( x 1) ,即 y x 1 , ①
p y= 2
范围 x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R
开口方向
向右
向左
向上
向下
如何研究抛物线y2 =2px(p>0)的几何性质?
1.范围
y
由抛物线y2 =2px(p>0)
有 2 px y2 0 x 0
p0
所以抛物线的范围为 x 0
o F ( p ,0) x
2
2.对称性 视察图象,不难发现,抛物线 y2 = 2px (p>0)
x(p>0)
2
y p 2
y ≤0 x∈R
y轴
作业:课本136页练习1,2,3,4
2.4.2抛物线的简单几 何性质(1)
1.掌握抛物线的简单几何性质. 2.归纳、对照四种方程所表示的抛物线的几何性质.
1.数学抽象:抛物线的几何性质 2.逻辑推理:运用抛物线的方程推导其几何性质 3.数学运算:抛物线几何性质的简单应用
1.抛物线的概念 平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫 做抛物线.点F叫做抛物线的 焦点 ,直线l叫做抛物线的准线 .
x p 2
x≥0 y∈R
x轴
yl
FO
(3)准线在y轴右侧,顶点到准线的距离是4;
(4)焦点F在y轴负半轴上,经过横坐标为16 的点P,且FP平行于准线.
例2 斜率为1的直线经过抛物线 y2=4x的焦点,与抛物线 相交于两点A、B,求焦点弦长AB的长.
解:方法一:由抛物线的标准方程可知,抛物线焦点的坐标为 F (1,0), 所以直线 AB 的方程为 y 0 1 ( x 1) ,即 y x 1 , ①
p y= 2
范围 x≥0,y∈R x≤0,y∈R y≥0,x∈R y≤0,x∈R
开口方向
向右
向左
向上
向下
如何研究抛物线y2 =2px(p>0)的几何性质?
1.范围
y
由抛物线y2 =2px(p>0)
有 2 px y2 0 x 0
p0
所以抛物线的范围为 x 0
o F ( p ,0) x
2
2.对称性 视察图象,不难发现,抛物线 y2 = 2px (p>0)
x(p>0)
2
y p 2
y ≤0 x∈R
y轴
作业:课本136页练习1,2,3,4
2.4.2抛物线的简单几 何性质(1)
1.掌握抛物线的简单几何性质. 2.归纳、对照四种方程所表示的抛物线的几何性质.
1.数学抽象:抛物线的几何性质 2.逻辑推理:运用抛物线的方程推导其几何性质 3.数学运算:抛物线几何性质的简单应用
1.抛物线的概念 平面内与一个定点F和一条定直线l(l不经过点F)的距离相等的点的轨迹叫 做抛物线.点F叫做抛物线的 焦点 ,直线l叫做抛物线的准线 .
x p 2
x≥0 y∈R
x轴
yl
FO
抛物线的几何性质 教学课件(共46张PPT)高中数学人教B版(2019)选择性必修第一册

2
5.已知抛物线 y2 2 px( p 0) 的焦点坐标为 F(1,0) ,则抛物线上的动点 P 到点
C M (3p,0) 的距离 MP 的最小值为( )
A.2
B.4
C. 2 5
D.4 5
解析:由题意,得抛物线的标准方程为 y2 4x .设抛物线上动点 P 的坐标为
x0, y0 ,则 y02 4x0 .由 M (6, 0) ,得| MP |2 x0 62 y02 x02 12x0 36 4x0 x0 42 20 .因为 x0 0 ,所以当 x0 4 时,| MP |2 取得最小值 20,即| MP |2 20 ,
y2
4ty
4s
0
.
则 y1 y2 4t , y1 y2 4s .
OA OB ,OAOB 0 ,即 x1x2 y1y2 0 ,
即
y12 4
y22 4
y1 y2
0
,化简,得
y1 y2
16
解析: 抛物线 y 4x2 的标准方程为 x2 1 y , 其准线方程为 y 1 .
4
16
直线 y 1 关于 y x 对称的直线的方程为 x 1 ,
16
16
所求的抛物线的准线方程为 x 1 . 16
9.抛物线 y2 2 px( p 0) 的焦点为 F,过抛物线上一点 P 作 x 轴的平行线交 y 轴 于点 M,抛物线的准线交 x 轴于点 N,四边形 PMNF 为平行四边形,则点 P 到 x
所以| MP | 2 5 ,即动点 P 到点 M (3p,0) 的距离的最小值为 2 5 .故选 C.
6.过抛物线 y2 4x 的焦点 F 的直线交该抛物线于 A,B 两点,且| AB | 16 . 3
D 若 AF t FB (其中t 1),则实数 t 的值为( )
5.已知抛物线 y2 2 px( p 0) 的焦点坐标为 F(1,0) ,则抛物线上的动点 P 到点
C M (3p,0) 的距离 MP 的最小值为( )
A.2
B.4
C. 2 5
D.4 5
解析:由题意,得抛物线的标准方程为 y2 4x .设抛物线上动点 P 的坐标为
x0, y0 ,则 y02 4x0 .由 M (6, 0) ,得| MP |2 x0 62 y02 x02 12x0 36 4x0 x0 42 20 .因为 x0 0 ,所以当 x0 4 时,| MP |2 取得最小值 20,即| MP |2 20 ,
y2
4ty
4s
0
.
则 y1 y2 4t , y1 y2 4s .
OA OB ,OAOB 0 ,即 x1x2 y1y2 0 ,
即
y12 4
y22 4
y1 y2
0
,化简,得
y1 y2
16
解析: 抛物线 y 4x2 的标准方程为 x2 1 y , 其准线方程为 y 1 .
4
16
直线 y 1 关于 y x 对称的直线的方程为 x 1 ,
16
16
所求的抛物线的准线方程为 x 1 . 16
9.抛物线 y2 2 px( p 0) 的焦点为 F,过抛物线上一点 P 作 x 轴的平行线交 y 轴 于点 M,抛物线的准线交 x 轴于点 N,四边形 PMNF 为平行四边形,则点 P 到 x
所以| MP | 2 5 ,即动点 P 到点 M (3p,0) 的距离的最小值为 2 5 .故选 C.
6.过抛物线 y2 4x 的焦点 F 的直线交该抛物线于 A,B 两点,且| AB | 16 . 3
D 若 AF t FB (其中t 1),则实数 t 的值为( )
抛物线的简单几何性质ppt课件

所以开口向左,焦点坐标为
1 2
,
0
,准线为
x
1 2
,对称轴为
x
轴,
即 D 正确,ABC 错误.
2.若抛物线 y2 4x 过焦点的弦被焦点分成长为 m 和 n 两部分,则 m 与 n 的关系式
为( C )
A. m n 4
B. mn 4
C. 1 1 1 mn
D. 1 1 2 mn
解析:令过焦点的弦为 x ky 1,与抛物线交点分别为 A、B,
下面介绍另一种方法——数形结合的方法
在图中,设 A x1, y1 , B x2, y2 .由抛物线的定义可知, AF 等于点 A 到准线的
距离 AA' .由 p
2, p 2
1 ,得 AA'
x1
BF
BB '
x2
p 2
x2 1 ,于是得 AB
p 2
x1
AF
1 .于是 AF x1 1 ,同理, BF =x1+x2 +p x1+x2 +2 .
4.已知抛物线 y2 8x 上一点 P 到准线的距离为 d1 ,到直线l : 4x 3y 12 0 的距离
D 为 d2 ,则 d1 d2 的最小值为( )
A.1
B.2
C.3
D.4
解析:由抛物线 y2 8x 知,焦点 F 2,0 ,准线方程为l : x 2 ,根据题意作图如下;
点 P 到直线 l : 4x 3y 12 0 的距离为 PA ,到准线l1 : x 2 的距离为 PB , 由抛物线的定义知: PB PF , 所以点 P 到直线 l : 4x 3y 12 0 和准线l1 : x 2 的距离之和为 PF PA ,
高二数学抛物线的简单几何性质1省公开课金奖全国赛课一等奖微课获奖PPT课件

PF QF
PF QF 0 即( p, y1) ( p, y2 ) 0
p2 y1 y2 0
即y1 y2 p2
易得:x1x2
p2 4
Py A
O •F
x
Q
B
12/15
例5、正三角形的一个顶点位于坐标原点,另外 两个顶点在抛物线y2 2 px(p 0)上,求这个 正三角形的边长.
K.
OF
x
--抛物线标准方程
2/15
2、抛物线标准方程:
标准方程 y2 2 px( p 0) y2 2 px( p 0) x2 2 py( p 0) x2 2 py( p 0)
y
图形
F
o
x
. .
y F ox
焦点 准线
F ( p ,0) 2
x p 2
F ( p ,0) 2
x p 2
y
(0,0)
p 2
x0
p x1 x2
(0,0)
p 2
x0
p (x1 x2 )
(0,0)
p 2
y0
p y1 y2
(0,0)
p 2
y0
p ( y1 y2 )
8/15
三、例题选讲:
例1. 顶点在坐标原点,对称轴是坐标轴,而且过点
M(2, 2 2 )抛物线有几条,求它标准方程.
当焦点在x[或y]轴上,开口方向不定时, 设为y2=mx(m ≠0) [或x2=my (m≠0)],可 防止讨论!
1.抛物线只位于半个坐标平面内,即使它能够无 限延伸,但它没有渐近线; 2.抛物线只有一条对称轴,没有对称中心;
3.抛物线只有一个顶点、一个焦点、一条准线; 4.抛物线离心率是确定e=1; 5.抛物线标准方程中p对抛物线开口影响.
3.3.2抛物线的简单几何性质(第1课时)课件-高二上学期数学人教A版(2019)选择性必修第一册

3
4
y= (x-1),
3
与抛物线方程联立,得
消去 y,
y2=4x,
整理得 4x 2-17x+4=0.
17
25
由抛物线的定义可知,|AB|=x 1+x 2+p=
+2=
.
4
4
25
所以线段 AB 的长为
.
4
典例剖析
[方法提升] 求过抛物线焦点的直线与抛物线相交弦长:
(1)焦点弦长公式;
(2)两点间距离公式;
2
法三:
y
2
p
p
AFx1 , BFx2 ,
2
2
AB AFBFx1 x2 p.
o
’
l
F
B
x
典例剖析
题型一:抛物线几何性质的应用
例 1:已知 A,B 是抛物线 y2=2px(p>0)上两点,O 为
坐标原点,若|OA|=|OB|,且△ABO 的垂心恰是此抛物线的
焦点 F,求直线 AB 的方程.
复习导入
1.抛物线的定义
平面内与一个定点F 和一条定直线 ( 不
H
经过点F)的距离相等的点的轨迹叫做抛物线.
┑
d
P
F
l
图形
复
习
导
入
标准方程
焦点坐标
准线方程
x
y2=2px
(p>0)
p
F ( , 0)
2
p
x
2
x
y2=-2px
(p>0)
p
F ( , 0)
2
p
x
2
x2=2py
(p>0)
p
F (0, )
4
y= (x-1),
3
与抛物线方程联立,得
消去 y,
y2=4x,
整理得 4x 2-17x+4=0.
17
25
由抛物线的定义可知,|AB|=x 1+x 2+p=
+2=
.
4
4
25
所以线段 AB 的长为
.
4
典例剖析
[方法提升] 求过抛物线焦点的直线与抛物线相交弦长:
(1)焦点弦长公式;
(2)两点间距离公式;
2
法三:
y
2
p
p
AFx1 , BFx2 ,
2
2
AB AFBFx1 x2 p.
o
’
l
F
B
x
典例剖析
题型一:抛物线几何性质的应用
例 1:已知 A,B 是抛物线 y2=2px(p>0)上两点,O 为
坐标原点,若|OA|=|OB|,且△ABO 的垂心恰是此抛物线的
焦点 F,求直线 AB 的方程.
复习导入
1.抛物线的定义
平面内与一个定点F 和一条定直线 ( 不
H
经过点F)的距离相等的点的轨迹叫做抛物线.
┑
d
P
F
l
图形
复
习
导
入
标准方程
焦点坐标
准线方程
x
y2=2px
(p>0)
p
F ( , 0)
2
p
x
2
x
y2=-2px
(p>0)
p
F ( , 0)
2
p
x
2
x2=2py
(p>0)
p
F (0, )
抛物线的简单几何性质 PPT教学课件(高二数学人教A版 选必修一)

国家中小学:XX
日期:XX年XX月XX日
问题1:在椭圆、双曲线中我们研究了它们哪些几何性
质?用什么方法研究的?
标准方程
2
2
+
2
2
2
−
2
2
=1
1
O
2
x
y
=1
> 0, > 0
高中数学
性质
研究方法
y
>>0
2
图象
1
O
2
x
范围、对称性、
顶点、离心率
谢谢观看
祝同学们学习生活愉快!
高中数学
追问2:此题选择哪种抛物线的标准方程呢?
高中数学
问题3:已知抛物线关于 轴对称,它的顶点在原点,并
且经过点 2, − 2 2 ,求它的标准方程.
追问2:此题选择哪种抛物线的标准方程呢?
高中数学
问题3:已知抛物线关于 轴对称,它的顶点在原点,并
且经过点 2, − 2 2 ,求它的标准方程.
y
A
那么 还等于 1 + 2 + 吗?
+
= 1 + + 2 +
2
2
= 1 + 2 + >
高中数学
O
F
x
B
小结:
解
法
特
点
联立直线与抛物线
1
方程,解方程组
直接,
具有一般性
计算量大
2 应用根与系数关系
简化计算
需要掌握技巧
3 用抛物线定义转化
运算极简
适用有局限
日期:XX年XX月XX日
问题1:在椭圆、双曲线中我们研究了它们哪些几何性
质?用什么方法研究的?
标准方程
2
2
+
2
2
2
−
2
2
=1
1
O
2
x
y
=1
> 0, > 0
高中数学
性质
研究方法
y
>>0
2
图象
1
O
2
x
范围、对称性、
顶点、离心率
谢谢观看
祝同学们学习生活愉快!
高中数学
追问2:此题选择哪种抛物线的标准方程呢?
高中数学
问题3:已知抛物线关于 轴对称,它的顶点在原点,并
且经过点 2, − 2 2 ,求它的标准方程.
追问2:此题选择哪种抛物线的标准方程呢?
高中数学
问题3:已知抛物线关于 轴对称,它的顶点在原点,并
且经过点 2, − 2 2 ,求它的标准方程.
y
A
那么 还等于 1 + 2 + 吗?
+
= 1 + + 2 +
2
2
= 1 + 2 + >
高中数学
O
F
x
B
小结:
解
法
特
点
联立直线与抛物线
1
方程,解方程组
直接,
具有一般性
计算量大
2 应用根与系数关系
简化计算
需要掌握技巧
3 用抛物线定义转化
运算极简
适用有局限
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-1
因为点M在-2 抛物线上,所以 (2 2)2 2p•2
-3
即: p=2. -4 因此所求抛物线的方程为 y2=4x.
-5
将方程变形为 y 2 x,.
思考x 题0:抛1 物2 线3y2=42px…中 的py对图0 形2有2影.8 响3.5 吗4?…
.A 抛物线的通径
o.
.
F
x
B
对称轴方程 y= 0
(0, 0)
y=0
(0 , 0)
x= 0
(0,0)
x=0
§8.6抛物线的简单几何性质
例1:已知抛物线关于 坐x 标轴轴 对称y,2=它4的x 顶点在坐标原点,并且
经过解点:M因(为2抛,4321物2 线2 关) ,于求x轴它对的称标,准它y方yy222的=程==2顶x,12x点并x在用原描点点,法画出图形. 并且过-2M( 2,2 2 2 )4,所以6 可设8 它的10 标准方程为y2=2px(p>0)
抛物线y2=2px(p>0)的顶点是坐标原点(0,0). 4.离心率
抛物线上的点到焦点的距离与其到准线的距离的比叫做离心率.
抛物线y2=2px(p>0)的离心率为 1.
§8.6抛物线的简单几何性质
图形 y
oF x
y F ox
y F ox y o Fx
范围 x≥0 x≤0 y≥0
y≤0
顶点坐标 (0, 0)
【高中数学课件】抛物线的几 何性质1 ppt课件
复习
图形
标准方程
焦点坐标
准线方程
y
oF
x
y2=2px(p>0)
( P ,0 ) 2
xP 2
y F ox
y
y2= -2px(p>0) ( P ,0)
2
x P 2
F
x2=2py(p>0)
ox
( 0 ,P ) 2
yP 2
y 天Fo马行空官x方博客x:2=htt-p2://pt.qyq.(cpom>/t0m)xk_do( cin ;0Q, Q:1318P2241) 189;QQ群:y1755696P232
§8.6抛物线的简单几何性质
思考例题3:图中是抛物线形拱桥,当水面在 l 时,拱顶离水面2 米,水面宽4米. 水若下在降水1面米上后有,一水宽面为宽2多米少,?高为1.6米
的船只,能否安全通过此拱桥?
A(2,-2) x2=-2y
水面宽 2 6
B(1,y) y=-0.5
y
o
l
2B A
x
4
作业:P123习题8.6 1、2、3
(2)x2 20y (4)x2 32y
§8.6抛物线的简单几何性质
例2:探照灯反射镜的轴截面是抛物线的一部分,光源位于抛 物线的焦点处,已知灯口圆的直径为60cm,灯深40cm,求抛 物线的标准方程和焦点的位置.
y A
A(40,30)
· O F
x
B
P 45 4
y245x 2
F(45, 0) 8
课件制作:王志毅
§8.6抛物线的简单几何性质
对于抛物线 y2=2px(p>0), 我们来研究它的几何性质: 1.范围
抛物线y2=2px(p>0)上的每一点都位于y轴的右侧,即x≥0. 2.对称性
抛物线y2=2px(p>0)关于x轴对称,即x轴是它的对称轴.
抛物线的对称轴叫做抛物线的轴 3.顶点
抛物线与其对称轴的交点叫做顶点.
x2 2y
§8.6抛物线的简单几何性质
练习
求适合下列条件的抛物线方程:
(1)顶点在原点,关于x 轴对称,并且经过点M(5,-4);
(2)顶点在原点,焦点是F(0,5);
先定型,再定量 (3)顶点在原点,准线是 x=4;
(4)焦点是F(0,-8),准线是 y=8.
(1)y2
16 5
x
(3)y2 16x
因为点M在-2 抛物线上,所以 (2 2)2 2p•2
-3
即: p=2. -4 因此所求抛物线的方程为 y2=4x.
-5
将方程变形为 y 2 x,.
思考x 题0:抛1 物2 线3y2=42px…中 的py对图0 形2有2影.8 响3.5 吗4?…
.A 抛物线的通径
o.
.
F
x
B
对称轴方程 y= 0
(0, 0)
y=0
(0 , 0)
x= 0
(0,0)
x=0
§8.6抛物线的简单几何性质
例1:已知抛物线关于 坐x 标轴轴 对称y,2=它4的x 顶点在坐标原点,并且
经过解点:M因(为2抛,4321物2 线2 关) ,于求x轴它对的称标,准它y方yy222的=程==2顶x,12x点并x在用原描点点,法画出图形. 并且过-2M( 2,2 2 2 )4,所以6 可设8 它的10 标准方程为y2=2px(p>0)
抛物线y2=2px(p>0)的顶点是坐标原点(0,0). 4.离心率
抛物线上的点到焦点的距离与其到准线的距离的比叫做离心率.
抛物线y2=2px(p>0)的离心率为 1.
§8.6抛物线的简单几何性质
图形 y
oF x
y F ox
y F ox y o Fx
范围 x≥0 x≤0 y≥0
y≤0
顶点坐标 (0, 0)
【高中数学课件】抛物线的几 何性质1 ppt课件
复习
图形
标准方程
焦点坐标
准线方程
y
oF
x
y2=2px(p>0)
( P ,0 ) 2
xP 2
y F ox
y
y2= -2px(p>0) ( P ,0)
2
x P 2
F
x2=2py(p>0)
ox
( 0 ,P ) 2
yP 2
y 天Fo马行空官x方博客x:2=htt-p2://pt.qyq.(cpom>/t0m)xk_do( cin ;0Q, Q:1318P2241) 189;QQ群:y1755696P232
§8.6抛物线的简单几何性质
思考例题3:图中是抛物线形拱桥,当水面在 l 时,拱顶离水面2 米,水面宽4米. 水若下在降水1面米上后有,一水宽面为宽2多米少,?高为1.6米
的船只,能否安全通过此拱桥?
A(2,-2) x2=-2y
水面宽 2 6
B(1,y) y=-0.5
y
o
l
2B A
x
4
作业:P123习题8.6 1、2、3
(2)x2 20y (4)x2 32y
§8.6抛物线的简单几何性质
例2:探照灯反射镜的轴截面是抛物线的一部分,光源位于抛 物线的焦点处,已知灯口圆的直径为60cm,灯深40cm,求抛 物线的标准方程和焦点的位置.
y A
A(40,30)
· O F
x
B
P 45 4
y245x 2
F(45, 0) 8
课件制作:王志毅
§8.6抛物线的简单几何性质
对于抛物线 y2=2px(p>0), 我们来研究它的几何性质: 1.范围
抛物线y2=2px(p>0)上的每一点都位于y轴的右侧,即x≥0. 2.对称性
抛物线y2=2px(p>0)关于x轴对称,即x轴是它的对称轴.
抛物线的对称轴叫做抛物线的轴 3.顶点
抛物线与其对称轴的交点叫做顶点.
x2 2y
§8.6抛物线的简单几何性质
练习
求适合下列条件的抛物线方程:
(1)顶点在原点,关于x 轴对称,并且经过点M(5,-4);
(2)顶点在原点,焦点是F(0,5);
先定型,再定量 (3)顶点在原点,准线是 x=4;
(4)焦点是F(0,-8),准线是 y=8.
(1)y2
16 5
x
(3)y2 16x