分块矩阵的各种运算

合集下载

2-3分块矩阵及其运算

2-3分块矩阵及其运算
λ A11 L λ A1 r M . λA = M λA L λ Asr s1
(3 ) 设 A 为 m × l矩阵 , B 为 l × n 矩阵 , 分块成
A11 A= M A s1 L L A1 t M A st , B 11 B = M B t1 L L B1 r M B tr ,
0 1 −1 2 B= 1 0 −1 −1
1 0 0 1 , 4 1 2 0
1 解 把 A, B 分块成 0 A = −1 1
0 1
0 0 0 0 2 1 0 1 0 1
E O = , 1 A E
0 1 −1 2 B= 1 0 −1 −1
第三节、 第三节、分块矩阵及运算
一、矩阵的分块 二、分块矩阵的运算规则
一、矩阵的分块
对于行数和列数较高的矩阵A,为了 简化运算,经常采用分块法 分块法, 简化运算,经常采用分块法,使大矩阵的 运算化成小矩阵的运算. 具体做法是: 运算化成小矩阵的运算. 具体做法是:将 矩阵A用若干条纵线和横线分成许多个小 矩阵, 子块, 矩阵,每一个小矩阵称为A的子块,以子 分块矩阵. 块为元素的形式上的矩阵称为分块矩阵 块为元素的形式上的矩阵称为分块矩阵.

a 0 A= 1 0
1 a 0 1
0 0 b 1
0 A1 0 = A2 , 1 A3 b

A
A 1 = A2 A3
A = (a 1 0 0) 1
0 a 0 0 A2= 0 1 1 b
其中 Ai (i = 1,2, L s )
A1 都是方阵 , 那末称 A 为 O A2 分块对角矩阵 . A= , O O A = diag A1 , A2 ,L , As . As

§4 矩阵的分块运算

§4 矩阵的分块运算

下页
返回
3. 乘法 设A为m × l矩阵 , B为l × n矩阵 , 分块成 A11 L A1t B11 L B1r A= M M , B = M M , A L A B L B st s1 tr t1 其中 Ai1 , Ai 2 , L , Ait 的列数分别等于 B1 j , B2 j , L , Btj的行数 , 那么
o
上页
下页
返回
1 3 例1 设 A = 0 0 0
2 5 0 0 0
0 0 0 0 1 2 0 −1 0 0
解 把A进行分块得 1 2 , 其中A1 = 3 5 1 2 3 A2 = 0 − 1 4 . 0 0 1
且A1−1
0 0 3 , 求A−1 . 4 1 1 3 A = 0 0 0
B −1 − B −1 DC −1 . 因此 A −1 = O C −1
O A = O B−1 另外 A−1 O B O
−1
上页
下页
返回
1 0 例3 设 A = 0 0
ቤተ መጻሕፍቲ ባይዱ

4 3 ; 求 A −1 2 1 1 2 3 利用分块法 A = 0 1 2 0 0 1 0 0 0 2 1 0 0 3 2 1 0
B3 = [0 1 1 b].
上页 下页 返回
一、分块矩阵
总体思想:对于行数和列数较高的矩阵 中 总体思想:对于行数和列数较高的矩阵A中,为了简化 运算,在矩阵A中 用横、竖虚线, 运算,在矩阵 中,用横、竖虚线,将A分成若干 分成若干 小块,视每一块为一元素进行相应的运算, 小块,视每一块为一元素进行相应的运算,然后再 对每一小块进行相应的运算,降阶运算, 对每一小块进行相应的运算,降阶运算,此法称为 矩阵分块法。 矩阵分块法。 具体做法是:将矩阵 用若干条纵 用若干条纵、 具体做法是:将矩阵A用若干条纵、横虚线分成许多个 小矩阵,每一个小矩阵称为矩阵A的子块, 小矩阵,每一个小矩阵称为矩阵 的子块,以子块 为元素的形式上的矩阵称为分块矩阵 分块矩阵. 为元素的形式上的矩阵称为分块矩阵 其中C1 = [a 1], 又如 C 2 = [0 0], a 1 0 0 0 a 0 0 C 1 C 2 A= 0 a 0 0 = C C 1 0 b 1 3 4 C 3 = 1 0 , C 4 = b 1 . 0 1 0 1 1 b 1 b

4 矩阵的分块运算

4   矩阵的分块运算

A2 B2 0
它们还是准对角阵.
10
返回
准对角阵的行列式具有如下性质:
A A1 A2 As . 由此可知,若 Ai 0 ( i 1,2, , s), 则 A 0, 从而A可逆, 且有
A11 1 0 A 0 0 A2
1
0
11
0 0 0 . 1 0 As 0
2
返回
例如,把A分成若干子块
a11 a A 21 a31 a12 a22 a32 a13 a23 a33 a14 A11 a24 A 21 a34 A12 A22 A13 . A14
当然,还有其它分块法. 比如:
a11 a A 21 a31 a12 a22 a32 a13 a23 a33
A11 A1 s B11 B1t , B . A Ar 1 Ars Bs 1 Bst C11 C1t , 于是有 AB C r 1 C rt 其中 C ij Ai 1 B1 j Ai 2 B2 j Ais Bsj
其中子块Aij与Bij的行数相同, 列数也相同, 则有
4
返回
A11 B11 A B 21 21 A B Ar 1 Br 1
A12 B12 A22 B22 Ar 2 Br 2
A1 s B1 s A2 s B2 s . Ars Brs
( i 1,2,, r; j 1,2,, t ).
6
返回
注意: 在分块矩阵的乘积中,左矩阵列的分 法必须与右矩阵行的分法一样.

分块矩阵及其运算

分块矩阵及其运算
第二章
矩阵及其 运算
1
第二章 矩阵概念及其运算
第三节 分块矩阵(Block matrix) 及其运算
分块矩阵的概念 分块矩阵的运算 问题与思考
2
一、分块矩阵的概念
将矩阵A用若干条纵线和横线分成许多小矩阵,每个小 矩阵称为A的一个子块.以这些子块为元素的形式上的矩阵 称为分块矩阵.
例如矩阵:
a11 a12 a13 a14
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
B
1 1
2 0
0 1 4 1
1 1 2 0
1 0 1 0
1 0 1 0
B
1 1
2 0
0 4
1 1
B
1 1
2 0
Байду номын сангаас
0 1 4 1
1 1 2 0
1 1 2 0
1 0 1 0
B
A a21 a31
a22 a32
a23 a33
a24
a34
记为 A11
A21
其中
A11
a11 a21
a12 a22
a13 a23
;
A12
a14 a24
;
A12
A22
A21 a31 a32 a33 ;
A22 a34
3
注: 任一矩阵A有多种分块方法,较特殊的分块有:
1)将矩阵A视为一个子块的分块矩阵; A
k 1
7
3.分块矩阵的转置
设矩阵A分块如下:
A11

矩阵分块法

矩阵分块法
As1
A1r Asr
A11 A
As1
A1r
Asr
其运算律与数乘矩阵相同.
λ为数,那末
3.分块矩阵的乘法.
设A为 m×l 矩阵,B为l×n矩阵,分块成
A11 A12
A
Ai1
Ai2
As1
As 2
A1t
B11 B1 j B1r
Ait
§4. 矩阵分块法
一、分块矩阵的定义
把一个阶数较高的矩阵,用若干条横线和竖 线分成若干小块 , 每一小块都叫做矩阵的子块 , 以子块为元素的矩阵称为分块矩阵.
例如:将3×4矩阵
A
a11 a21
a12 a22
a13 a23
a14 a24
a31 a32 a33 a34
分块形式如下:
A22 A12
a11 a12
1
a21
a22
a31 a32
A21 A11
a13 a23
a14 a24
2
a11 a21
a12 a13 a22 a23
a14 a24
a33 a34
a31
a32 a33
a34
A11 A21
A12 A22
A13 A23
3
a11 a21
a12 a22
a13 a23
0 0 1 1
6.分块矩阵的应用
设A为m×n矩阵,将A按行分块,得
1
A
2
m
其中 i (i 1,2, , m) 是A的第 i 行.
将A按列分块,得
A =( β1, β2,…, βn ).
其中 βj ( j = 1, 2, … ,n ). 是 A 的第 j 列. 对于线性方程组

2.5 分块矩阵的运算

2.5  分块矩阵的运算

求A
1

2 3 A 0 0 0
3 0 0 0 6 0 0 0 0 4 0 0 0 0 3 2 0 0 7 5

2 3 A1 3 6
A2 4
3 2 A3 7 5
A1 A
其中Aij与Bij的行数相同,
列数相同, 则
A11 B11 A1r B1r A B A B A B sr sr s1 s1
A11 A1r 2 设 A A A sr s1 为数, 则
A11 A 0
A11 0
1
A11 A12 A22 1 A22
1 1
1
A12 A11 A22 0
A11 A12 A22 1 A22
1 1
A11 A11 0
1
A11 A11 A12 A22 A12 A22 1 A22 A22
2.5 分块矩阵的运算 一、矩阵的分块 对于行数和列数较高的矩阵为了 简化运算,常采用分块法, 使大矩阵运算化成小矩阵的运算 具体做法是: 将矩阵A用若干条纵线和横线分成 许多个小矩阵,每个小矩阵称为
A的子块, 以子块为元素的形式上的矩阵 称为分块矩阵. a 1 0 0 例
0 a 0 0 A 1 0 b 1 0 1 1 b
0 0 1 b
A1 A2 A3 A4
二、分块矩阵的运算法则
1 设A与B的行数相同, 列数相同,
采用相同的分块法, 有
A11 A A s1 B11 B B s1
A1r Asr B1r Bsr

分块矩阵及其运算

分块矩阵及其运算
1 2 4 8 8 4 因A11 B22 2, A22 B22 3 4 6 2 12 16 2 0 0 所以AB 0 8 4 0 12 16
0 B22 性

线

= =
A C 1 矩阵D 也可逆, 并求D的逆阵D 0 B
线 性
则 XA I1 X A1 ,
WA 0 W 0, XC+ZB 0, 数
1
将X A1代入, 有ZB A1C , Z A1CB 1 , WC+YB I 2 , 将W 0代入 Y B , 所以
= =
1.4 分块矩阵及其运算
一般地, 若A1 , A2 , 则 X Ar X 1 1 A1
, Ar 均为可逆方阵(阶数不一定相同) A2 A1 为可逆阵, 且其逆阵为 1 Ar
7 1 14 2 AB 6 3 0 2
3k 2 2 4k 2 1 , A B 6 3 0 k 0 2 1 3 2 4 1 0 0 1
1 3 2 4 0 0 0 0
= =
1.4 分块矩阵及其运算
又如矩阵按列分块
a11 a A 21 am1 其中 j a12 a22 am 2 a1n a2 n 1 amn
线 性
2
n
代 数
a1 j a 2j , j 1, 2, amj
= =
1.4 分块矩阵及其运算
a11 a12 a1n b1 j b a a a 21 22 2n 2 j a m1 a m 2 a mn bmj A j

分块矩阵

分块矩阵

引言为了研究行数、列数较高的矩阵,常常对矩阵采用分块的方法。

类似于集合的划分,是把矩阵完全地分成一些互不相交的子矩阵,使得原矩阵的每一个元落到一个分快的子矩阵中。

以这些子块为元素的矩阵就称为分块矩阵。

线形代数以其独特的理论体系和解题技巧而引人入胜。

在线性代数中,分块矩阵是一个十分重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化.而且还可以利用分块矩阵解决某些行列式的计算问题.而事实上,利用分块矩阵方法计算行列式,时常会使行列式的计算变得简单,并能收到意想不到的效果.而且利用分快矩阵还可以求出某些矩阵的逆矩阵,证明矩阵的秩等。

第一章 矩阵的分块和分块矩阵的定义设A 是数域K 上的m n ⨯矩阵,B 是K 上n k ⨯矩阵,将A 的行分割r 段,每段分别包含12r m m m 个行,又将A 的列分割为s 段,每段包含12s n n n 个列。

A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭于是A 可用小块矩阵表示如下:,其中ij A 是i j m n ⨯矩阵。

对B 做类似的分割,只是要求它的行的分割法和A 的列的分割法一样。

于是B 可以表示为B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭其中ij B 是i j n k ⨯的矩阵。

这种分割法称为矩阵的分块。

二.分块矩阵加法和乘法运算设()ij m n A a ⨯=()ij m n B b ⨯=为同型矩阵(行和列数分别相等)。

若采用相同的分块法。

A=111212122212s s r r rs A A A A A A A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭B= 111212122212s s r r rs B B B B B B B B B ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭则可以直接相加 乘法:设,则C 有如下分块形式:C=111212122212s s r r rs C C C C C C C C C ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭ ,其中ij C 是i j m k ⨯矩阵,且 1nij ij ij i C A B ==∑定义 称数域K 上的分块形式的n 阶方阵A=12S A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭为准对角矩阵,其中为阶方阵(),其余位置全是小块零矩阵。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分块矩阵是一种将矩阵分割成若干个子矩阵的特殊矩阵。

通过对分块矩阵进行运算,我们可以更方便地处理一些大规模的矩阵问题。

以下是分块矩阵的几种常见运算:
分块矩阵的加法
分块矩阵的加法是指将两个同型分块矩阵的对应子矩阵分别相加,得到一个新的分块矩阵。

具体地,设两个同型的分块矩阵 A 和 B,其分块形式相同,则新的分块矩阵 C 可以表示为 C=(A1+B1,A2+B2,...,An+Bn),其中 Ai 和 Bi 是 A 和 B 的对应子矩阵。

分块矩阵的减法
分块矩阵的减法是指将两个同型分块矩阵的对应子矩阵分别相减,得到一个新的分块矩阵。

具体地,设两个同型的分块矩阵 A 和 B,其分块形式相同,则新的分块矩阵 C 可以表示为 C=(A1-B1,A2-B2,...,An-Bn),其中 Ai 和 Bi 是 A 和 B 的对应子矩阵。

分块矩阵的乘法
分块矩阵的乘法是指将两个同型分块矩阵的对应子矩阵分别相乘,得到一个新的分块矩阵。

具体地,设两个同型的分块矩阵 A 和 B,其分块形式相同,则新的分块矩阵 C 可以表示为 C=(A1B1,A2B2,...,An*Bn),其中 Ai 和 Bi 是 A 和 B 的对应子矩阵。

分块矩阵的转置
分块矩阵的转置是指将分块矩阵的子矩阵分别进行转置,得到一个新的分块矩阵。

具体地,设一个分块矩阵 A,其分块形式为 (A1,A2,...,An),则 A 的转置矩阵 AT 可以表示为(A1T,A2T,...,AnT)。

通过对分块矩阵进行以上几种运算,我们可以更好地处理大规模的矩阵问题。

同时,这些运算也具有很好的递推性质,可以通过递归的方式进行计算,进一步降低了计算的复杂度。

相关文档
最新文档