七年级数学下册综合算式专项练习题整式的乘法运算深度练习
七年级数学下---整式的乘法综合练习题

七年级数学下---整式的乘法综合练习题(一)填空1.a8=(-a5)____.2.a15=(?)5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=_____.6.(-a2b)3·(-ab2)=____.7.(2x)2·x4=(?)2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x.12.m是x的六次多项式,n是x1415.{[(-1)4]m}n=______.17.一长方体的高是(a+2).5=______(a-b)n+9.n+1-8,那么x=______.2122.(8a3)m÷[(4a2)n·2a]=______.23.若24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.2+2y4)的最高次项是______.2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[???]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x?(乘法交换律)=-20(a2a3)·(x4x)??(乘法结合律)=-20a5x5.(??????)A.乘法意义;B.乘方定义;C.同底数幂相乘法则;D.幂的乘方法则.28.下列计算正确的是[???]A.9a3·2a2=18a5;B.2x5·3x4=5x9;C.3x3·4x3=12x3;D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[??]B.y3m+n;C.y3(m+n);D.y3mn.30.下列计算错误的是[???]A.(x+1)(x+4)=x2+5x+42C.(y+4)(y-5)=y2+9y-20;31.计算-a2b2·(-ab3A.a4b8;B.-a4b8;32.下列计算中错误的是[?]A.;C.[(x+y)m]n=(x+y)mn;D33.=2a16m;D.(-m)(-m)4=-m5.m-1的结果是[???].(b-a)2n+m;D.以上都不对.的值一定是?[???]D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是?[???]A.40m9;B.-40m9;C.400m9;D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[???]A.b>0;B.b<0;C.0<b<1;D.b≠1.39.下列计算中正确的是[???]A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[???]A.-(-3a n b)4=-81a4n b4;B.(a n+1b n)4=a4n+4b4n;C.(-2a n)2·(3a2)3=-54a2n+6;D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[???](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y,A.只有(1)与(2)正确;C.只有(1)与(4)正确;42.(-6x n y)2·3x n-1yA.18x3n-1y2;B.-36x2n-1y3;[???]B.2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;[???]A.2)3=(-a3)2;D.(a-b)3(b-a)2=(a-b)5.[???]47.把下列各题的计算结果写成10的幂的形式,正确的是[???]A.100×103=106;B.1000×10100=103000;C.1002n×1000=104n+3;D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是[???]A.-4t-5;B.4t+5;C.t2-4t+5;D.t2+4t-5.49.使(x2+px+8)(x2-3x+q)的积中不含x2和x3的p,q的值分别是[???] A.p=0,q=0;B.p=-3,q=-9;C.p=3,q=1;D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[???]A.m,n都应是偶数;B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以;D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=73n222nA.833;B.2891;(三)计算52.(6×108)(7×10954.(-3ab)·(-a2c)·6ab2.55..57.(x+2y)(5a+3b).58.x n+1(x n60.(-ab)3·(-a2b)·(-a2b4c)262.2).65..68.(-4xy3)·(-xy)+(-3xy2)2..(5a3+2a-a2-3)(2-a+4a2)..72.[(-a2b)3]3·(-ab2).73、75.(-2x m y n)3·(-x2y n)·(-3xy2)2.76.(-2ab2)3·(3a2b-2ab-4b2).77.(0.2a-1.5b+1)(0.4a-4b-0.5).78.(x+3y+4)(2x-y).79.y[y-3(x-z)]+y[3z-(y-3x)].80.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简求值;81.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.82.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=83.已知ab2=-6,求-ab(a2b5-ab3-b)的值.84.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.85.已知(x-1)(x+1)(x-2)(x-4)=(x2-3x)2+a(x2-3x)+b,求a,b的值.86.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.87.比较2100与375的大小.88.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).89.已知2a=3b=6c(a,b,c90.求证:对于任意自然数n,91.已知有理数x,y,z满足-x=0.92.已知x=b+c,y=c+a,z=a+b.93.证明(a-1)(a2-3)+a294.试证代数式、=2x+5y-3=0则=44;c=533则有();C.a<c<b D.c<a<b,则x=6、计算下列各题(1)(2)(3)(4)7、计算(-2x-5)(2x-5)8、计算9、计算,当a6=64时,该式的值。
专题05 整式的乘法综合(五大题型,60题)(原卷版) 七年级数学下册

原创精品资源学科网独家享有版权,侵权必究!1专题05整式的乘法综合(多考点特训,60题)目录一、多项式乘积不含某项,10题,难度两星........................................................................................................1二、整式乘法混合运算,10题,难度两星............................................................................................................2三、化简求值,10题,难度三星.............................................................................................................................4四、(x+p)(x+q)型多项式乘法,15题,难度三星............................................................................................5五、多项式乘多项式,15题,难度四星. (7)一、多项式乘积不含某项,10题,难度两星1.(2023下·陕西西安·七年级校考阶段练习)已知将()()3221x mx n x x +--+乘开的结果不含3x 和2x 项,则()m nn m --的值是()A .27B .27-C .127D .127-2.(2023下·七年级课时练习)若32211123325x ax x x x ⎛⎫⎛⎫-++- ⎪⎪⎝⎭⎝⎭的积不含3x 项,则=a .3.(2024·陕西西安·七年级西安市曲江第一中学校考期末)多项式22336x kxy y xy +--不含xy 项,则k 的值为.4.(2023·山东济宁·七年级统考期中)已知关于x 的多项式()()()432211a b x a x b x abx +--++-+不含3x 项和2x 项,则当=1x -时,这个多项式的值为.5.(2024·四川成都·七年级成都嘉祥外国语学校校考期末)若()22133x px x x q ⎛⎫+--+ ⎪⎝⎭的积中不含x 项与3x 项.(1)求p 、q 的值;(2)求代数式()()2122003200423p q pq p q --++的值.6.(2024·四川成都·七年级四川省成都市石室联合中学校考期末)解决下列有关幂的问题(1)若179273x ⨯=,求x 的值.(2)若27193a b =,则23b a -的值.(3)若1528162n n ⨯⨯=,且()()2mx y x y +-展开式中不含xy 项,求n m -的值.7.(2023·广东广州·七年级广州市天河区汇景实验学校校考期中)(1)已知:关于x 、y 的多项式323232mx nxy x xy y +--+中不含三次项,求23m n -值.(2)当2022x =时,代数式535ax bx cx ++-的值为m ,求当2022x =-时,代数式535ax bx cx ++-的值.8.(2023·重庆·七年级校联考期中)小马虎做一道数学题“两个多项式A ,B ,已知2236B x x -=+,试求2A B -的值”.小马虎将2A B -看成2A B +,结果答案(计算正确)为2529x x -+.(1)当3x =-时,求多项式A 的值;(2)若多项式21C mx nx =-+,且满足A C -的结果不含2x 项和x 项,求m ,n 的值.9.(2023·上海松江·七年级校考阶段练习)若()()2233x nx x x m -+++的展开式中不含2x 和3x 项,求m 、n 得值.10.(2023下·广东深圳·七年级校联考期末)已知关于x 的三次三项式3221A x x =-+及关于x 的二次三项式2B x mx n =++(m ,n 均为非零常数).(1)当A B +为关于x 的三次三项式时,n =_______.(2)当多项式A 与B 的乘积中不含4x 项时,m =________.(3)若3221A x x =-+写成32(1)(1)(1)A a x b x c x d =-+-+-+(其中a ,b ,c ,d 均为常数),求a b c ++的值.(4)若B 能被1x -整除,求m n +的值.13.(2023·山东青岛·七年级统考期中)如图①,正方形原创精品资源学科网独家享有版权,侵权必究!3(1)如图②,延长AB 到1A ,使1A B BA =,延长BC 到1B ,使1B C CB =,求四边形(2)如图③,延长AB 到2A ,使2A B b =,延长BC 到2B ,使2B C b =,求四边形14.(2023下·江苏无锡·七年级校联考期中)若56m =,65n =,则(23m m n -15.(2023下·重庆江北·七年级校考期中)计算:(1)371488⎛⎫-÷-⎪⎝⎭(2)()22321a b a bc⨯-三、化简求值,10题,难度三星原创精品资源学科网独家享有版权,侵权必究!5四、(x+p)(x+q)型多项式乘法,15题,难度三星31.(2023下·浙江嘉兴·七年级统考期末)18世纪数学家欧拉就引进了求和符号“∑”、如记()11231n k k n n ==++++-+∑ ,()()()()334n k x k x x x n =+=+++++∑ ;已知()()221nk x x k axbx c =++=++⎡⎤⎣⎦∑,则b c -=()A .2n -B .n 1-C .nD .1n +32.(2023下·四川雅安·七年级统考期末)已知()()245x m x n x x +-=--,则m n -的值为()A .1B .4-C .5-D .433.(2023下·湖南娄底·七年级统考阶段练习)若2()()54x a x b x x ++=-+,则a b +的值为()原创精品资源学科网独家享有版权,侵权必究!7五、多项式乘多项式,15题,难度四星46.(2023下·安徽宿州·七年级安徽省泗县中学校联考阶段练习)在数学中,为了书写简便,18世纪数学家欧拉就引进了求和符号“∑”.如:记1123(1)nk k n n ==+++⋅⋅⋅+-+∑;1()(1)(2)()n k x k x x x n =+=++++⋅⋅⋅++∑.已知:[]21()(1)44nk x k x k xx m =+-+=++∑,则m 的值是()A .40B .70-C .40-D .20-47.(2023下·安徽淮北·七年级校联考期末)关于x 的多项式:12212210n n n n n n a x a x a x a x a x a ----++++++ ,其中n 为正整数,若各项系数各不相同且均不为0,我们称这样的多项式为“亲缘多项式”.①()221x -是“亲缘多项式”.②若多项式323210a x a x a x a +++和43243210b x b x b x b b ++++均为“亲缘多项式”,则32432321043210a x a x a x a b x b x b x b b ++++++++也是“亲缘多项式”.③多项式()44324321021x b x b x b x b x b -=++++是“亲缘多项式”且42041b b b ++=.④关于x 的多项式()nax b +,若a b ¹,0ab ≠,n 为正整数,则()nax b +为“亲缘多项式”.以上说法中正确的个数是()A .1B .2C .3D .448.(2023下·重庆北碚·七年级西南大学附中校考期中)给定一个正整数m ,任意两个整数a 与b 分别除以原创精品资源学科网独家享有版权,侵权必究!960.(2023下·福建三明·七年级校考阶段练习)已知关于x 的代数式()22x mx +与()3x -的乘积中,不含有2x 项,求m 的值.。
北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
北师大版七年级数学下册第一章整式的乘除——整式混合运算及化简求值专项练习(含答案)

整式的乘除——整式混合运算及化简求值专项练习一、单选题(共6小题)1.下列计算中正确的是( )A.m÷n·1n=m B.m·n÷m·n=1C.n·1n ·m·1m=1 D.m3÷1m÷m2=12.已知除式是x2+2x,商式是x,余式是-1,则被除式是( )A.x3+2x2−1B.x2+2xC.x2−1D.x2−3x+13.已知2a2−a−3=0,则(2a+3)(2a−3)+(2a−1)2的值是( )A.6B.−5C.−3D.44.现规定一种运算:a△b=ab+a−b,其中a,b为实数,则a△b△a等于( )A.a2b+a2+bB.a2b−a2+bC.a2b+a2−bD.a2b−a2−b5.若m是任意整数,则代数式2[m(m−1)+m(m+1)]·[m(m−1)−m(m+1)]的值可能为( )A.4B.8C.−27D.−366.计算(x−1)(2x+1)−(x2+x−2)的结果,与下列哪一个式子相同( )A.x2−2x−3B.x2−2x+1C.x2+x−3D.x2−3二、填空题(共6小题)7.已知x+y=3,xy=1,则(x−1)(y−1)的值等于.8.如果长方形的长为(2a+b)米,宽为(a−2b)米,则其周长为米.9.若(−2x2)(3x2−ax−6)−3x3+x2中不含x的三次项,则a=.10.若M=(x−2)(x−8),N=(x−3)(x−7),则M−N=.11.规定a∗b=ab+a−b,其中a,b为实数,则a∗b+(b−a)∗b=12.A·(x+y)=x2−y2,则A=.三、解答题(共9小题)13.化简:(1)(x+5)2−(4+x)(4−x);(2)4x(x2+x+3)+(−2x−5)(2x−5)−(−2x)2;(3)(3x−4y)(3x+4y)−(3x+y)214. 已知x=13,求(2x+1)(2x−1)+x(3−4x)的值.15. 已知3x2−2x−3=0,求的值.16. 先化简,再求值:(2−a)(2+a)−2a(a+3)+3a2,其中a=−13.17. 先化简,再求值:(2x+y)2−(2x+y)(2x−y)−2y(x+y),其中x=(12)2023,y=22022.18.先化简,再求值:−a2b+(3a b2−a2b)−2(2a b2−a2b),其中a=1,b=−2.19.先化简,再求值:(x−y)2+y(4x−y)−8x]÷2x,其中x=8,y=2021.20.已知m2−m−2=0,求代数式m(m−1)+(m+1)(m−2)的值.21.先化简,再求值:[(3m+4n)(3m+2n)−2n(3m+4n)]÷(−6m),其中m=2,n=3.参考答案1.C2.A3.D4.C5.B6.B7.−18.(6a−2b)9.3210.−511.b²−b12.x−y【解析】A=(x2−y2)÷(x+y)=[(x+y)(x−y)]÷(x+y)=x−y,故答案为:x−y.13.(1)解:原式=x2+10x+25−16+x2=2x2+10x+9.(2)原式=4x3+4x2+12x+25−4x2−4x2=4x3−4x2+12x+25.(3)原式=9x2−16y2−9x2−6xy−y2=−17y2−6xy.14.解:(2x+1)(2x−1)+x(3−4x)=4x2−1+3x−4x2=−1+3x.当x=13时,原式=−1+3×13=0.15.解:原式=x2−2x+1+x2+23x=2x2−43x+1,∵3x2−2x−3=0,∴x2−23x=1,∴原式=2×1+1=3.16.解:(2−a)(2+a)−2a(a+3)+3a2,=4−a2−2a2−6a+3a2,=4−6a;当a=−13时,原式=4−6×(−13)=4+2=6.17.解:原式=4x2+4xy+y2−(4x2−y2)−2xy−2y2 =4x2+4xy+y2−4x2+y2−2xy−2y2=2xy.当x=(12)2023,y=22022时,原式=2×(12)2023×22022=2×12×(12)2022×22022=1.18.解:原式=−a2b+3a b2−a2b−4a b2+2a2b=(−1−1+2)a2b+(3−4)a b2=−a b2.当a=1,b=−2时,原式=−1×(−2)2=−4.19.解:[(x−y)2+y(4x−y)−8x]÷2x=(x2−2xy+y2+4xy−y2−8x)÷2x=(x2+2xy−8x)÷2x=12x+y−4.当x=8,y=2021时,原式=12×8+2021−4=2021.20.解:原式=m2−m+m2−2m+m−2=2m2−2m−2=2(m2−m)−2.∵m2−m−2=0,∴m2−m=2,∴原式=2×2−2=2.21.解:原式=(9m2+18mn+8n2−6mn−8n2)÷(−6m) =(9m2+12mn)÷(−6m)=−3m−2n,2当m=2,n=3时,原式=−3×2−2×3=−9.2。
数学综合算式专项练习题整式的乘法运算与因式分解

数学综合算式专项练习题整式的乘法运算与因式分解数学综合算式专项练习题:整式的乘法运算与因式分解数学作为一门基础学科,对于培养学生的逻辑思维和解决问题的能力起着重要的作用。
在数学的学习过程中,整式的乘法运算与因式分解是一个非常重要的内容。
本文将介绍整式的乘法运算与因式分解的相关概念,并提供一些练习题来帮助读者巩固这方面的知识。
一、整式的乘法运算整式是由常数和变量的积以及这些积的和差组成的代数式。
整式的乘法运算是指将两个整式相乘,并按照特定的法则进行合并与化简。
例题1:计算下列整式的乘积。
(1) 3x^2 * 4y^3解析:根据乘法的性质,可将整式的乘法转化为变量和系数的乘法运算。
即:3 * 4 * x^2 * y^3 = 12 * x^2 * y^3。
因此,3x^2 * 4y^3 的乘积为 12x^2y^3。
例题2:计算下列整式的乘积。
(2) (2x^2 - 3y^2) * (4x^3 + 5y^3)解析:根据分配律,可以将整式的乘法运算分开进行计算。
即:(2x^2 - 3y^2) * (4x^3 + 5y^3) = 2x^2 * 4x^3 + 2x^2 * 5y^3 - 3y^2 * 4x^3 - 3y^2 * 5y^3。
进一步计算得到:8x^5 + 10x^2y^3 - 12x^3y^2 - 15y^5二、整式的因式分解在整式的因式分解中,将一个整式分解为多个乘积因式的形式,可以帮助我们简化计算和解决问题。
例题3:将下列整式进行因式分解。
(1) 6x^2 + 9xy解析:根据公因式提取法,可将整式进行因式分解。
首先找到整式中的公因式,然后分别提取出来并进行合并。
得到:3x(2x + 3y)(2) 4x^3 - 8xy^2解析:同样利用公因式提取法进行因式分解。
得到:4x(x^2 - 2y^2)练习题:1. 计算下列整式的乘积。
(1) (x + 2)(x - 3)(2) (2x^2 + 3y)(4x - 5y)2. 将下列整式进行因式分解。
(完整word版)七年级数学下整式的乘法综合练习题

七年级数学下---整式的乘法综合练习题(一)填空1.a8=(-a5)____.2.a15=( )5.3.3m2·2m3=______.4.(x+a)(x+a)=______.5.a3·(-a)5·(-3a)2·(-7ab3)=_____.6.(-a2b)3·(-ab2)=____.7.(2x)2·x4=( )2.8.24a2b3=6a2·______.9.[(a m)n]p=______.10.(-mn)2(-m2n)3=______.11.多项式的积(3x4-2x3+x2-8x+7)(2x3+5x2+6x-3)中x3项的系数是______.12.m是x的六次多项式,n是x的四次多项式,则2m-n是x的______次多项式.14.(3x2)3-7x3[x3-x(4x2+1)]=______.15.{[(-1)4]m}n=______. 16.-{-[-(-a2)3]4}2=______.17.一长方体的高是(a+2)厘米,底面积是(a2+a-6)厘米2,则它的体积是______.18.若10m=a,10n=b,那么10m+n=______.19.3(a-b)2[9(a-b)n+2](b-a)5=______(a-b)n+9.20.已知3x·(x n+5)=3x n+1-8,那么x=______.21.若a2n-1·a2n+1=a12,则n=______. 22.(8a3)m÷[(4a2)n·2a]=______.23.若a<0,n为奇数,则(a n)5______0. 24.(x-x2-1)(x2-x+1)n(x-x2-1)2n=______.25.(4+2x-3y2)·(5x+y2-4xy)·(xy-3x2+2y4)的最高次项是______.26.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,则x3n+1y3n+1z4n-1的值(n为自然数)等于______.(二)选择:27.下列计算最后一步的依据是[ ]5a2x4·(-4a3x)=[5×(-4)]·a2·a3·x4·x (乘法交换律)=-20(a2a3)·(x4x) (乘法结合律)=-20a5x5.( )A.乘法意义; B.乘方定义; C.同底数幂相乘法则; D.幂的乘方法则.B.2x5·3x4=5x9; C.3x3·4x3=12x3; D.3y3·5y3=15y9.29.(y m)3·y n的运算结果是[ ] B.y3m+n; C.y3(m+n); D.y3mn.30.下列计算错误的是[ ]A.(x+1)(x+4)=x2+5x+4; B.(m-2)(m+3)=m2+m-6;C.(y+4)(y-5)=y2+9y-20; D.(x-3)(x-6)=x2-9x+18.31.计算-a2b2·(-ab3)2所得的结果是[ ]A.a4b8; B.-a4b8; C.a4b7; D.-a3b8.32.下列计算中错误的是[ ]A.[(a+b)2]3=(a+b)6; B.[(x+y)2n]5=(x+y)2n+5;C.[(x+y)m]n=(x+y)mn; D.[(x+y)m+1]n=(x+y)mn+n.33.(-2x3y4)3的值是[ ] A.-6x6y7; B.-8x27y64; C.-8x9y12; D.-6xy10.34.下列计算正确的是[ ] A.(a3)n+1=a3n+1;B.(-a2)3a6=a12; C.a8m·a8m=2a16m; D.(-m)(-m)4=-m5.35.(a-b)2n·(b-a)·(a-b)m-1的结果是 [ ]A.(a-b)2n+m; B.-(a-b)2n+m; C.(b-a)2n+m; D.以上都不对.36.若0<y<1,那么代数式y(1-y)(1+y)的值一定是[ ]A.正的; B.非负; C.负的; D.正、负不能唯一确定.37.(-2.5m3)2·(-4m)3的计算结果是[ ]A.40m9; B.-40m9; C.400m9; D.-400m9.38.如果b2m<b m(m为自然数),那么b的值是[ ]A.b>0; B.b<0; C.0<b<1; D.b≠1.39.下列计算中正确的是[ ] A.a m+1·a2=a m+2;D.[-(-a)2]2=-a4.40.下列运算中错误的是[ ]C.(-2a n)2·(3a2)3=-54a2n+6; D.(3x n+1-2x n)·5x=15x n+2-10x n+1.41.下列计算中,[ ](1)b(x-y)=bx-by,(2)b(xy)=bxby,(3)b x-y=b x-b y, (4)2164=(64)3, (5)x2n-1y2n-1=xy2n-2.A.只有(1)与(2)正确; B.只有(1)与(3)正确;C.只有(1)与(4)正确; D.只有(2)与(3)正确.42.(-6x n y)2·3x n-1y的计算结果是 [ ]A.18x3n-1y2; B.-36x2n-1y3; C.-108x3n-1y; D.108x3n-1y3.[ ]44.下列计算正确的是[ ] A.(6xy2-4x2y)·3xy=18xy2-12x2y;B.(-x)(2x+x2-1)=-x3-2x2+1; C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2-3x2y;45.下列计算正确的是[ ]A.(a+b)2=a2+b2; B.a m·a n=a mn; C.(-a2)3=(-a3)2; D.(a-b)3(b-a)2=(a-b)5.[ ]47.把下列各题的计算结果写成10的幂的形式,正确的是[ ]A.100×103=106; B.1000×10100=103000;C.1002n×1000=104n+3; D.1005×10=10005=1015.48.t2-(t+1)(t-5)的计算结果正确的是 [ ]A.-4t-5; B.4t+5; C.t2-4t+5; D.t2+4t-5.A.p=0,q=0; B.p=-3,q=-9; C.p=3,q=1; D.p=-3,q=1.50.设xy<0,要使x n y m·x n y m>0,那么[ ]A.m,n都应是偶数; B.m,n都应是奇数;C.不论m,n为奇数或偶数都可以; D.不论m,n为奇数或偶数都不行.51.若n为正整数,且x2n=7,则(3x3n)2-4(x2)2n的值为[ ]A.833; B.2891; C.3283; D.1225.(三)计算52.(6×108)(7×109)(4×104). 53.(-5x n+1y)·(-2x).54.(-3ab)·(-a2c)·6ab2. 55.(-4a)·(2a2+3a-1). 56、(3m-n)(m-2n).57.(x+2y)(5a+3b). 58.x n+1(x n-x n-1+x). 59.(x+y)(x2-xy+y2).60.(-ab)3·(-a2b)·(-a2b4c)2. 61.[(-a)2m]3·a3m+[(-a)5m]2.62.5x(x2+2x+1)-(2x+3)(x-5).63.(2x-3)(x+4). 64.(-2a m b n)(-a2b n)(-3ab2).65.(m-n)(m5+m4n+m3n2+m2n3+mn4+n5). 66.2[(x+2)(x+1)-3]+(x-1)(x-2)-3x(x+3).67.(2a2-1)(a-4)(a2+3)(2a-5). 68.(-4xy3)·(-xy)+(-3xy2)2.69.(0.3a3b4)2·(-0.2a4b3)3. 70.(5a3+2a-a2-3)(2-a+4a2).71、(3x4-2x2+x-3)(4x3-x2+5). 72.[(-a2b)3]3·(-ab2).73、 (3a m+2b n+2)(2a m+2a m-2b n-2+3b n).75.(-2x m y n)3·(-x2y n)·(-3xy2)2. 76.(-2ab2)3·(3a2b-2ab-4b2).77.(0.2a-1.5b+1)(0.4a-4b-0.5). 78.(x+3y+4)(2x-y).79.y[y-3(x-z)]+y[3z-(y-3x)]. 80.计算[(-a)2m]3·a3m+[(-a)3m]3(m为自然数).(四)化简求值;81.先化简y n(y n+9y-12)-3(3y n+1-4y n),再求其值,其中y=-3,n=2.82.先化简(x-2)(x-3)+2(x+6)(x-5)-3(x2-7x+13),再求其值,其中x=83.已知ab2=-6,求-ab(a2b5-ab3-b)的值.84.已知a+b=1,a(a2+2b)+b(-3a+b2)=0.5,求ab的值.85.已知(x-1)(x+1)(x-2)(x-4)=(x2-3x)2+a(x2-3x)+b,求a,b的值.86.试求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.87.比较2100与375的大小. 88.解方程3x(x+2)+(x+1)(x-1)=4(x2+8).89.已知2a=3b=6c(a,b,c均为自然数),求证:ab-cb=ac.90.求证:对于任意自然数n,n(n+5)-(n-3)×(n+2)的值都能被6整除.91.已知有理数x,y,z满足|x-z-2|+(3x-6y-7)2+|3y+3z-4|=0,求证:x3n y3n-1z3n+1-x=0.92.已知x=b+c,y=c+a,z=a+b,求证:(x-y)(y-z)(z-x)+(a-b)(b-c)(c-a)=0.93.证明(a-1)(a2-3)+a2(a+1)-2(a3-2a-4)-a的值与a无关.94.试证代数式(2x+3)(3x+2)-6x(x+3)+5x+16的值与x的值无关.七下--整式的运算提高练习1、=2、若2x + 5y-3 = 0 则=3、已知a = 355 ;b = 444 ;c = 533则有( );A.a < b < c B.c < b < a C.a < c < b D.c < a < b4、已知,则x =5、21990×31991的个位数字是多少6、计算下列各题(1) (2) (3)(4) 7、计算(-2x-5)(2x-5) 8、计算9、计算,当a6 = 64时, 该式的值。
七年级数学下册整式的乘法综合练习题

七年级数学下册整式的乘法综合练习题整式的乘法是数学中的重要概念之一,它在解决实际问题和推导其他数学知识上都具有重要作用。
在七年级数学下册中,整式的乘法是一个重点难点内容,需要我们深入理解和熟练掌握。
为了帮助同学们更好地掌握整式的乘法,本文将为大家提供一些综合练习题,并加以详解,希望能对大家的学习有所帮助。
1. 计算下列各题:(1) $(2a + 3b)(4a - 5b)$(2) $(3x^2 - 5y)(x + 2y)$(3) $(4m - 2n)(3m + n)$(4) $(5p - 2q)(3p + 4q)$解答:(1) 将每一个项分别乘以另一个多项式的每一项,然后将结果相加。
$(2a + 3b)(4a - 5b) = 2a \cdot 4a + 2a \cdot (-5b) + 3b \cdot 4a + 3b\cdot (-5b)$$ = 8a^2 - 10ab + 12ab - 15b^2$$ = 8a^2 + 2ab - 15b^2$(2) 同样地,将每一个项分别乘以另一个多项式的每一项,然后将结果相加。
$(3x^2 - 5y)(x + 2y) = 3x^2 \cdot x + 3x^2 \cdot 2y - 5y \cdot x - 5y\cdot 2y$$ = 3x^3 + 6x^2y - 5xy - 10y^2$(3)$(4m - 2n)(3m + n) = 4m \cdot 3m + 4m \cdot n - 2n \cdot 3m - 2n \cdot n$$ = 12m^2 + 4mn - 6mn - 2n^2$$ = 12m^2 - 2n^2 - 2mn$(4)$(5p - 2q)(3p + 4q) = 5p \cdot 3p + 5p \cdot 4q - 2q \cdot 3p - 2q \cdot 4q $$ = 15p^2 + 20pq - 6pq - 8q^2$$ = 15p^2 + 14pq - 8q^2$2. 练习运用整式的乘法计算下列各题:(1) $(x + 2)(x + 3)$(2) $(2a + 3b + 4c)(a - b + c)$(3) $(3x - y)(2x + y)(x - y)$(4) $(-2a + 3b)(-3a - 4b)$解答:(1)$(x + 2)(x + 3) = x \cdot x + x \cdot 3 + 2 \cdot x + 2 \cdot 3$$ = x^2 + 3x + 2x + 6$$ = x^2 + 5x + 6$(2)$(2a + 3b + 4c)(a - b + c) = 2a \cdot a + 2a \cdot (-b) + 2a \cdot c + 3b \cdot a + 3b \cdot (-b) + 3b \cdot c + 4c \cdot a + 4c \cdot (-b) + 4c \cdot c$$ = 2a^2 - 2ab + 2ac + 3ab - 3b^2 + 3bc + 4ac - 4bc + 4c^2$$ = 2a^2 + ab - 3b^2 + 5ac - ab + bc + 4c^2$$ = 2a^2 - 3b^2 + 5ac + bc + 4c^2$(3)$(3x - y)(2x + y)(x - y) = (3x - y) \cdot (2x + y) \cdot (x - y)$$ = (3x)^2 - y^2$$ = 9x^2 - y^2$(4)$(-2a + 3b)(-3a - 4b) = (-2a) \cdot (-3a) + (-2a) \cdot (-4b) + 3b \cdot (-3a) + 3b \cdot (-4b)$$ = 6a^2 + 8ab - 9ab - 12b^2$$ = 6a^2 - ab - 12b^2$通过以上练习题的计算与解答,我们可以看出,整式的乘法是通过将每一个项分别乘以另一个多项式的每一项,并将结果相加得出的。
(必考题)初中数学七年级数学下册第一单元《整式的乘除》测试卷(包含答案解析)(4)

一、选择题1.下列运算正确的是( ) A .3333x x -= B .()4410a a a ÷=≠C .()222424mn m n -=-D .()232a b abab ÷-=2.在括号内填上适当的单项式,使()2144y -+成为完全平方式应填( )A .12yB .24C .24y ±D .12 3.如果(x +m )与(x +1)的乘积中不含x 的一次项,则m 的值为( ) A .1B .-1C .±1D .04.从边长为 2a +的正方形纸片中剪去一个边长为1a -的正方形纸片()1a >,则剩余部分的面积是( ) A .41a +B .43a +C .63a +D .2+1a5.下列运算中,正确的个数是( )①2352x x x +=;②()326x x =;③03215⨯-=;④538--+= A .1个B .2个C .3个D .4个6.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④ B .①③④ C .①② D .①③ 7.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -8.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628yy =D .623x x x ÷=9.下列计算正确的是( ) A .(ab 3)2=a 2b 6 B .a 2·a 3=a 6 C .(a +b )(a -b )=a 2-2b 2 D .5a -2a =3 10.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 9 11.如果x+y =6,x 2-y 2=24,那么y-x 的值为( )A .﹣4B .4C .﹣6D .612.计算()233a a ⋅的结果是( ) A .9aB .8aC .11aD .18a二、填空题13.如图所示,将一个边长为a 的正方形减去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.(1)利用图形的面积关系可以得到一个代数恒等式是________; (2)求前n 个正奇数1,3,5,7,…的和是________.14.已知a m =2,a n =12,则a n -m =____. 15.如果a 3m+n =27,a m =3,则a n =_____.16.若2421x kx ++是完全平方式,则k=_____________. 17.若5a b +=,3ab =,则22a b +=_____. 18.若13x x -=,则221x x+= _______________. 19.若20206m =,20204n =,则22020m n -=_____. 20.如果5a b +=,1ab =,则22a b +=______.三、解答题21.甲、乙两个长方形的边长如图所示(m 为正整数),其面积分别为1S ,2S . (1)请比较1S 和2S 的大小;(2)若一个正方形的周长等于甲、乙两个长方形的周长之和,求该正方形的面积(用含m 的代数式表示).22.计算题 (1)32(2)(5)x xy -(2)()(2)x y x y -+ 23.计算(1)()()16231417-+--+-(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭ (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦(4)()()()2221a a a -++24.小华同学在学习整式乘法时发现,如果合理地使用乘法公式可以简化运算,于是如下计算题她是这样做的:()()()22322x y x y x y ---+22224632x xy y x y =-+-- 第一步 2236x xy y =-+ 第二步查一下.”小华仔细检查后自己找到了如下一处错误:小禹看到小华的改错后说:“你还有错没有改出来.”小华还有哪些错误没有改出来?请你帮助小华把第一步中的其他错误圈画出来,再完成此题的正确解答过程. 25.计算:(1)(x 3)2•(﹣2x 2y 3)2; (2)(a ﹣3)(a +3)+(2a +1)2.26.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据幂的乘方、同底数幂乘法,合并同类项的运算法则逐一判断即可. 【详解】33332x x x -=,故A 选项错误;()4410a a a ÷=≠,故B 选项正确;()222424mn m n -=,故C 选项错误;()232a b ab ab ÷-=-,故D 选项错误;故选B . 【点睛】本题考查了整式的运算,幂的乘方、同底数幂乘法,合并同类项,关键是掌握各部分的运算法则.2.C解析:C 【分析】利用完全平方公式的结构特征判断即可; 【详解】()()()2222412=24144-±+±-±+y y y y ;故答案选C . 【点睛】本题主要考查了完全平方公式,准确判断是解题的关键.3.B解析:B 【分析】利用多项式乘以多项式展开,使得一次项系数为0即可; 【详解】 由题可得:()()()211x m x x m x m ++=+++,∵不含x 的一次项, ∴10m +=, ∴1m =-; 故答案选B . 【点睛】本题主要考查了多项式乘以多项式的应用,准确计算是解题的关键.4.C解析:C 【分析】根据题意列出关系式,化简即可得到结果; 【详解】 根据题意可得:()()()()()2221212132163a a a a a a a a +--=++-+-+=+=+;故答案选C . 【点睛】本题主要考查了完全平方公式的几何背景,准确分析计算是解题的关键.5.A解析:A 【分析】①根据同类项的定义判断计算;②根据幂的乘方公式计算;③利用零指数幂和有理数的混合运算法则计算;④根据同类项的定义判断计算. 【详解】∵2x 与3x 不是同类项,无法合并,∴①是错误的; ∵()326x x =,∴②是正确的;∵032112-1=1⨯-=⨯,∴③是错误的; ∵53-5+3=-2--+=,∴④是错误的; 综上所述,只有一个正确, 故选:A. 【点睛】本题考查了合并同类项,幂的乘方,零指数幂,绝对值,有理数的混合运算,熟练掌握公式及其运算法则是解题的关键.6.D解析:D 【分析】根据a*b 的定义,将每个等式的左右两边分别计算,再进行判断即可. 【详解】①∵a*b=()2a b -,b*a=()()22b a a b -=-, ∴a*b=b*a 成立; ②(a*b)2=()()()224a b a b -=-,a 2*b 2=()()()22222a b a b a b -=-+,∵()()()422a b a b a b -≠-+∴(a*b )2=a 2*b 2不成立;③∵(−a)*b=()()22a b a b --=+,a*(−b)= ()()22a b a b --=+⎡⎤⎣⎦, ∴−a*b=a*(−b)成立;④∵a*(b+c)= ()()22a b c a b c -+=--⎡⎤⎣⎦,a*b+a ∗c=()()()222a b a c a b c -+-≠--, ∴a*(b+c) =a*b+a ∗c 不成立; 故选:D . 【点睛】本题考查了新定义下实数的运算,正确理解题意是解题的关键.7.B解析:B 【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,即可求出a 和b ,再利用单项式乘以单项式计算结果即可. 【详解】 解:由题意可得:2328a b a b b -=⎧⎨+=⎩, 解得:72a b ==,,则这两个单项式分别为:3163m n -,316m n , ∴它们的积为:3163166323?3m n m n m n -=-, 故选:B . 【点睛】本题主要考察同类项的概念、单项式乘以单项式,掌握同类项的概念是解题的关键.8.C解析:C 【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断. 【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误;C 、()32628y y =,故该项正确;D 、624x x x ÷=,故该项错误; 故选:C . 【点睛】本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.9.A解析:A 【分析】根据整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项依次进行计算并判断. 【详解】A 、(ab 3)2=a 2b 6,故正确;B 、a 2·a 3=a 5,故错误;C 、(a +b )(a -b )=a 2-b 2,故错误;D 、5a -2a=3a ,故错误; 故选:A . 【点睛】此题考查整式的计算,正确掌握整式的积的乘方计算法则,同底数幂相乘法则,平方差公式,合并同类项是解题的关键.10.B解析:B 【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可. 【详解】∵x 2•x 3=x 5,∴选项A 不符合题意; ∵(x 3)2=x 6,∴选项B 符合题意; ∵(−3x )3=−27x 3,∴选项C 不符合题意; ∵x 4+x 5≠x 9,∴选项D 不符合题意. 故选:B . 【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.11.A解析:A 【分析】先变形为x 2-y 2=(x+y )(x-y ),代入数值即可求解.【详解】解:∵x 2-y 2=(x+y )(x-y )=24, ∴6(x-y )=24, ∴x-y=4, ∴y-x=-4, 故选:A . 【点睛】本题考查了平方差公式的应用,掌握公式是解题关键.12.A解析:A 【分析】根据幂的乘方运算、同底数幂的乘法法则即可得. 【详解】 原式63a a =⋅,9a =,故选:A . 【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积两式联立即可得到关于ab 的恒等式(2)由12-02=122-12=332-22=542-32=7…n2-(n-1)2=2n-1相加即可得结果【解析:22()()a b a b a b -=+- 2n 【分析】(1)可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a 、b 的恒等式(2)由12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1相加即可得结果. 【详解】解:正方形中,S 阴影=a 2-b 2; 梯形中,S 阴影=12(2a+2b )(a-b )=(a+b )(a-b ); 故所得恒等式为:a 2-b 2=(a+b )(a-b ), 故答案为:a 2-b 2=(a+b )(a-b ).(2)∵12-02=1,22-12=3,32-22=5,42-32=7…n 2-(n-1)2=2n-1 ∴1+3+4+5+7+9+…+(2n-1)=12-02+22-12+32-22+42-32+…+n 2-(n-1)2=n 2 故答案为:n 2. 【点睛】本题考查了平方差公式的几何背景,正确表示出两个图形中阴影部分的面积是关键.14.6【分析】根据同底数幂的除法计算即可;【详解】∵am=2an=12∴;故答案是6【点睛】本题主要考查了同底数幂的除法准确分析计算是解题的关键解析:6 【分析】根据同底数幂的除法计算即可; 【详解】 ∵a m =2,a n =12, ∴1226n m n m a a a -=÷=÷=;故答案是6. 【点睛】本题主要考查了同底数幂的除法,准确分析计算是解题的关键.15.1【分析】根据幂的乘方和同底数幂的乘法运算法则即可求解【详解】∵a3m+n=27∴a3m∙an=27∴(am)3∙an=27∵am=3∴33∙an=27∴an=1故答案是:1【点睛】本题主要考查幂的解析:1 【分析】根据幂的乘方和同底数幂的乘法运算法则,即可求解. 【详解】 ∵a 3m+n =27, ∴a 3m ∙a n =27, ∴(a m )3∙a n =27, ∵a m =3, ∴33∙ a n =27, ∴a n =1. 故答案是:1. 【点睛】本题主要考查幂的乘方和同底数幂的乘法法则,熟练掌握上述运算法则的逆运用,是解题的关键.16.±2【分析】根据完全平方式的结构特征解答即可【详解】解:∵是完全平方式∴∴故答案为:±2【点睛】本题考查了完全平方式的知识属于基础题目熟练掌握完全平方式的结构特征是解题关键解析:±2 【分析】根据完全平方式的结构特征解答即可. 【详解】解:∵2421x kx ++是完全平方式, ∴24k =±,∴2k =±.故答案为:±2. 【点睛】本题考查了完全平方式的知识,属于基础题目,熟练掌握完全平方式的结构特征是解题关键.17.19【分析】利用完全平方公式得到然后利用整体代入的方法求解即可【详解】解:∵∴故答案为:19【点睛】本题考查了完全平方公式灵活运用完全平方公式是解答此类问题的关键完全平方公式为:解析:19 【分析】利用完全平方公式得到222()2a b a b ab +=+-,然后利用整体代入的方法求解即可. 【详解】解:∵5a b +=,3ab =,∴2222()2=52325619a b a b ab +=+--⨯=-=. 故答案为:19. 【点睛】本题考查了完全平方公式,灵活运用完全平方公式是解答此类问题的关键,完全平方公式 为:222()2a b a ab b ±=±+.18.11【分析】先利用差的完全平方公式逆运算进行整理然后整体代入求值即可【详解】解:∵∴故答案为:11【点睛】此题主要考查求代数式的值解题的关键是将式子整理为能够整体代入的形式解析:11 【分析】先利用差的完全平方公式逆运算进行整理,然后整体代入求值即可. 【详解】解:222112x x x x ⎛⎫+=-+ ⎪⎝⎭∵13x x -= ∴222132=11x x+=+故答案为:11. 【点睛】此题主要考查求代数式的值,解题的关键是将式子整理为能够整体代入的形式.19.9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可【详解】∵∴故答案为:9【点睛】本题主要考查了同底数幂的除法以及幂的乘方熟记幂的运算法则是解答本题的关键解析:9【分析】根据幂的乘方运算法则以及同底数幂的除法法则计算即可.【详解】∵20206m =,20204n =,∴222(2020)20200922406m n m n -=÷=÷=.故答案为:9.【点睛】本题主要考查了同底数幂的除法以及幂的乘方,熟记幂的运算法则是解答本题的关键. 20.23【分析】将a+b=5两边平方利用完全平方公式化简将ab 的值代入计算即可求出a2+b2的值【详解】解:将a+b=5两边平方得:(a+b )2=a2+2ab+b2=25将ab=1代入得:a2+2+b2解析:23【分析】将a+b=5两边平方,利用完全平方公式化简,将ab 的值代入计算即可求出a 2+b 2的值.【详解】解:将a+b=5两边平方得:(a+b )2=a 2+2ab+b 2=25,将ab=1代入得:a 2+2+b 2=25,则a 2+b 2=23.故答案为:23.【点睛】本题考查完全平方公式,熟练掌握完全平方公式是解题关键.三、解答题21.(1)12S S <;(2)42m +24m+36.【分析】(1)先计算两个长方形的面积,再利用作差法比较它们面积的大小;(2)先计算两个长方形的周长,再计算该正方形的边长和面积.【详解】解:(1)1S =(m+1)(m+5)=2m +6m+5,2S =(m+2)(m+4)=2m +6m+8,∵1S -2S=2m +6m+5﹣(2m +6m+8)=2m +6m+5﹣2m ﹣6m ﹣8=﹣3<0,∴12S S <.即甲的面积小于乙的面积;(2)甲乙两个长方形的周长和为:2(m+1+m+5+m+4+m+2)=8m+24,正方形的边长为:(8m+24)÷4=2m+6.该正方形的面积为:2(26)m +=42m +24m+36.答:该正方形的面积为:42m +24m+36.【点睛】本题考查了多项式乘多项式,整式的加减,作差法比较大小,完全平方公式的展开,熟练掌握矩形,正方形的性质,灵活使用作差法,完全平方公式是解题的关键.22.(1)4240x y ;(2)222x xy y --【分析】(1)首先进行积的乘方运算,然后再进行单项式乘以单项式运算即可得到答案; (2)根据整式多项式乘以多项式运算法则计算可得.【详解】解:(1)32(2)(5)x xy -328(5)x xy =--4240x y =;(2)()(2)x y x y -+222+2x xy xy y =--22=2x xy y --【点睛】本题主要考查整式的乘法运算,解题的关键是熟练掌握整式的乘法运算顺序和法则. 23.(1)4;(2)1;(3)2-610x xy +;(4)32284a a a +--.【分析】(1)先写成省略括号和的形式,再同号相加计算,最后异号相加计算即可;(2)先算乘方,乘方同时除变乘,去绝对值,再算乘法,最后加减法计算即可; (3)先去小括号,再去中括号,合并同类项即可;(4)先利用平方差公式计算,再利用多项式乘以多项式法则乘开即可.【详解】(1)()()16231417-+--+-,=1623+1417-+-,=()23+1417+16-,=3733-,=4;(2)2212924355⎛⎫⎛⎫-⨯-⨯-÷+- ⎪ ⎪⎝⎭⎝⎭, =4259+4952-⨯⨯+, =4+14-+,=1; (3)()()222232352xy x x xy x xy -+----⎡⎤⎣⎦,=222622156xy x x xy x xy -+--+-⎡⎤⎣⎦, =222622156xy x x xy x xy -+-+-+,=2-610x xy +;(4)()()()2221a a a -++,=()()2421a a -+, =32284a a a +--.【点睛】本题考查有理数的混合运算与整式的加减乘混合远算,掌握有理数的混合运算法则,整式加减乘的运算法则,以及乘法公式是解题关键.24.见解析【分析】根据整式的混合运算法则即可解答.【详解】解:如图:(2x-3y )2-(x-2y )(x+2y )=4x 2-12xy+9y 2-x 2+4y 2=3x 2-12xy+13y 2.【点睛】本题考查了整式的混合运算,解决本题的关键是熟记完全平方公式和平方差公式. 25.(1)4x 10y 6;(2)5a 2+4a ﹣8.【分析】(1)根据整式的乘法运算即可求出答案.(2)根据乘法公式即可求出答案.【详解】解:(1)(x 3)2•(﹣2x 2y 3)2=x 6•4x 4y 6=4x 10y 6.(2)(a ﹣3)(a +3)+(2a +1)2=a 2﹣9+4a 2+4a +1=5a 2+4a ﹣8.【点睛】本题考查整式的运算,解题的关键熟练运用整式的运算法则,本题属于基础题型. 26.(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =, ∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册综合算式专项练习题整式的
乘法运算深度练习
整式的乘法运算是数学中的基础知识之一,也是我们在解决数学问题时常常会用到的方法。
本文将通过深度练习整式的乘法运算,帮助七年级的同学们巩固相关概念和技巧。
1. 两项整式的乘法
在整式的乘法中,最基础的形式就是两项整式的乘法。
例如,我们要计算 (3x + 2)(4x - 5):
首先,用分配律将两个整式相乘:
(3x + 2)(4x - 5) = 3x * 4x - 3x * 5 + 2 * 4x - 2 * 5
然后,对于每一项进行乘法运算和合并同类项:
= 12x^2 - 15x + 8x - 10
= 12x^2 - 7x - 10
通过以上的步骤,我们可以得到最终的乘法结果。
2. 多项式的乘法
在实际问题中,我们通常会遇到多项式的乘法运算。
例如,我们要计算 (2x + 3)(x^2 - 4x + 1):
首先,用分配律将多项式相乘:
(2x + 3)(x^2 - 4x + 1) = 2x * x^2 - 2x * 4x + 2x * 1 + 3 * x^2 - 3 * 4x + 3 * 1
然后,对于每一项进行乘法运算和合并同类项:
= 2x^3 - 8x^2 + 2x + 3x^2 - 12x + 3
= 2x^3 - 5x^2 - 10x + 3
通过以上的步骤,我们可以得到最终的乘法结果。
3. 整式的乘法规律
在进行整式的乘法运算时,还需要了解一些特殊的规律。
例如,当我们乘方程式 (a + b)(a - b) 时,可以使用差的平方公式得到更简洁的乘法结果。
差的平方公式:(a + b)(a - b) = a^2 - b^2
举个例子,我们要计算 (x + 2)(x - 2):
利用差的平方公式,我们可以得到:
(x + 2)(x - 2) = x^2 - 2^2
= x^2 - 4
通过上述的规律运算,我们可以快速求得乘法结果。
4. 应用实例
通过以上的习题练习,可以更好地帮助同学们理解整式的乘法运算在实际问题中的应用。
例如,题目给出了一个实际问题:“某商品的市场价格为x元,某商场打八折促销,问商品的折后价格是多少?”我们可以通过整式的乘法运算来解决这个问题。
首先,将原价x元乘以打折的比例(八折为80%):
商品的折后价格 = x * 80%
然后,对结果进行化简和合并同类项:
= 0.8x
通过以上的计算,我们可以得到商品的折后价格为0.8x元。
结语:
整式的乘法运算是数学中的重要知识点,熟练掌握整式的乘法规律和运算方法对于解决数学问题和建立数学思维都至关重要。
通过本次深度练习,希望同学们能够更好地理解和掌握整式的乘法运算,在今后的学习和应用中能够更加得心应手。