2.2 二次函数的图象与性质(4).ppt
合集下载
二次函数的图像和性质PPT课件

问题:
你们喜欢篮球吗?:投篮时,篮球运动的路 线是什么曲线?怎样计算篮球达到最高点 时的高度?
今天让我们来研究一下二次函数的图像 和性质吧
开县德阳中学
教师
二次函数:
一般地,形如 y=ax2+bx+c(a、b、c为常数,a≠0)的函 数,叫做二次函数.其中,x是自变量,a,b,c分别是函数表
达式的二次项系数、一次项系数和常数项.
(1) 求此抛物线的函数解析式 (2)写出这个二次函数图象的对称轴,顶点坐标及开口方向
;
(3解)(判1断)点把((-1,-2-,4)-8是)否代在入此抛y=物a线x2上,得; -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
(2)对称轴:y轴,顶点坐标:(0,0),开口向下.
(3)因为 4 2(1)2 ,所以点B(-1 ,-4) 不在此抛物线上。
开县德阳中学
教师
1. 二次函数的图像都是什么图形? 2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是 抛物线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
8
y=x2
7
6
5
坐标平面中描点(x,y),
4
再用平滑曲线顺次连
3 2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1
2
3
4
5
x
图像.
开县德阳中学
教师
请画函数y=-x2的图像 解:(1) 列表 x … -3 -2 -1 0 1 2 3 …
你们喜欢篮球吗?:投篮时,篮球运动的路 线是什么曲线?怎样计算篮球达到最高点 时的高度?
今天让我们来研究一下二次函数的图像 和性质吧
开县德阳中学
教师
二次函数:
一般地,形如 y=ax2+bx+c(a、b、c为常数,a≠0)的函 数,叫做二次函数.其中,x是自变量,a,b,c分别是函数表
达式的二次项系数、一次项系数和常数项.
(1) 求此抛物线的函数解析式 (2)写出这个二次函数图象的对称轴,顶点坐标及开口方向
;
(3解)(判1断)点把((-1,-2-,4)-8是)否代在入此抛y=物a线x2上,得; -8=a(-2)2,解出a= -2,所求函数解析式为y= -2x2.
(2)对称轴:y轴,顶点坐标:(0,0),开口向下.
(3)因为 4 2(1)2 ,所以点B(-1 ,-4) 不在此抛物线上。
开县德阳中学
教师
1. 二次函数的图像都是什么图形? 2. 抛物线y=ax2的图像性质: (1) 抛物线y=ax2的对称轴是y轴,顶点是原点.
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
当a<0时,抛物线的开口向下,顶点是 抛物线的最高点;
(3)抛物线的增减性
(4)|a|越大,抛物线的开口越小;
8
y=x2
7
6
5
坐标平面中描点(x,y),
4
再用平滑曲线顺次连
3 2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1
2
3
4
5
x
图像.
开县德阳中学
教师
请画函数y=-x2的图像 解:(1) 列表 x … -3 -2 -1 0 1 2 3 …
二次函数的图形与性质PPT教学课件

探究一
在同一坐标系中画出下列函数 的图象:
y 3x2 ; y 3x2 2 ; y 3(x 1)2.
思考:它们的图象之间有 什么关系?
y
o
x
【解析】
函数 y 3x 2 2的图象
向上平移2个单位
函数 y 3x2 的图象
向右平移1个单位
函数 y 3( x 1)2 的图象
y
o
x
【归纳升华】
连接中考:
• 13.正确描述昌乐西瓜、青州银瓜共同特点
的是 C
• A.两性花,自花传粉 • B.两性花,雌雄同株 • C.单性花,异花传粉 • D.单性花,雌雄异株
连接中考:
• 14.右图为青州蜜桃切面图,图中所示结构a
是由( D)发育而来的。
• A.胚珠 • B.珠被 • C.受精卵 • D.子房壁
菜豆种子与玉米种子萌发过程的异同
相同点: 种子吸水膨胀;胚根首先突破 种皮,发育成根。随着胚轴伸长,使胚芽 露出地面,胚芽发育成茎和叶。种子的胚 就发育成幼苗。
不同点:菜豆种子的子叶包着胚芽出土, 玉米种子的子叶不出土;玉米种子的胚乳 留在土中;菜豆种子萌发所需的营养来自 子叶,玉米种子萌发所需的营养来自于胚 乳。
开口方向 向上 向下
对称轴 顶点坐标 直线x=h (h,k) 直线x=h (h,k)
2.y=a(x-h)2+k的图象与y=ax2的图象的关系.
抓着今天,你就会前进一步;丢弃今天, 你就会停滞不动.
第一章 绿色开花植物的一生
自问自答:
• 1、完全花的结构? • 2、解剖花实验? • 3、单性花和两性花? 举例 • 4、雌雄同株植物和雌雄异株植物? 举例 • 5、单生花和花序? 举例
二次函数的图像和性质(共82张PPT)

y=ax2
向上
y轴 (0,0)
向下
y轴 (0,0)
4、二次函数y=2x2+1的图象与二次函数y=
2x2的图象开口方向、对称轴和顶点坐标是否相
同?它们有什么关系?我们应该采取什么方法
来研究这个问题?
画出函数y=2x2和函数y= 2x2+1的图象, 并加以比较
x … –1.5 –1 –0.5 0 0.5 1 1.5 …
y 1 x2 ··· 2
8
4.5
2 0.5 0 0.5 2 4.5
8
···
x
·· -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 ···
y 2x2 · 8 4.5 2 0.5 0 0.5 2 4.5 8
·· ·
y y x2 8
y 2x2
···
6
y 1 x2
4
2
2
-4
-2 O
24
在对称轴左侧,y都随x的增大而增大,
在对称轴右侧,y都随 x的增大而减小 .
联系: y=a(x-h)²+k(a≠0) 的图象可以看成y=ax²的图象先沿x轴整体左(右)平移| |个单位(当 >0时,向右平移;当 <0时,向左平移),
再沿对称轴整体上(下)平移|
|个单位 (当
>0时向上平移;当 <0时,向下平移)得到的.
y 1 x2
y1
1 3
x2
2
3
y2
1 3
x2
2
的图像
在同一直角坐标系中
画出函数 y 1 x2 5 y
y1
1 3
x2
2
3
y2
的图像
二次函数图像与性质ppt课件

D.f(1)>25
答案:A
三基能力强化
2.若函数f(x)=ax2+bx+c满足 f(4)=f(1),那么( )
A.f(2)>f(3) B.f(3)>f(2) C.f(3)=f(2) D.f(3)与f(2)的大小关系不确定 答案:C
三基能力强化
3.已知函数y=x2-2x+3在闭区
间[0,m]上有最大值3,最小值2,则
课堂互动讲练
【思路点拨】 (1)待定系数法.(2) 二次函数的单调性.
【解】 (1)依题意,方程f(x)=ax2 +bx=x有等根,
则有Δ=(b-1)2=0,∴b=1. 2分 又f(-x+5)=f(x-3), 故f(x)的图象关于直线x=1对称, ∴-2ba=1,解得 a=-12,
∴f(x)=-21x2+x. 5 分
基础知识梳理
2.二次函数的图象及其性质
基础知识梳理
基础知识梳理
基础知识梳理
二次函数可以为奇函数吗? 【思考·提示】 不会为奇 函数.
三基能力强化
1.已知函数f(x)=4x2-mx+5在
区间[-2,+∞)上是增函数,则f(1)的
范围是( )
A.f(1)≥25
B.f(1)=25
C.f(1)≤2+2=(x+a)2+2 -a2的对称轴为x=-a,
∵f(x)在[-5,5]上是单调函数, ∴-a≤-5,或-a≥5, 解得a≤-5,或a≥5. 10分
规律方法总结
1.二次函数f(x)=ax2+bx+c(a >0)在区间[m,n]上的最值.
当-2ba<m 时,函数在区间[m, n]上单调递增,最小值为 f(m),最大 值为 f(n);
基础知识梳理
1.二次函数的解析式有三种常用表 达形式
二次函数的图像和性质 课件4

这条抛物线关于y轴 这条抛物线关于y轴 这条抛物线关于y轴 对称,y轴就是它的 对称,y轴就是它的 对称,y轴就是它的 对称轴。 对称轴。 对称轴。 对称轴与抛物线的交点 叫做抛物线的顶点。
正比例函数:y = kx (k≠0) 当k > 0时,图象经过第一、三象限,y的值随x的增大而 增大; 当k < 0时,图象经过第二、四象限,y的值随x的增大而 减小; 一次函数:y = kx + b(k≠0) 当k > 0时,y的值随x的增大而增大;其中当 b > 0时,图 象不经过第四象限,当b < 0时,图象不经过第二象限; 当k < 0时,y的值随x的增大而减小;其中当 b > 0时,图 象不经过第三象限,当b < 0时,图象不经过第一象限; k 反比例函数:y = ( k ≠ 0) x 当k > 0时,图象在第一、三象限,在同一象限内y的值随x 的增大而减小;
你还记得以 前学过了哪 试学活动三 些函数吗?
当k < 0时,图象在第二、四象限,在同一象限内y的值随x 的增大而增大;
y x2
仔细观察右图, 并完成填空。
抛物线 顶点坐标 对称轴 位置 开口方向 增减性 极值
y=x2
(0,0)
y x2
y=-x2
(0,0) y轴
在x轴的下方(除顶点外)
8
4.5
2
0.5
-1
2 3
x
22 2 y y=2x x 3
... -3 ... -6
-2 -1.5
8 3
... ...
1.5
1 2 y x 2
2 y x2
y x2
1 y x2 2
y 2x2
2 二次函数的图象与性质2.二次函数y=ax2+bx+c的图象与性质第4课时PPT课件(华师大版)

质 随x的增大而减小;在对称轴的右侧,即当x 的增大而增大;在对称轴的右侧,即当x
>-
>-
时,y随x的增大而增大.
(4)抛物线有最低点,当x=
-
最小值,y最小值=
-
时,y随x的增大而减小.
时,y有 (4)抛物线有最高点,当x=
-
大值,y最大值=
-
时,y有最
以选项 D 错误.
第4课时
二次函数y=ax2+bx+c的图象与性质
【归纳总结】求二次函数最大(小)值的方法:
(1)直接观察函数图象得最大(小)值;(2)配方法;(3)用顶点的坐标公
式求最大(小)值.
第4课时
二次函数y=ax2+bx+c的图象与性质
例 3 [高频考题]
2
如果二次函数 y=ax +bx+c 的图象如图
2
2
y=ax +bx+c 的形式.反过来,二次函数 y=ax +bx+c 也可以通过配方法转
2
化为 y=a(x-h) +k 的形式.具体过程如下:
第4课时
二次函数y=ax2+bx+c的图象与性质
2
y=ax +bx+c
=a + +
=a + ·
=a +
+
-
第4课时
二次函数y=ax2+bx+c的图象与性质
反思
已知二次函数 y=x2+(m-1)x+1,当 x>1 时,y 随 x 的增大而增大,试
>-
>-
时,y随x的增大而增大.
(4)抛物线有最低点,当x=
-
最小值,y最小值=
-
时,y随x的增大而减小.
时,y有 (4)抛物线有最高点,当x=
-
大值,y最大值=
-
时,y有最
以选项 D 错误.
第4课时
二次函数y=ax2+bx+c的图象与性质
【归纳总结】求二次函数最大(小)值的方法:
(1)直接观察函数图象得最大(小)值;(2)配方法;(3)用顶点的坐标公
式求最大(小)值.
第4课时
二次函数y=ax2+bx+c的图象与性质
例 3 [高频考题]
2
如果二次函数 y=ax +bx+c 的图象如图
2
2
y=ax +bx+c 的形式.反过来,二次函数 y=ax +bx+c 也可以通过配方法转
2
化为 y=a(x-h) +k 的形式.具体过程如下:
第4课时
二次函数y=ax2+bx+c的图象与性质
2
y=ax +bx+c
=a + +
=a + ·
=a +
+
-
第4课时
二次函数y=ax2+bx+c的图象与性质
反思
已知二次函数 y=x2+(m-1)x+1,当 x>1 时,y 随 x 的增大而增大,试
二次函数的图象与性质(第4课时)-2022-2023学年九年级数学下册教材配套教学课件(北师大版)

(0,1),当x≥0时,y随x的增大而增大,
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)
∴a-1>0,
解得a>1.
故选:A.
3.点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,当x1
>x2>1时,y1与y2的大小是( )
A.y1≤y2 B.y1<y2 C.y1≥y2 D.y1>y2
【答案】D
【详解】解:∵抛物线y=(x-1)2-3,a=1>0开口向上,
(3)将抛物线C先向左平移2个单位长度、再向上平移
1个单位长度后,所得抛物线为` .请直接写出抛物
线` 的函数解析式.
【答案】(1)抛物线C的开口向下,对称轴为直线
x=1,顶点坐标为(1,2);
(2)y的取值范围为-2≤y≤2;
(3)y=-(x+1)2+3
(1)
解:∵y=-x2+2x+1=-(x-1)2+2,
典例精析
例1.已知二次函数y=a(x-1)2-c的图象如图所示,
则一次函数y=ax+c的大致图象可能是( A )
解析:根据二次函数开口向上则a>0,根据-c是
二次函数顶点坐标的纵坐标,得出c>0,故一次函数
y=ax+c的大致图象经过第一、二、三象限.故选A.
知识点二 二次函数y=a(x-h)2+k与y=ax2的关系
对称轴为直线x=1,当x>1时,y随x的增大而增大,
点A(x1,y1),B(x2,y2)在抛物线y=(x-1)2-3上,
∴x1>x2>1,
∴y1>y2.
故选:D.
4.如图,在平面直角坐标系中,O为坐标原点,正
方形OABC的顶点A在y轴的负半轴上,点C在x轴的
正半轴上,经过点A、B的抛物线y=a(x-2)2+c(a>0)
二次函数y=x和y=x的图象与性质(共24张PPT)

讲授新课
一 二次函数y=x2和y=-x2的图象和性质
合作探究
你会用描点法画二次函数 y=x2 的图象吗?
1. 列表:在y = x2 中自变量x可以是任意实数,列表表 示几组对应值:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
2. 描点:根据表中x,y的数值在坐标平面中描点(x,y)
得y1=9,y2=1,y3=2,则y1>y3>y2; 方法二:如图,作出函数y=x2的图象, 把各点依次在函数图象上标出.由图象可知y1>y3>y2;
方法三:∵在对称轴的右边,y随x的增大而增大, 而点(-3,y1)关于y轴的对称点为(3,y1). 又∵3> 2 >1,∴y1>y3>y2.
课堂小结
.
△ACO
△BOC
×1 4×1=2,
∴S△ABO=S△2 ACO+S△BOC=10.
2
当堂练习
1.两条抛物线 y x与2 y 在x同2 一坐标系内,下列说法中
不正确的是( ) C A. 顶点坐标均为(0,0) B. 对称轴均为x=0
C.开口都向上
D. 都有(0,0)处取最值
2.二次函数 y = -x2 的图象,在 y 轴的右边,y 随 x 的增大而_____减__小_.
例1变式 若点A(-1,y1),B(2,y2)是二次函数y=-x2图象上的 两点,那么y1与y2的大小关系是__________y_1_>_.y2
例2:已知:如图,直线y=3x+4与抛物线y=x2交于A、B两
点,求出A、B两点的坐标,并求出两交点与原点所围成
的三角形的面积. 方法三:∵在对称轴的右边,y随x的增大而增大,