膜的污染及其控制方法

合集下载

浅析反渗透膜技术中防治膜污染的主要方法

浅析反渗透膜技术中防治膜污染的主要方法

浅析反渗透膜技术中防治膜污染的主要方法
反渗透膜技术是一种先进的水处理技术,可以实现对水中溶解性物质和微粒子的有效去除。

但是,在实际运行过程中,反渗透膜常常会受到膜污染的影响,导致处理效率下降和膜寿命缩短。

为了保证反渗透设备的持久稳定运行,需要采取一系列措施来防止和治理膜污染,本文将对反渗透膜技术中防治膜污染的主要方法进行浅析。

1.物理清洗法
物理清洗法是一种通过机械力和水流来清除膜表面污染的方法。

该方法适用于膜污染较轻的情况,可以有效地减少污染物的附着和沉积。

常见的物理清洗方法包括气体脉冲清洗、水脉冲清洗、化学喷雾清洗、超声波清洗等。

2.化学清洗法
4.污染预防控制
污染预防控制是一种通过预先控制污染物来源和限制其入侵来防治膜污染的方法。

该方法适用于避免污染物在膜表面积累和附着,有助于提高反渗透膜的工作效率和延长使用寿命。

常见的污染预防控制方法包括水预处理、定期检查和维护、优化生产流程等。

综上所述,反渗透膜技术中防治膜污染的主要方法包括物理清洗法、化学清洗法、生物清洗法和污染预防控制。

不同的方法可以根据膜污染的特点和程度灵活运用,以达到最佳的防治效果。

同时,还要合理运用不同的方法,以达到清洗效果最佳的效果。

膜的污染及其控制方法

膜的污染及其控制方法

膜的污染及其控制方法以下的三种污染即沉淀污染、吸附污染、生物污染,有时会同时发生,而且发生一种污染又可能加速另一种污染。

进行膜处理时,应对原水组分进行分析,识别造成膜污染的主要原因,以便更好地消除影响,延长膜的使用寿命。

1 沉淀污染以压力为推动力的膜分离技术有反渗透(RO),纳滤(NF),超滤(UF)和微滤(MF)。

根据不同膜与水中微粒的相互关系,可知沉淀污染对RO和NF的影响尤为显著。

当原水中盐的浓度超过了其溶解度,就会在膜上形成沉淀或结垢。

普遍受人们关注的污染物是钙、镁、铁和其它金属的沉淀物,如氢氧化物、碳酸盐和硫酸盐等。

设在溶液中有化学反应:x A y- +y B x+ =A x B y当不考虑盐类之间的相互作用时,溶度积K sp = γx A [A y- ] x γ y B [B x+ ] y 为常数。

其中,γ A 、γ B 为自由离子A和B的平均活度系数;[A],[B]为溶液中的摩尔浓度;x,y为化学配比系数。

平均活度系数可用离子强度[I ]的函数来估测:logγ A =-0.509 Z A I 1/2,logγ B =0.509 Z B I 1/2 ;Z A 、Z B 为自由离子的化合价。

对稀溶液,如大多数天然水体,其活度系数γ A 、γ B 近似等于1。

2 吸附污染有机物在膜表面的吸附通常是影响膜性能的主要因素。

随时间的延长,污染物在膜孔内的吸附或累积会导致孔径减少和膜阻增大,这是难以恢复的。

腐殖酸和其他天然有机物(NOM) 即使在较低浓度下,对渗透率的影响也大大超过了粘土或其它无机胶粒。

与纯化水ro膜污染相关的有机物特征包括它们对膜的亲和性,分子量,功能团和构型。

带负电荷功能团的有机聚合电解质(如腐殖酸和富里酸)会与带有负电荷的膜表面之间存在静电斥力。

用在水和废水处理中的聚砜、醋酸纤维树脂、陶瓷和薄表层复合膜表面都带有一定程度的负电荷。

一般来讲,膜表面电荷密度越大,膜的亲水性就越强。

超滤膜在水处理中的污染及其控制措施

超滤膜在水处理中的污染及其控制措施

超滤膜在水处理中的污染及其控制措施关键词:超滤膜膜污染污染机理一、前言膜滤技术在水处理工艺中应用得到飞速发展,它能有效地分离去除水中的微生物、细菌、无机颗粒和有机物质等,并且具有处理水质稳定高效、占地面积小、节省药剂投加量、易于实现自动化操作等优点。

但由于膜表面极易污染堵塞,造成膜通量减少,只有通过增加反冲洗频繁,保证制水能力,导致膜的使用寿命大大缩短,从而增加了运行和经营成本。

膜过滤工艺的最终目标是要实现最低能耗下的高膜通量,现以陕西陕焦化工有限公司(下称陕焦)脱盐水站程控超滤的运行状况为基础分析如何控制膜污染速度。

二、膜污染过程机理掌握膜污染的机理是膜滤技术的关键,影响膜污染的最主要的因素是处理溶液中粒子与膜材料的互相作用,广义的膜污染不仅包括由于堵塞引起的污染,不可逆的吸附污染,而且包括由于浓差极化形成的凝胶层的可逆污染。

在水处理中比超滤膜孔径大的溶解性有机物是构成膜污染的主要成分,产生的膜阻力超过总膜阻力的50%,整个膜污染过程分为三个阶段:第一阶段是随着生物聚合物浓度的不断提高,可供使用的活性孔数量越来越少;第二阶段是迁移性生物聚合物沉积在孔内吸附的生物聚合物上,从而形成膜污染。

第三阶段,越来越多的迁移性生物聚合物聚集在膜表面,形成凝胶层和泥饼层。

随着生物聚合物浓度的变化,膜污染阶段可以合并变成两个阶段或阶段之间可相互转换。

三、膜污染的影响因素影响膜污染的因素主要有:膜结构及特性、膜使用条件、原水水质。

1.膜结构及特性膜结构及特性对控制膜污染十分重要。

在超滤过程中,膜、溶质和溶剂之间的相互作用受到膜材质、膜孔结构、膜的憎水性、膜表面电荷、膜的表面粗糙度等因素的影响,同时膜表面特性对于细菌的生存也起着重要作用。

当膜孔与粒子或溶质的尺寸相近时,极易产生堵塞作用,而当膜孔小于粒子或溶质的尺寸时,由于横切流作用,它们在膜表面很难停留聚集,不易堵孔。

膜孔径分布或分割分子量敏锐性,也对膜污染产生重大影响。

MBR中膜污染及其控制

MBR中膜污染及其控制

1引言膜生物反应器是膜技术与生物反应器有机结合的产物,较早作为化工工业中一种高效的分离手段。

当它被引入环境工程领域用于污水处理时,其优良的水质、紧凑的结构及低污泥产量是传统工艺难以超越的。

通常提到的膜生物反应器,实际是三类反应器的总称,它们分别是膜-曝气生物反应器(Membrane Aeration Bioreactor)、萃取膜生物反应器(Extractive Membrane Bioreactor)和膜分离生物反应器(Biomass Separation Membrane Bioreactor)。

目前进行了大量富有成效的研究并已投入实际使用的只有膜分离生物反应器(Biomass Separation Membrane Bioreactor),这里主要对该种膜生物反应器(Membrane Bioreactor)中膜污染控制的研究现状作简单评述。

尽管该类膜生物反应器的技术可行性早已被人们认可,但处理工艺的费用较高,在一定程度上限制了它的推广。

G.Owen指出,膜工艺的费用主要来自膜价格、膜更换频率和能耗需求。

随着制膜水平的提高,膜的价格已大大下降;膜的更换频率与膜的稳定运行有关,但膜污染问题大大影响了膜系统的稳定运行;能耗高的原因是多重的,其中之一是膜污染造成通量下降而迫使能耗加大以维持通量。

由此可见膜污染是影响MBR经济性和推广应用的主要原因。

2膜污染的形式在膜生物反应器中,膜处于由有机物、无机物及微生物等组成的复杂的混合液中,特别是生物细胞具有活性,有着比物理过程、化学反应更为复杂的生物化学反应。

因此膜污染是一个很复杂的过程,其机理目前尚不完全清楚。

此外,由于MBR多应用微滤膜和超滤膜,膜的污染问题较纳滤和反渗透膜更为严重。

从污染物的位置来划分,膜污染分为膜附着层污染和膜堵塞。

在附着层中,发现有悬浮物、胶体物质及微生物形成的滤饼层,溶解性有机物浓缩后粘附的凝胶层,溶解性无机物形成的水垢层,而特定反应器中膜面附着的污染物随试验条件和试验水质不同而不同。

超滤膜在水处理中的污染及其控制措施

超滤膜在水处理中的污染及其控制措施

超滤膜在水处理中的污染及其控制措施超滤膜污染控制技术是超滤膜技术推广的关键,超滤膜污染受到膜结构和特性,温度、压力、水中杂质、原生水质等因素的影响,造成超滤膜通水量减少、能耗增加、生产成本升高。

超滤膜清洗时比较复杂,并且还要使用化学药剂,会对周围水质造成再次污染。

超滤膜清洗难度大,在对超滤膜进行清洗过程中要对超滤膜污染问题进行区别对待,提前做好各项准备,当超滤膜污染超标时,及时地进行超滤膜清洗。

通过超滤膜与粉末活性炭的组合工艺、混凝剂超滤膜组合工艺等工艺创新可以提高超滤膜污染工作效率。

本文通过对超滤膜在水处理中污染的原理和特点的分析,根据对超滤膜污染影响因素的探究,提出超滤膜在水处理中的污染控制措施,以期促进超滤膜技术的发展。

标签:超滤膜;水处理;污染;控制措施引言随着科学技术的发展,膜过滤技术得到较快的发展,使用膜过滤技术可以有效去除水中的微生物、细菌、无机颗粒和有机物,超滤膜水处理技术具有良好的物化性能和分析性能,能够满足环境工程水质要求。

超滤膜技术可以实现对水的净化、浓缩、分析,有效实现水体净化,并且成本低,有着较好的发展前景。

可以通过促进科技创新,逐步转变经济发展方式对超滤膜进行技术创新,促进企业健康发展,企业在获得经济效益的同时可以获得社会效益和生态效益。

1、超滤膜技术概念1.1 超滤膜技术工作原理。

超滤膜技术是在压差推动力作用下进行的筛孔分离过程,即在一定的压力作用下,当含有大、小分子物质两类溶质的溶液流过被支撑的膜表面时,溶剂和小分子溶质(如无机盐类)将透过膜,作为透过物被收集起来;大分子溶质(如有机胶体等)则被膜截留而作为浓缩液被回收,从而可以实现对水质净化和浓缩,分离出相关溶液的技术。

超滤膜技术在应用中介于微滤和纳滤之间,膜孔径范围为0.005-0.1μm,截留分子量为1000-500,000道尔顿左右。

超滤膜工作原理主要体现在一定压力下进行过滤的半透性的膜。

受到压力的作用,溶液中的溶剂和低分子量的溶质会通过超滤膜上的孔洞到达膜的另一侧。

第四章 膜污染及控制

第四章 膜污染及控制
极大降低膜分离过程对循环流量的依赖 有效地将压力和循环流量进行解耦合
动态旋转膜
DYNO filter (Bokela)
Optifilter CR (Metso paper)
Rotary Membrane System (Spin TeK)
• 动态旋转膜是一种新型膜分离工艺,具有抗污染、低能耗、高通量等优点,已经成功 应用于高浓度乳品废水、含油废水等复杂料液体系的分离。
μ为溶液粘度;Rm为膜阻力;Rbl为浓差极化边界阻力;Rf为膜污染产生的 阻力; Rt(膜过程的总阻力)=Rm+Rbl+Rf ,串联阻力模型
如何定量测定各阻力?
22
串联阻力模型
目前主要采用阻力系数法定量地表征膜污染程度,基本步骤如下:
①测定膜的初始纯水透过量 由于此时Rbl=Rf=0,根据上式可知
•凝胶的形成可以是可逆的或不可逆的 这对于膜的清洗是十分重要的 不可逆凝胶很难除去-尽可能避免这种情况 •对于用凝胶层模型来描述通量行为-凝胶形成是否 可逆并不重要
27
浓差极化和凝胶形成
(凝胶层阻力Rg,膜阻Rm)
凝胶层模型
利用凝胶层模型可以描述极限通量的发生 假设溶质完全被膜截留则溶剂通过膜的通量随压力提高而增加,直到达到对应 于凝胶浓度的临界浓度 当压力进一步增加时,溶质在膜表面浓度不能进一步增加(因为已达最大浓度), 所以凝胶层会越来越厚或越紧密 这表明,凝胶层对溶剂传递的阻力(Rg)增大-凝胶层成为决定通量的制约因素 在极限通量区域,压力增加使得凝胶层阻力增大,所以净的结果是通量不变( 此时忽略了大分于溶液的渗透压)
• 简述影响浓差极化的因素,或其危害。
20
四、膜污染机理和模型
The mechanism and model of membrane fouling

MBR在城市污水深度处理中的应用及膜污染控制

MBR在城市污水深度处理中的应用及膜污染控制

MBR在城市污水深度处理中的应用及膜污染控制摘要:膜生物反应器(MBR)是一种将膜分离技术与传统污水生物处理工艺有机结合的新型高效污水处理与回用工艺。

本文介绍了MBR工艺在平谷洳河污水处理厂二期工程中作为深度处理技术的应用情况。

针对该系统在实际运行过程中出现的膜污染和运行成本较高的问题,提出了可行性措施。

为MBR工艺在市政污水处理过程中的应用和生产运行提供了指导。

关键词:MBR;市政污水;膜污染控制;污水回用背景概述MBR膜处理工艺是基于膜分离材料的水处理新技术。

膜生物反应器(MBR)的最早研究始于20世纪60年代的美国。

1966年,由美国Dorr-Oliver公司首创研究开发。

膜分离技术的工程应用开始于20世纪60年代的海水淡化。

以后随着各种新型膜的不断问世,膜技术也逐步扩展到城市生活饮用水净化和城市污水处理以及医药、食品、生物工程等领域。

在全球水资源紧缺,受污染日益严重的今天,膜技术作为一种新型的再生水回用技术,近年来在国内外水处理技术领域日益得到广泛关注。

目前,MBR工艺因其自身诸多的优势正逐渐在国内的污水处理领域中得到了应用,但因该技术应用于生产在我国还属于起步阶段,对该工艺的运行和管理都相对缺乏经验。

平谷洳河污水处理厂是北京市平谷区重点环境保护项目之一,也是平谷区建设的第一座城市污水处理厂,承担着平谷城区的污水收集与治理任务。

该项目总投资1.93亿元,采用国内目前最先进的A2/O+MBR组合处理工艺。

本文着重介绍了MBR工艺的特点,以及该工艺平谷洳河污水处理厂中的设计和运行情况。

针对实践运行过程中所出现的膜污染问题,提出了多种行之有效的控制措施。

最后对MBR工艺的运行成本做了简要分析。

MBR工艺的特点膜生物反应器是一种将膜分离技术与传统污水生物处理工艺有机结合的新型高效污水处理与回用工艺。

膜生物反应器主要由池体、膜组件、鼓风曝气系统、泵及管道阀门仪表等组成。

污水中的有机污染物经过生物反应器内微生物的降解作用而被去除。

反渗透膜生物污染的影响因素及控制方法的研究进展

反渗透膜生物污染的影响因素及控制方法的研究进展

反渗透膜生物污染的影响因素及控制方法的研究进展I. 研究背景随着现代水处理技术的不断发展,反渗透膜在水资源处理领域得到了广泛应用。

然而反渗透膜在使用过程中可能会受到生物污染的影响,这不仅会导致水质恶化,还可能影响到反渗透膜的使用寿命和处理效果。

因此研究反渗透膜生物污染的影响因素及控制方法具有重要的理论和实际意义。

近年来国内外学者对反渗透膜生物污染的研究取得了显著的进展。

他们通过实验研究、理论分析等多种手段,揭示了反渗透膜生物污染的形成机制、影响因素以及控制方法。

这些研究成果为提高反渗透膜的处理效果和使用寿命提供了有力的理论支持和技术保障。

首先研究者们发现,微生物是导致反渗透膜生物污染的主要原因之一。

不同类型的微生物在不同的水质条件下会产生不同的污染效应,如细菌、病毒、真菌等。

此外水温、pH值、溶解氧等因素也会影响微生物的生长和繁殖,从而加剧反渗透膜的生物污染问题。

其次研究人员还发现,水中有机物的存在也是导致反渗透膜生物污染的重要因素。

有机污染物可以为微生物提供营养物质和生长环境,促进其在反渗透膜上的附着和繁殖。

此外水中的无机盐类、胶体颗粒等也可能与微生物共存,共同影响反渗透膜的性能。

随着反渗透膜在水处理领域的广泛应用,研究其生物污染的影响因素及控制方法具有重要的理论和实际意义。

未来随着科学技术的不断进步,相信我们能够找到更加有效的方法来解决这一问题,为保护水资源和实现可持续发展做出更大的贡献。

反渗透膜在水处理中的应用随着水资源的日益紧张和水环境污染问题的严重性,反渗透膜作为一种高效、节能、环保的技术手段,在水处理领域得到了广泛的应用。

反渗透膜是一种具有高度选择性的膜分离技术,它能够有效地去除水中的溶解性固体、有机物、胶体物质以及微生物等污染物,从而实现对水质的净化。

目前反渗透膜在饮用水、工业用水、污水处理等领域都有着广泛的应用。

在饮用水处理方面,反渗透膜技术已经成为了一种主流的净水方法。

通过反渗透膜的过滤作用,可以有效地去除水中的硬度离子、色度、异味等污染物,提高水质的透明度和口感。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

膜的污染及其控制方法控制方法, 污染简介:反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。

关键字:反渗透结垢胶体污染SDI 化学污染相关站中站:膜技术产品及应用反渗透系统在日常的运行中,难免会出现系统的无机物结垢、胶体颗粒物的沉积、微生物的滋生、化学污染以及其它问题,这些因素影响着系统安全稳定的运行。

下面主要阐述膜系统在日常中出现的问题及控制方法。

一、无机物的结垢在水中存在Ca2+、Mg2+、Ba2+、Sr2+、CO32-、SO42-、PO43-、SiO2等离子。

在一般的情况下是不会造成无机物结垢,但是在反渗透系统中,由于源水一般浓缩4倍,并且pH也有较大的提高,因此比较难溶解的物质就会沉积,在膜表面形成硬垢,导致系统压力升高、产水量下降,严重的还会造成膜表面的损伤,使系统脱盐率降低。

衡量水质是否结垢有两种计算方法:控制苦咸水结垢指标对于浓水含盐量TDS≤10,000mg/L的苦咸水,朗格利尔指数(LSIC)作为表示CaCO3结垢可能性的指标:LSIC=pHC-pHS式中:LSIC:反渗透浓水的朗格利尔指数pHC:反渗透浓水pH值pHS:CaCO3溶液饱和时的pH值当LSIC≥0,就会出现CaCO3结垢。

控制海水及亚海水结垢指标及处理方法:当浓水含盐量TDS>10,000mg/L的高盐度苦咸水或海水水源,斯蒂夫和大卫饱和指数(S&DSIC)作为表示CaCO3结垢可能性的指标。

S&DSIC=pHC-pHS式中:S&DSIC:反渗透浓水的斯蒂夫和大卫饱和指数pHC:反渗透浓水pH值pHS:CaCO3溶液饱和时的pH值当S&DSIC≥0,就会出现CaCO3结垢。

其它无机盐结垢预处理的控制方案碳酸钙结垢预处理的控制方案在反渗透系统的结垢中,以碳酸盐垢为主,大多数地表水和地下水中的CaCO3几乎呈饱和状态,由下式表示CaCO3化学平衡:Ca2+ + HCO3– <---> H+ + CaCO3从化学平衡式可以看出,要抑制CaCO3的结垢,有几种途径:降低Ca2+的含量降低了Ca2+含量,可以使化学平衡向左侧移动,不利于形成CaCO3垢。

达到这种目的的方法有:离子交换软化法、石灰软化法、电渗析、纳滤等方法,他们都能有效地降低的Ca2+含量,从而达到抑制钙垢的生成。

Ca2+的增溶主要是以增加Ca2+的溶解度,从而降低结垢的风险。

方法:添加螯合剂、阻垢剂,增加Ca2+的溶解度,使平衡向左移动。

调节pH值主要是通过添加无机酸,从而提高H+的浓度,使平衡向左移动。

化学原理如下:CO2 + H2O <---> H2CO3 ――――⑴H2CO3 <---> H+ + HCO3- ――――⑵HCO3- <---> H+ + CO32- ――――⑶离子交换除碱法主要是通过降低CO32-的浓度来降低碳酸钙结垢的风险。

硫酸钙结垢预处理的控制方案离子交换除钙石灰软化除钙添加反渗透专用阻垢剂氟化钙结垢预处理的控制方案离子交换除钙石灰软化除钙阴树脂交换添加反渗透专用阻垢剂硫酸锶结垢预处理的控制方案离子交换除锶阴树脂交换添加反渗透专用阻垢剂硫酸钡结垢预处理的控制方案离子交换除钡阴树脂交换添加反渗透专用阻垢剂硅酸盐结垢预处理的控制方案预处理中的过滤石灰软化提高进水的温度提高进水的pH值添加硅分散剂二:胶体、颗粒物沉积胶体、颗粒物污染是比较常见的反渗透系统污染。

水中大量存在粘泥、胶体硅、金属的氧化物及有机质等颗粒物,在反渗透系统预处理中可以将源水中的这些污染源控制在一定程度,不致使对系统短期运行造成一定的影响。

但由于系统长时间的运行预处理处理效果不理想、预处理反冲洗不彻底、操作人员的日常操作不到位等原因,都会造成系统胶体、颗粒物的污染。

针对胶体污染,通过淤泥密度指数(Silt Density Index ,SDI)来衡量。

SDI数值反应了在规定时间内,孔径为0.45um测试膜片被测试给水中的淤泥、胶体、黏土、硅胶体、铁的氧化物、腐植质等污染物堵塞的比率和污染程度。

测试如下:首先应充分排除过滤池中的空气压力,使给水以30psi 的恒定压力通过直径为Φ 47mm 、孔径为0.45um的测试滤膜后开始测定:首先测定开始通过滤膜的500毫升水所需要的时间T0;在使水连续通过滤膜15分钟(T)后,再次测得通过滤膜的500毫升水所需要的时间T1;在取得以上3个时间数据之后,由此可以计算出该水源的SDI值:即SDI=(1-T0 /T1)×100/T在实际中,当T1为T0的四倍时,SDI为5;在SDI为6.7时,水会完全堵塞测试膜,而无法取得时间数据T1,在这种情况下需要对反渗透预处理系统进行调整,使其SDI值降至5.0以下。

SDI值不能反应完全反渗透系统的污堵情况,因为SDI仪测试是死端过滤,而反渗透系统是错流过滤。

为了防止反渗透系统胶体污染,我们要求进水SDI值小于5(最好是小于3),这样有利于系统长期安全运行。

降低反渗透进水胶体、颗粒物污染最有效的方法:合适的预处理(锰砂过滤、多介质过滤、活性炭过滤、超滤、微滤等等);添加胶体分散剂;系统预防性的清洗;三、微生物的污染自来水一般通过控制余氯来抑制微生物的滋生,但是余氯有较强的氧化性,它能使反渗透膜表面氧化,影响膜的寿命和产水水质,因此反渗透系统运行对余氯要求非常严格(<0.1),这给微生物的生存繁殖提供了有利的环境。

微生物生长及排泄出的酸性粘泥会堵塞膜的微孔,致使压差上升,给系统的安全运行埋下了严重的安全隐患。

微生物的污染也是最常见的污染,经过大量的元件解剖及污染物分析实验,大多数污染是由微生物的繁殖引起的。

微生物污染过程主要有以下阶段:第一阶段腐殖质、聚糖至于其他微生物代谢产物等大分子在膜面上的吸附,形成具备微生物生存条件的生物膜;第二阶段进水微生物中黏附速度快的细胞形成初期黏附过程(生物膜生长缓慢);第三阶段后续大量菌种的黏附,特别是EPS (细胞聚合物,Extracelluar Polymers。

它黏附在膜面上的细胞体包裹起来,形成黏度很大的税和凝胶层,进一步增强了污垢和膜的结合力)的形成,加剧了微生物的繁殖和群聚;第四阶段生物污染的最终形成阶段,生物膜的生长和脱除达到平衡。

造成膜的不可逆的堵塞氏过滤阻力上升,膜通量下降。

抑制反渗透系统微生物繁殖的方法:反渗透进水微生物的控制。

通过源水的菌藻控制(一般通过控制余氯),尽量减少预处理的死角,防止微生物繁殖;反渗透系统微生物控制。

通过连续式或间歇式加入非氧化性且对膜没有影响的杀菌剂,可以有效地控制和杀死反渗透系统滋生的微生物,再通过浓水将其带出系统。

四、化学污染化学污染是指进水中某些物质与膜面发生化学反应,从而引起沉积、沉淀以及膜表面的非常规老化,使膜表面发生污染或使膜的性能变差。

常见的情况有:预处理时絮凝剂选用不当;运行时阻垢剂的选用不当;清洗时清洗药剂选用不当;预处理控制不严格,致使进水中带入对膜有危害的物质(如:余氯的超标导致膜面活性层的氧化)。

化学污染处理主要从系统预处理的完善及操作人员技术水平的提高来进行预防,污染一旦产生很难清洗或者很难使膜的性能恢复。

除了上述几种常见的问题,我们也会碰到沙砾、活性进入膜系统造成膜的划伤,这些主要是预处理的缺陷或者操作的失误造成,这些也应该引起足够的重视。

膜的污染及其控制方法简介:膜的污染问题大体可分为沉淀污染、吸附污染、生物污染。

对各自形成的机理或原因进行了分析,并且提出了相应的控制方法。

关键字:膜沉淀污染吸附污染生物污染机理控制方法膜污染是指在膜过滤过程中,水中的微粒、胶体粒子或溶质大分子由于与膜存在物理化学相互作用或机械作用而引起的在膜表面或膜孔内吸附、沉积造成膜孔径变小或堵塞,使膜产生透过流量与分离特性的不可逆变化现象[1]。

实际上,膜的可靠性是目前阻碍膜技术推广应用的关键之一,而污染问题又是影响其可靠性的决定性因素。

据调查,就超滤而言,污染仍是其主要问题,污染的消除将使超滤过程效率提高30%以上,使投资减少15%,而且能提高分离效果,使超滤范围拓宽[2]。

对膜污染种类及其成因的具体分析,将有助于采取合适的措施减弱或消除它的不良影响。

1沉淀污染以压力为推动力的膜分离技术有反渗透(RO),纳滤(NF),超滤(UF)和微滤(MF)。

根据不同膜与水中微粒的相互关系[3],可知沉淀污染对RO和NF的影响尤为显著。

当原水中盐的浓度超过了其溶解度,就会在膜上形成沉淀或结垢。

普遍受人们关注的污染物是钙、镁、铁和其它金属的沉淀物,如氢氧化物、碳酸盐和硫酸盐等。

设在溶液中有化学反应:x Ay-+y Bx+=AxBy当不考虑盐类之间的相互作用时,溶度积Ksp=γxA[Ay-]xγyB[Bx+]y为常数。

其中,γA、γB为自由离子A和B的平均活度系数;[A],[B]为溶液中的摩尔浓度;x,y 为化学配比系数。

平均活度系数可用离子强度[I ]的函数来估测:logγA=-0.509 ZAI1/2,logγB=0.509 ZBI1/2;ZA、ZB为自由离子的化合价。

对稀溶液,如大多数天然水体,其活度系数γA、γB近似等于1。

如图1所示,进料液,浓缩液,渗透液浓度分别为Cf,Cr,Cp。

图1膜系统中不同位置的溶质浓度由阻截率知:R=1-Cp/Cf(1)设系统回收率为r,由物料平衡,知:Cf-(1-r)Cr=rCp(2)由式(1),(2)可得:Cr=Cf[1-r(1-R)]/(1-r)(3)由(3)式可以看出,浓缩液中截留盐浓度Cr,随进水浓度Cf,回收率r和截留率R的增加而增加。

此时,被截留的浓缩液溶度积Kspr=γAx [Ay-]xrγBy[Bx+]ry。

当浓缩液溶度积Kspr与溶液溶度积Ksp的比值大于1时,就存在着盐析出的可能性。

实际上,方程(3)低估了促进沉淀生成和结垢的盐浓度,因为其推导中未考虑浓度极化。

鉴于这个原因,引入浓度极化因子PF(边界层与溶液中浓度之比值,大于1),PF值通常可用回收率r的指数函数的形式来估计,PF=exp(K×r)(4)其中K为半经验常数,对于商业应用的RO膜组件,取值为0.6~0.9,结垢在RO装置的最后几个单元中(即在浓度最高的地方)最先形成。

避免沉淀污染的方法主要是减少离子积中阳离子或阴离子的浓度。

例如,添加酸可减少氢氧化物和碳酸盐的浓度,使金属离子沉淀难以生成。

原水可通过石灰软化沉淀或离子交换等预处理方法去除易结垢的金属离子(如Ca2+、Mg2+等)。

还可以加入阻垢剂,例如磷酸六甲基,以阻碍沉淀生成。

2吸附污染有机物在膜表面的吸附通常是影响膜性能的主要因素。

相关文档
最新文档