固体超强酸

合集下载

固体超强酸催化剂的制备实验报告(一)

固体超强酸催化剂的制备实验报告(一)

固体超强酸催化剂的制备实验报告(一)制备固体超强酸催化剂实验报告实验目的通过固相法制备出一种具有超强酸性的固体酸催化剂,并研究其催化性能。

实验原理固相法又称凝胶法,是指通过将溶解有机金属化合物和有机酸等物质的溶液浸泡在无机固体载体中,再通过干燥和煅烧等步骤将有机化合物转化为无机氧化物,最终得到具有特定功能的催化剂。

在本实验中,我们利用AlCl3和HSO3CF3等化合物制备出具有超强酸性的ZrO2-Al2O3复合载体固体酸催化剂。

实验步骤1.准备载体:将0.24mol的ZrO2和0.02mol的Al2O3混合均匀,将其放入到烧杯中,加入足够的水,搅拌均匀后水浴加热至100℃,持续搅拌3小时,使其充分分散,形成颗粒状物。

2.溶解AlCl3:将0.02mol的AlCl3加入到绝对乙醇中,搅拌均匀并加热至70℃,进行溶解,得到淡黄色溶液。

3.溶解HSO3CF3:将0.02mol的HSO3CF3加入到绝对乙醇中,搅拌均匀,并加热至70℃进行溶解,得到透明的淡黄色溶液。

4.加入固体载体:将2.5g的干燥载体通过烘干得到的粉末加入到AlCl3和HSO3CF3的混合溶液中,搅拌均匀,混合物变为黄色。

5.进行氧化:将混合物转移到培养皿中,用烘箱在120℃下烘干4小时,然后升温至500℃,保温2小时,得到固体超强酸催化剂。

实验结果制备得到的固体超强酸催化剂为黄色粉末状,粉末颗粒大小均匀,无结块现象。

利用该催化剂可将蒽与苯乙烯通过[4+2]环加成反应,产生了3,6-二甲基-9-苯基萘,表明该催化剂具有良好的催化性能。

实验结论通过固相法制备的固体超强酸催化剂具有良好的催化性能,可用于有机化学反应的催化。

同时,制备过程简单,成本相对低廉,易于工业化生产。

实验注意事项1.实验过程中要注意安全,避免接触有毒有害溶剂。

2.载体的制备过程中,水和乙醇的比例要控制,以免形成团块。

3.加入固体载体的过程中,要均匀搅拌,混合物均匀。

4.进行氧化的过程中,要控制烘干和烧结的温度,保证制备得到的固体酸催化剂具有良好的性能。

固体超强酸固体超强碱名词解释

固体超强酸固体超强碱名词解释

固体超强酸固体超强碱名词解释
1.固体超强酸
固体超强酸是指酸性超过100% 硫酸的酸,如用Hammett 酸度函数H。

表示酸强度,100%硫酸的H0值为11.93H0< -11.93 的酸就是超强酸。

固体超强酸分为两类,一类含卤素、氟磺酸树脂成氟化物固载化物;另一类不含卤素,它由吸附在金属氧化物或氢氧化物表面的硫酸根,经高温燃烧制备。

2.固体超强碱
碱强度超过强碱(即共轭酸的pKa>26)的碱为超强碱。

有布仑斯惕超强碱,路易斯超强碱。

有固体、液体两类超强碱。

用于催化某些化学反应的超强碱为超强碱催化剂。

三甲基硅烷基氯化镁、AgB2H5、LiB2H5是能够以溶液的形式存在的最强碱,但如果说三甲基硅烷基氯化镁、AgB2H5、LiB2H5是普遍意义上的最强碱,那还差之甚远。

固体超强碱,如Li4C、Mg2Si、Na3B(硼化三钠)等,其对应的共轭酸pKa值往往超过120,甚至达到150-160。

他们的碱性强到几乎不能够以溶液形态存在。

例如:Na3B 溶解于丁硅烷Si4H10会发生配位反应,生成[(Si4H10)B4]12-而后析出氢化钠形成硼硅加合物。

另外有些碱如Li3N、Ag3N等,难溶于大多数有机溶剂,却能在固相中发生很强的碱性反应。

他们也被称为固体超强碱。

化学论文 固体超强酸概述

 化学论文  固体超强酸概述

固体超强酸概述摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。

固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。

本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。

关键词:固体超强酸;催化剂;应用在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。

这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。

液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。

固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。

当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。

羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。

目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。

自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。

固体超强酸催化剂

固体超强酸催化剂
5×10-5 3×10-4 5×10-3 2×10-2
0.1
4.8 71 90
与某pKa相当 的硫酸的质量
分数
N=N A
N(CH3)2
红(酸型)
[HA]S + [B]a
[A-]S + [BH+]a
测定原理:
H。= pKa + lg { [B]a / [BH+]a }
BH+
H+ + B
某 pKa 指示剂与固体酸相作用 其中: Ka = [ a H+ aB ] / a BH+
✓ 焙烧温度由150oC升高到600oC,弱酸减少,强酸增多;
但温度升高到1000oC,各强度下的酸量都大大减少
✓ 总酸量(H0 +6.8 ): 1.51 mmol/g (150oC)
各强度下酸量的两种表示:
1.80 mmol/g (300oC) 2.85 mmol/g (600oC) 最大 0.18 mmol/g (1000oC)
4 活性炭
在573K下热处理
金属氧化物 5
和硫化物
Al2O3 、TiO2、CeO2、V2O5、MoO3、WO3、 CdS、ZnS 等
6 金属盐 7 复合氧化物
MgSO4、SrSO4、CuSO4、ZnSO4、NiSO4、 Bi(NO3)3,AlPO4、BaF2、TiCl3、AlCl3等
SiO2-Al2O3、SiO2-ZrO2、 Al2O3-MoO3、 Al2O3Cr2O3、TiO2-ZnO、TiO2-V2O5、MoO3-CoO- Al2O3 、 杂多酸及其盐、合成分子筛 等
酸强度与酸量的测定
➢ 指示剂法(测定酸强度)
酸强度函数 H0(Hammett 函数)的定义 :

固体超强酸催化剂[详解]

固体超强酸催化剂[详解]

固体超强酸催化剂超强酸是比100%的硫酸还要强的酸,其Hammett函数H0<-11.93(100%硫酸的H0为-11.93),可分为固态和液态。

固体超强酸和液体超强酸相比,有容易与反应物分离,可重复使用,不腐蚀反应器,减少催化剂公害,催化剂有良好的选择性等优点。

在催化反应中,固体超强酸对烯烃双键异构化、醇脱水、烯烃烷基化、酸化、醋化等都显示出较高的活性。

这种催化剂不腐蚀设备,不污染环境,催化反应温度低,制备简便,有广泛的应用前景。

固体超强酸是近年来发展的一种新型催化材料,对许多化学反应有较好的催化活性、选择性及重复使用性能。

固体超强酸是近年来研究与开发的一种新型固体酸催化剂,随着人们对固体超强酸不断深入研究,催化剂的种类也从液体含卤素超强酸发展为无卤素固体超强酸、单组分固体超强酸、多组分复合固体超强酸。

无论是催化剂的制备、理论探索、结构表征,还是工业应用研究都有了新的发现,固体超强酸由于其特有的优点和广阔的工业应用前景,已受到国内外学者广泛关注,成为固体酸催化剂研究中的热点。

1. 催化性能1.1饱和烃的异构化反应饱和烃类分子如正丁烷、戊烷较稳定,不易发生反应。

如用100%硫酸作催化剂,室温下不会发生反应,但用SbF5SiO2-Al2O3固体超强酸却能使丁烷发生反应,主要产物为异丁烷。

nC5H12 SbF5SiO2-Al2O3 异戊烷1.2氧化反应SO42--Fe2O3能在室温下使丁烷异构化。

但在100℃以上用脉冲法进行反应时,只发生氧化反应但是,单用Fe2O3作催化剂,即使反应温度为300℃丁烷也不发生反应。

1.3阴离子聚合反应烷基乙烯基醚的聚合反应是阴离子聚合反应,可用烷基金属化合物或Ziegler型催化剂。

但是SO42--Fe2O3对此反应有极高的反应活性。

如异丁基乙烯基醚用SO42--Fe2O3作催化剂,在0℃能很快发生聚合反应。

甲基乙烯基醚和乙基乙烯基醚在该催化剂存在下以甲苯作稀释剂也能在低温(零度或零度以下)下高速聚合。

固体超强酸

固体超强酸
固体超强酸
比表面积),远大于sO4/Fe304的63.7m2,提高了催化表面的硫含量,不仅使催化剂表面酸性增加,而且催化剂的强酸位中心增加,催化活性高于sO4/Tio2。雷霆等人将cr-sO4/Z负载于7oAl203载体上,制成Cr-sO4/ZrO2系列固体超强酸,利用丁烷低温异构化为探针反应,考察了超强酸性、中强酸性和弱酸性的变化情况,发现负载后的催化剂的活性有显著提高。廖德仲等人J用Moth对钛系超强酸进行改性,所得sO4-/MOO3一Ti02型固体催化剂使用寿命长、活性好,促进剂与MoO3共存时,有较为明显的协同效应,是乙酸与异戊醇适宜的催化剂。而在sO4-AVIOy型催化剂中引入铂、镍等金属可提高催化剂使用寿命。
2.进行改性
3.引入分子筛
4.引入纳米粒子
5.引入磁性或交联剂
失活机理
1.在催化合成反应中
2.在有机反应中
3.在反应过程中
表征技术
物质特性
优势
1.具有极高的酸强度
2.催化活性高
3.具有极强的耐水和耐碱性
4.单程催化寿命长
5.重复使用性
6.影响较大
研究意义
介绍
物质资料
载体的改性
1.催化剂
2.引入其他金属或金属氧化物
展开
介绍
因为环境污染问题,在环保呼声日益高涨、强调可持续发展
固体超强酸
的今天,已是到了非解决不可的地步。自20世纪40年代以来,人们就在不断地寻找可以代替液体酸的固体酸,固体超强酸更是成为热门研究对象。固体酸克服了液体酸的缺点,具有容易与液相反应体系分离、不腐蚀设备、后处理简单、很少污染环境、选择性高等特点,可在较高温度范围内使用,扩大了热力学上可能进行的酸催化反应的应用范围。
固体超强酸

固体超强酸的酸度定义[新版]

固体超强酸的酸度定义[新版]

固体超强酸的酸度定义固体超强酸的酸强度是指其酸性中心给出质子或接受电子对的能力,可以采用Hammett酸度函数H0表达。

在所测量的样品中加入少量指示剂B(一种极弱的碱),B与质子结合后生成的共轭酸BH+具有不同性质(如颜色等),根据酸碱反应达到平衡时的[B]/[BH+]值,则可求得H0:H0=P k BH+-lg([BH+]/[B])P k BH+=-lg(K BH+)式中,K BH+是化学反应BH+→B+H+的平衡常数。

H0越小,则表明酸的强度越强,100%H2SO4的H0=-11.94,H0<-11.94的酸就称为超强酸[5]2.3.3 催化剂失活机理一般认为,固体超强酸的失活有以下几个方面原因:表面上的促进剂的流失,如酯化、脱水、醚化等反应过程中,水或水蒸气的存在会造成超强酸表面上的促进剂流失;使催化剂表面的酸性中心数减少,导致酸强度减弱,催化活性下降;在有机反应中,由于反应物、产物在催化剂表面上进行吸附、脱附及表面反应或积炭现象的发生,造成超强酸催化剂的活性下降或失活;反应体系中由于毒物的存在,使固体超强酸中毒,使负电性显著下降,配位方式发生变化,导致酸强度减小而失活[17]。

以上几种失活是暂时的失活,可通过重新洗涤、干燥、酸化、焙烧和补充催化剂所失去的酸性位,烧去积炭,恢复催化剂的活性3。

这也就是固体超强酸与液体超强酸相比,具有可重复使用性的原因。

2.4实验内容2.5 对比实验1. 使用先前制备的SO42-/ZrO2的催化剂进行对比实验,用电子天平准确称取5g冰醋酸、6.8g正丁醇和0.4g该催化剂,再取出1g反应混合物用标准氢氧化钠溶液进行滴定测其酸值,剩余混合物加入白钢罐中,在恒温油浴120℃加热反应2h,反应结束后待反应器冷却后,再取出1g产物混合物用标准氢氧化钠溶液进行滴定测其酸值。

2.用实验室提供的H-ZSM-5分子筛催化剂进行酯化反应。

用电子天平准确称取5g冰醋酸、6.8g正丁醇和0.4g该催化剂,再取出1g反应混合物用标准氢氧化钠溶液进行滴定测其酸值,剩余混合物加入白钢罐中,在恒温油浴120℃加热反应2h,反应结束后待反应器冷却后,再取出1g产物混合物用标准氢氧化钠溶液进行滴定测其酸值。

固体超强酸

固体超强酸

摘要论述了固体超强酸的研究及运用进展情况。

采用寻找最佳配比制备ZrO2包覆的SO42-/ SnO2固体超强酸,讨论了ZrO2与硫酸铵的最佳物质的量比,硫酸铵与SnC l4 最佳摩尔比,煅烧温度,固体超强酸的最佳使用量对其催化性能的影响。

实验结果表明,以ZrO2:(NH4)SO4摩尔比为100:6,(NH4)2SO4:SnCl4=1:2时所制备的ZrO2包覆的SO42-/ SnO2固体超强酸,在400摄氏度煅烧取固体超强酸0.8g原料无水乙醇(20ml)与冰乙酸(10g)进行酯化反应(反应温度为65°c),为较优工艺条件,在此条件制得的乙酸乙酯的酯化率为61.75%。

[关键词]包覆固体超强酸制备催化合成乙酸乙酯AbstractDiscussed the research and application advanced of solid superacid catalyst in details.By looking for the best ratio of ZrO2-coated SO42-preparation/SnO2 solid superacids, discusses ZrO2 and ammonium sulfate best amount of substance than, ammonium sulphate and SnC l4 best molar ratio, burning temperature, solid superacids best usage on its catalytic performance impact. Experimental results show that to ZrO2: (NH4) SO4 molar ratio of 100: 6, (NH4) SO4: SnCl4 = 1: 2, the preparation of ZrO2-SO42-/SnO2 solid superacids, calcination of the 400 degrees Celsius ,Take solid superacids 0.8g raw ethanol (20ml) and glacial acetic acid (10g) esterification reaction temperature of 65 (°C), for greater technological conditions, conditions in the final of ethyl acetate ester rate of 61.75%.Key words:coating solid superacid catalyst synthesis acetic ether目录目录 (3)1. 前言 (4)1.1 引言 (4)1.2 固体超强酸的研究状况 (4)1.3 固体超强酸的应用 (5)1.4 存在的不足 (5)1.5 展望 (6)1.6 本实验中反应的催化条件 (7)2. 实验部分 (8)2.1 实验试剂 (8)2.2 主要仪器和设备 (8)2.3 实验过程 (8)2.3.1 ZrO2包覆的固体超强酸SO42-/SnO2的制取 (9)2.3.2 催化合成乙酸乙酯 (9)2.3.3固体超强酸SO42-/ZrO2的催化机理 (9)3. 实验结果与讨论 (10)3.1硫酸铵最佳包覆量 (10)3.2 考察n(NH4)2SO4)与n(SnCl4)的比例对乙酸乙酯的催化效率的影响113.3煅烧温度对酯化率的影响 (12)3.4催化剂的最佳用量 (13)3.5 催化剂的重复使用 (13)4. 结论 (14)致谢 ......................................................................................... 错误!未定义书签。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业论文进度安排
(1)2015.10.10-10.17 期刊网查阅大量资 料并筛选出有用资料与老师交流; (2)2015.10.18-10.21 领试剂 (3)2015.10.22-11.22 做实验 (4)2015.11.23-2016.1.10 写论文 (5)2016.3.1 答辩
参考文献
.张萍,刘占荣,牛辉. SO
自己的见解
• 绿色化学已经成为化学工业的目标,固 体酸催化剂克服了液体酸难以与体系分离、 对设备腐蚀严重以及对环境造成污染等缺 点,被广泛的应用于有机反应中,是很有应用 前景的环境友好型绿色催化剂。本课题值 得研究。
请各位老师批评指正!
研究采取的措施
首先在期刊网查阅大量资料并筛选出 有用资料,并进行分析、阅读 ,然后再实 验室中进行实验,并通过一系列实验现象 和数据进行归纳和总结,并与老师和同学 进行了讨论,加深并优化实验,最后得出 结论并撰写论文。
创新点
通常制备固体酸催化剂需要将其进行高 温焙烧,这种方法产生的能耗很大,不利于实 现“绿色化学”的目标。而微波加热技术是 一种新型的加热技术,具有快速高效、节省 能耗、环保和操作方便易于控制等优点,目 前已广泛的应用于无机、有机、分析、环 境、催化和材料化学等领域。
• •
4 2-/MxOy型固体超强酸的形成机理及研究趋势[J].
河北化工.
2004(05) 菅盘铭,徐林,张景辉. 纳米固体超强酸的制备及表征[J]. 光散射学报. 2003(04) 郑大中,刘红英. 微波辐射在化工领域应用的新进展与发展趋势[J]. 四川化工与腐蚀控 制. 2001(02)
• 盛文兵; 黄珍辉; 傅榕赓; 黄培; 彭彩云固体酸(TiO_2/Fe3+)催化对硝基苯甲酸 乙酯合成的研究.中国现代药物应用(2012-08) • 黄飞; 屈飞强; 任晓琼; 李建华; 吴文芳微波协同固体超强酸催化合成香料肉桂 酸环己酯.食品工业科技(2014-11-24 )
固体超强酸 SO4 / Fe2O3 催化合成对硝基苯甲酸乙酯
2-
报告人:刘娟 指导老师:丁满花
论文选题的意义
对硝基苯甲酸是一种用于防 治皮革制品,软塞产品和某些色料 霉变的强有效咳药等的医药中间体。此 外,它还是制备对氨基苯甲酸乙酯 的主要原料。
论文选题的意义
目前工业上大多采用浓硫酸催化 合成。虽然价格低廉,催化性高, 但反应复杂,副产物多,后续处理 麻烦。对设备腐蚀严重,有废酸排 出对环境污染大。
实验原理
COOC2H5
COOH
C2H5OH 固体超强酸
NO2 NO2
H2O
研究内容
• 以微波协助固体强酸为催化剂,催化对 硝基苯甲酸酯化合成对硝基苯甲酸乙酯酯。 并探究和考察催化剂用量、反应时间、微 波功率、酸醇比、催化剂重复使用对反应 产率的影响,及其与常规加热对比找到一 个使其产率最优的点。
相关文档
最新文档