固体超强酸

合集下载

固体超强酸SO4 2/TiO2-SiO2催化废旧塑料裂解制燃油

固体超强酸SO4 2/TiO2-SiO2催化废旧塑料裂解制燃油
作用下 可发生 催化 裂解 生 成 小分 子 有 机烃 类 物 , 其 中C 以上 的 液 态 烃 可 作 燃 油 , 报 道 的 固体 酸 催 化 所 剂 主 要 有 Z M 一 5 US M C 一 4 S 、 Y、 M 1等 分 子 筛 卜 。
凝胶 法制 备 : 正硅 酸 乙酯加 入 到 5 乙醇水 溶 将 0
DoI 0 3 6 /.s n 1 0 — 3 2 . O 1 0 . 0 :1 . 9 9 iis . 0 7 4 6 2 1 . 2 0 6
随 着 塑 料 制 品 用 量 的 增 加 , 为 固体 废 物 塑 料 作 的 废 弃 量 也 随 之 上 升 。有 效 、 全 、 保 地 处 理 与 利 安 环 用 废 塑 料 日益 成 为 全 球 关 注 的 问题 。废 塑 料 的 最 简 单 处 理 方 法 就 是 填 埋 和 焚 烧 , 而 这 两 种 处 理 方 法 然 会 造 成 资 源 浪 费 及 相 应 的 环 境 问 题 。 废 塑 料 是 一 类
石 油 与 天 然 Байду номын сангаас 化 工
1 8 2
CHEM t OAL ENGI NEERJ NG L & C; OF OI - AS
20l 1
固体超强酸 S 三 / i2 SO 催化废旧塑料裂解制燃油 O 一 TO - i2
徐 建 春 李 雪 付 正 祥 徐 成 华 刘建 英
的方 法将其 转化为 低 碳 有机 化 合 物 , 以实 现 废 塑料 的燃 油化 。我 国废 塑 料 炼油 起 步 较 晚 , 目前 主 要采 用热裂 解进 行 转 化 , 产 油量 不 到 4 , 部分 转 其 O 大 化为废 渣 、 废气 。研 究 ’ 明 , 塑料 在 酸 催化 剂 表 废

固体超强酸催化剂的研究

固体超强酸催化剂的研究
的转 化 率 为 7 2 . 3 %。
外缪长喜 等人用超 临界流体干燥法制 备的 以超细 z r ( ) : 为载体 的 S O 4 2 - / Z r O .不仅是超 强酸 , 而且其超强酸性和催化性能明显优于 常规方法制备 的 S O J - / Z r O 超强酸 。 这就否认 了以往 晶相 Z r O 不能制成 固体超强 酸的观
温及液相反应 ,因而比 S O 一 , M 。 0 , 型固体超 强酸有更好 的应用前景。 ( 五) 无机盐复配而成的固体超强酸 1 9 7 9年 O n e等报道 了卤化铝与某些金 属硫酸盐或金属 卤化物混合具有超强酸性。 邹新禧 发现 A 1 C 一 F e ( S !) O , ( 1 :1 ) 混合物 有超强酸性。H0小于一 1 3 . 7 5 。对戊 烷异构化 有较高的催化活性 , 在室温下反应 2 5 h 戊烷
( 一) 负载卤素的固体超强酸 起 初固体超强酸是利用 v族元 素的氟
化物 x R作为 载物, ( 如S b F 、 T a F 等路易斯 酸) ,以 Ⅲ、Ⅳ族无机氧化物 ( AI : O , 、S i O 、
T i O 、Z r O : 等) 作为载体合成而得的含卤素 固体 超强酸。这类固体超强酸在合成及回收 处理 过程中都产生难以解 决的三废 污染 问
如S O 。 r ( ) 在空气 中长时间放置后 , 只需在
3 5 0 ℃- 4 0 0  ̄ C 下加热 1 h将表面的吸附水除去 即可恢复活性 ;( 2) 其表面吸附的 S O , 2 - 与载 体表面结合也很稳定 ,即使水洗也不易除 去 ;( 3)能在高温下使用 ;( 4)其腐蚀性很
题, 而且还存在着怕水和不能在高温下使用 的缺点 ,因而它并不是理想的催化 剂。 ( 二) S 12 O - / W, O , 型 固体超强酸 1 9 7 9 年, 日 本的日 野诚等人第一次成功 地合成 了不含任何 卤素并可在 5 0 0 ℃高温下 应用的 S O } - / W。 O , 型固体超强 酸。它是 以某 些金属氧化物为载体 , 以S 12 O - 为负载物的固 体催化剂 。 其优 点有 : ( 1 ) 对水稳定性很好 ,

固体超强酸催化合成尿囊素的研究进展

固体超强酸催化合成尿囊素的研究进展

综述专论向阳1*刘晓逾1闫伟2严爽2贾兴龙2张小东2摘要:催化合成制备尿囊素所使用的固体超强酸主要有普通固体超强酸、改性固体超强酸、大孔树脂负载的固体超强酸等。

本文简要介绍了国内利用各种固体超强酸制备尿囊素的技术,比较了它们的优缺点,阐述了尿囊素的各种用途,并对其应用前景进行了展望。

关键词:固体超强酸尿囊素合成应用中文分类号:TQ 252.7文献标识码:A文章编号:T1672-8114(2013)03-011-04(中北大学 1材料科学与工程学院,2化工与环境学院,山西太原030051)尿囊素的化学名称为1-脲基间二氮杂茂烷-2,4-二酮,分子式为C 4H 6O 3N 4,别名为尿基海因,商品名为奥兰特,外观为无嗅无味的白色结晶粉末[1]。

尿囊素是一种重要的有机精细化学品,也是尿素的一种深加工产品之一。

尿囊素的许多优异性能使它广泛的应用于医药、化工、农药等行业[2-4]。

正是由于尿囊素在各行各业的应用前景广阔,所以它的需求量也与日俱增。

目前尿囊素的世界年需求量已达20万~25万吨,但全球尿囊素的年产量只有5万~6万吨,市场缺口将近20万吨。

我国尿囊素的生产能力为1500~1800吨/年,与国内的年需求量1万吨以上相差甚远。

由于突出的供需矛盾,尿囊素的产量逐年上涨,年均上涨10%左右,故开发尿囊素具有很高的经济效益[5]。

但目前关于尿囊素合成方法报道的文章较少,且对于利用各种固体超强酸催化合成尿囊素的方法并没有系统总结。

鉴于此,本文综述了近年来利用固体超强酸催化合成尿囊素的研究进展及其广阔的应用领域。

目前国内外合成尿囊素的方法主要有:乙烯氧化固体超强酸催化合成尿囊素的研究进展法、乙二醛氧化法、尿酸高锰酸钾氧化法、二氯乙酸反应法、三氯乙醛法、草酸电解还原法、乙醛酸与尿素直接缩合法等[6-12]。

但乙醛酸与尿素直接缩合法更符合现在绿色化学的生产要求,且该方法具有原料易得,生产成本低,工艺路线简单,产率高,后处理容易等优点,已广泛应用于工业生产,并具有极大的开发利用价值。

化学论文 固体超强酸概述资料

化学论文  固体超强酸概述资料

固体超强酸概述摘要:当下环保呼声日益高涨、可持续发展日益被重视,环境污染问题已是非解决不可。

固体超强酸被认为是具有广泛的工业应用前景的环境友好的催化剂之一,因而,对其进行综合论述和研究具有十分重要的意义。

本文从固体超强酸的性质和定义、分类、合成方法(各方法的原理、影响因素及如何影响)、表征(酸中心模型、酸性、酸强度、酸结构)及固体超强酸催化剂在烷基化反应、异构化反应、脱水反应、缩醛反应、酯化反应的应用这五方面对其进行了综述。

关键词:固体超强酸;催化剂;应用在化学工业生产中,很多有机化学反应的进行需要酸催化,包括酯化反应、烷基化、酰基化、聚合反应、异构化、氧化反应、醇的脱水反应,还有些如硝化、氢化、羟基化、重排反应、氢交换、降解、卤化、氯化苯以及氯化烷烃的还原等,工业生产上大量使用液体酸进行催化。

这些液体常规酸包括硫酸、氢氟酸、磷酸等,它们在反应中表现出很好的催化性能,但缺点也很明显。

液体酸容易腐蚀仪器、难于和产物分离、造成大量污水排放,对环境带来了很大的危害。

固体酸催化剂的研究历史由来己久,随着人们环保意识的增强以及各国政府相继制定越来越严格的环保法规,相比较传统的液体酸催化剂,固体酸催化剂自身的优势也逐渐引起科学家们的兴趣和重视,对它们的研究热潮一浪高过一浪。

当我们喊出建设和谐社会和可持续发展的社会口号时,环保催化剂的研发也应引起人们的重视。

羧酸酯在工业上的用途非常广泛,工业上合成羧酸酯一直采用浓硫酸为催化剂,由于浓硫酸存在一些人所共知的缺点,国内外学者一直在研究新的催化剂来取代浓硫酸。

目前文献报道的酯化反应催化剂有很多,但绝大部分仅限于实验室研究,几乎未见工业化报道,其中固体超强酸就是一种新型酯化反应催化剂。

自1979年Hino等合成ZrO2/SO42-和TiO2/SO42-以来,这种催化剂由于具有不腐蚀设备、不污染环境、催化反应温度低、稳定性能好、制备方法简便、处理条件易行、便于工业化、有很好的应用前景,而得到了广泛的研究和应用。

固体超强酸光催化剂的制备

固体超强酸光催化剂的制备

固体超强酸光催化剂的制备SO2-4 /MxOy型固体超强酸的制备方法一般采用金属盐溶液同氨水或尿素溶液反应,得到氢氧化物沉淀,然后洗涤、干燥,再用含硫酸根离子的溶液浸渍,经干燥、焙烧而制成。

T i O2 基固体超强酸的制备方法大同小异,目前大多数研究者采用以下几种方法。

1 . 1 沉淀-浸渍法王知彩等采用沉淀- 浸渍法制备SO2 -4 /T i O2催化剂。

不断搅拌下,缓慢滴加T i C l 4 于氨水中,控制一定p H 值水解, 沉淀经陈化、过滤、洗涤至无C l,制得T i ( OH ) 4。

T i( OH ) 4 经干燥,用1 mo l /LH2 SO4浸渍,450 焙烧3 h , 制得SO2-4 /T i O2 催化剂。

1 .2 溶胶-凝胶- 浸渍法苏文悦等采用改进的溶胶-凝胶( so- l ge l )法,合成T i O2 干凝胶。

每克T i O2 以 1 mL 1 mo l /LH2 SO4溶液浸渍,经100 烘干5 h , 再经不同温度高温烧结3 h而成。

1 . 3 水热法叶钊等用廉价的硫酸钛为前驱物,尿素为沉淀剂,水热法合成纳米T i O2。

T i O2料浆不经洗涤,直接进行烘干、煅烧, 分解水热反应副产物(NH4 ) 2 SO4 ,并以分解所得产物硫酸为物源,一步制备SO2-4 /T i O2固体酸。

1 . 4 柠檬酸法林棋将多种金属氧化物分散在熔融的柠檬酸中,实现各金属氧化物的均匀混合,经灼烧去除有机物后,可得到纳米Fe 2O3-T i O2 复合氧化物,再经(NH4 ) 2S2O8 浸渍后制得S2O2-8 / Fe 2O3-T i O2 固体酸。

1 . 5 微波法李旦振采用改进的溶胶-凝胶法合成T i O2溶胶,再将溶胶用微波炉辐射30 m i n ,得到干凝胶。

按1 g干凝胶1 mL 1 mo l/L H2 SO4 溶液的比例, 对T i O2干凝胶进行浸渍处理, 再经微波炉加热30 min制得SO2 -4 /T i O2催化剂。

稀土固体超强酸SO42-∕SnO2-CeO2催化合成生物柴油

稀土固体超强酸SO42-∕SnO2-CeO2催化合成生物柴油

稀土固体超强酸SO42-∕SnO2-CeO2催化合成生物柴油稀土固体超强酸SO42-∕SnO2-CeO2催化合成生物柴油近年来,随着全球能源需求的不断增加与人们对环境保护的日益关注,生物柴油这一新型可再生能源备受瞩目。

生物柴油是一种通过植物油、动物脂肪等生物质转化而成的可再生能源,具有环保、安全、可再生等优点。

目前,生物柴油的制备主要通过催化加氢和酯交换反应来实现。

其中,催化加氢技术由于涉及到催化剂的选择和制备工艺的控制,因此备受关注。

在众多催化剂中,稀土固体超强酸SO42-∕SnO2-CeO2催化剂因其优异的催化性能而备受关注。

该催化剂具有高催化活性、高选择性、良好的热稳定性和化学稳定性等优点,可以有效降低反应温度,提高反应产率,加速反应速度,缩短反应时间,从而获得高品质的生物柴油。

本文将就SO42-∕SnO2-CeO2催化合成生物柴油的研究现状、反应机理、制备工艺、性能优势等方面进行较详尽的介绍和总结,并进一步探讨其在生物柴油制备过程中的应用前景。

一、研究背景随着全球治理环境和减少碳排放的压力不断增大,生物柴油的优势逐渐凸显,已成为可再生能源开发的重点领域之一。

生物柴油的制备过程主要涉及酯交换反应、催化加氢反应和生物化学方法等几种技术路线,其中催化加氢技术在工业中最常用。

常规的催化剂如隔泡铝瓷、超稳Y型分子筛等催化剂具有很高的酸性,但在高温、高压下容易失活,且容易从催化剂中析出,造成催化剂失效和污染等问题。

然而,稀土固体超强酸SO42-∕SnO2-CeO2催化剂可以有效克服这些问题,并具有高催化活性、高选择性、化学稳定性和热稳定性等优点。

针对稀土固体超强酸SO42-∕SnO2-CeO2催化合成生物柴油的研究已经有一定的基础。

进一步对其研究开发,不仅可以提高生物柴油产量,而且可以降低生产成本,为生物柴油产业的健康发展提供有力支撑。

二、反应机理稀土固体超强酸SO42-∕SnO2-CeO2催化剂主要在酯交换反应和脱水反应两个阶段发挥作用。

超强酸及其催化作用

超强酸及其催化作用
作用,割断了酸碱之联系。
Arrehnius 酸和 Brø nsted 酸为质子酸; Lewis 酸为非质子酸。
什么是超强酸?
定义
固体酸的强度超过100%H2SO4的酸强度,即为超强酸。
用Hammett酸强度函数表示时, 100%H2SO4 H0=-11.9 超强酸 H0<-11.9
Hammett酸强度函数
HA+ B → A– + BH+ 或: A+ :B →A: B H0 = pKa+ℓg Ka等于什么? [B] [ BH +]
超强酸分类
固体本身型
负载型
例:TiO2-SO42-
H-ZSM-5
例:SbF5/SiO2-Al2O3
含卤素型
活性高,稳定性较差,原料价格高,有腐蚀性
不含卤素型
以SO42-为促进剂的锆系(SO42-/ZrO2)、钛系、 铁系(SO42-/Fe3O4) 以金属氧化物为促进剂,如WO3/Fe3O4等
凝胶法
固体超强酸算中心的形成机理
以SO42-/MxOy为例 L酸中心的形成 SO42-(具有强电负性)在表面上配位吸 附,M——O上电子云强度偏移。 在干燥和焙烧过程中,结构水发生解离吸附。 低温阶段 高温阶段 更高温阶段 表面游离H2SO4脱水(如何脱水?) 与固体氧化物发生固相反应 形成超 强酸。(配位反应?) 易造成 促进剂SO42-流失
B酸中心的形成
固体超强酸的失活
原因
①表面促进剂SO42-流失 酯化、脱水、醚化过程中有水或 水蒸气存在 ②催化剂表面吸附、脱附及表面反应或积碳 ③体系中有毒物 ④促进剂被还原 S从+6价降至+4价,使硫的电负性显著下降, 配位方式变化,导致酸强度减小而失活。

超强酸

超强酸

超强酸超强酸,超酸又称超酸。

是一种比100%硫酸还强的酸。

特别是液体超强酸,HF-SbF5超酸比100%硫酸强倍,有严重腐蚀性和严重公害。

全氟磺酸树脂(Nafion-H)是现在已知的最强固体超强酸,具有耐热性能好、化学稳定性和机械强度高等特点。

一般是将带有磺酸基的全氟乙烯基醚单体与四氟乙烯进行共聚,得到全氟磺酸树脂。

由于Nafion-H分子中引入电负性最大的氟原子,产生强大的场效应和诱导效应,从而使其酸性剧增。

与液体超强酸相比,用作催化剂时,易于分离,可反复使用。

且腐蚀性小,引起公害少,选择性好,容易应用于工业化生产。

近年世界上已开发和研制了比硫酸、盐酸;硝酸酸性强几百万倍,甚至几十亿倍的超强酸。

这些超强酸,酸性极强。

以HSO3F-SbF5为例,HF-SbF5超酸比100%硫酸强倍,有严重腐蚀性和严重公害。

应用价值物质的量为1:0.3的氢氟酸和五氟化锑混合时的酸性强度要比无水硫酸(100%)的强度约大1亿倍。

而HF~SbF5的物质量比1:1(氟锑酸)时其酸性估计可达无水硫酸的倍,是已知最强的超强酸。

这些超强酸如魔酸,它是五氟化锑和氟磺酸按体积比l:l混合制成的混酸。

其酸度只是无水硫酸的1000万倍,目前,在世界市场上已有商品出售,超强酸在化学和化学工业上,极有应用价值,它既是无机及有机的质子化试剂,又是活性极高的催化剂。

过去很多在普通环境下极难实现或根本无法实现的化学反应在超强酸环境中。

却能异常顺利地完成。

在很长的一段时间内,人们认为王水就是酸中之王,是最强的酸了,因为即使是黄金,遇到王水也会像“泥牛入海”一样很快变的无影无踪。

直到有一天奥莱教授和他的学生偶然发现了一种奇特的溶液,它能溶解不溶于王水的高级烷烃蜡烛,人们才知道其实王水并不是最强的酸,还有比它强的酸,这就是魔酸,又叫超强酸,氟锑磺酸。

成分分析从成分上看,超强酸是由两种或两种以上的含氟化合物组成的溶液。

它们的酸性强的令人难以置信,比如氟硫酸和五氟化锑按1:0.3(摩尔比)混合时,它的酸性是浓硫酸的1亿倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概述 超强酸是比100%的H2S04还强的酸,其Ho<-11.93。许多重要的工业催化反应都属于酸催化反应,而固体酸和液体酸相比,具有活性和选择性高、无腐蚀性、无污染以及与催化反应产物易分离等特点,被广泛地用于石油炼制和有机合成工业。常用的固体酸催化剂有分子筛、离子交换树脂、层柱粘土等,它们的酸强度一般低于Ho= —12.0,对需要强酸的反应存在一定的局限性。20世纪60年代初,Olah等发现的HS03F-HF、HF-SbP5等液体魔酸,虽然其酸强度非常高,Ho高达—20.0以上,甚至甲烷在这种液体超强酸中都能质子化,但因其具有强腐蚀性和毒性,以及催化剂处理过程中会产生“三废’’等问题,难以在生产实际中应用。20世纪70年代初开始有人试图将液体超强酸如SbP5、HS03F-SbF5和HF-SbP5等负载到石墨、A1203和树脂等载体上,但仍不能解决催化剂分散、毒性和“三废’’等问题,未能工业应用。1979年Arata等首次报道了无卤素型SO42-/MxOy固体超强酸体系,发现某些用稀硫酸或硫酸盐浸渍的金属氧化物经高温焙烧,可形成酸强度高于100%硫酸104倍的固体超强酸。后来Arata等又将钨酸盐和钼酸盐浸渍Zr02制得WO3/Zr02、M003/Zr02固体超强酸,其酸强度虽比SO42-/Zr02稍低,但仍比100%硫酸高几百倍。1990

年Hollstein等发现Fe、Mn和Zr的混合氧化物硫酸根制备的超强酸催化剂正丁烷异构化活性比SO42-/Zr02高1000倍以上。这类固体超强酸易于制备和保存,特别是它与液体超强酸和含卤素的固体超强酸相比,具有不腐蚀反应装置、不污染环境、可在高达500℃下使用等特点,引起人们的广泛重视。

固体超强酸主要有下列几类: (Ⅰ)负载型固体超强酸,主要是指把液体超强酸负载于金属氧化物等载体上的一类。如HF-SbF5-AIF3/固体多孔材料、sbP3-Pt/石墨、SbP3-HF/F-A1203、SbF5-FSO3H/石墨等。 (Ⅱ)混合无机盐类,由无机盐复配而成的固体超强酸。

如AICl3-CuCl2、MCl3-Ti2(SO4)3、A1C13-Fe2(S04)3等。 (Ⅲ)氟代磺酸化离子交换树脂(Nation-H) (Ⅳ)硫酸根离子酸性金属氧化物SO42-/MxOy超强酸,如SO42-/Zr02、SO42-/Ti02、SO42-/Fe203等。(V)负载金属氧化物的固体超强酸,如W03/Zr02、M003/Zr02等。

在上述各类超强酸中,(Ⅰ)—(Ⅲ)类均含有卤素,在加工和处理中存在着“三废”污染等问题。(Ⅳ)、(V)类超强酸不含有卤原子,不会污染环境,可在高温下重复使用,制法简便。本节着重对这两类超强酸进行介绍。

MxOy型固体超强酸 (1)固体超强酸的制备 SO42-/MxOy型固体超强酸一般采用浓氨水中和金属盐溶液,得到无定形氢氧化物,然后再用稀硫酸或硫酸铵溶液浸渍、烘干和焙烧制得。然而,金属盐原料、沉淀剂、浸渍剂不同对制备的氧化物、超强酸的表面性质影响很大,制备环境如焙烧温度、沉淀温度、金属盐溶液浓度、pH、加料顺序、陈化时间及SO42-浸渍浓度也很重要。如何改善制备条件获得高质量、高酸性的固体超强酸是该类材料研究的最基本的问题。

(A) 金属氧化物的选择: Zr02、Ti02、Fe203、Hf02和Sn02等氧化物浸渍H2S04后能形成超强酸,而MnO、CaO、CuO、NiO、ZnO、CdO、A1203、La203、Mn02、Th02、Bi203、Cr03等则不能。在各种氧化物中,选择以ZrO2作基底,形成的S04—/Zr02超强酸性最强。目前已报道的S04—促进单氧化物固体超强酸及其强度如表3-24所示。氧化物的初始品相对超强酸性影响很大。一般认为,浸渍SO42-前氧化物为无定

形可以制成固体超强酸,晶化的氧化物不能形成超强酸。Arata等考察了Zr02晶化前后浸渍SO42-制备的催化剂对正丁烷异构化反应的影响,发现ZrO2晶化后作为载体没有反应活性。但是,结晶的α-A1203却可以形成—16.04止惟一可用结晶氧化物制得的固体超强酸。硫酸促进型双金属氧化物如SO42-/Zr02-- A1203、SO42-/Zr02-Ti02、SO42-/Zr02—Sn02可以形成固体超强酸,在摩尔数比例

相当时,酸强度一般低SO42-/Zr02,但是在Zr02中掺人低含量Fe203、Cr203、Mn02等时酸强度均高于SO42-/Zr02本身,其原因尚不十分清楚。

硫酸促进型多金属氧化物,如SO42-/Zr02-Fe203-Cr203、SO42-/Zr02-Fe203-Mn02等酸性比SO42-/Zr02高出数倍,如表3-25所示。说明固体超强酸基底金属氧化物的选择非常重要。

(B)焙烧温度的影响: 不同焙烧温度下,形成的SO42-/MxOy超强酸强度不同,适当的焙烧温度是形成这类固体超强酸的关键。以研究最多的SO42-/Zr02为例,其焙烧温度必须在500~800℃之间才具有超强酸性,当焙烧温度为650℃时酸性最强,如表3—26所示。

(C)沉淀条件的影响: 溶液的沉淀温度、金属盐溶液浓度、pH值、加料顺序、陈化时间及硫酸浸渍浓度等因素对制备的氧化物及SO42-/MxOy的性质均有一定影响。

(D) SO42-/MxOy固体超强酸的稳定性: 实验表明,放置较长时间的SO42-/MxOy,超强酸的酸性和催化活性与新鲜制备的催化剂差别较大,这是该类催化材料制备和储存过程中值得重视的一个问题。主要原因是存放环境中的水导致超强酸样品变质,焙烧后制备得到的样品吸水后,再经加热活化会导致表面SO42-浓度降低。

(2)固体超强酸表征方法 固体超强酸酸性测定方法同其他固体酸类似。包括以下几种。 (A)Hammett指示剂法测定酸强度:该法是对无色的SO42-/MxOy样品适用,同时应注意SO42-/MxOy超强酸会使苯、甲苯等变色,与异辛烷、己烷等发生作用,一些常用于测定一般固体酸强度的指示剂溶剂并不适用。一般采用二氯亚砜、环己烷等作为溶液较合适。 (B)程序升温脱附法:指示剂法测定无色样品的酸强度较为可靠,但不适用于有色样品。程序升温脱附法(TPD)是表征一般固体酸强度和酸密度的有效方法。但在用于超强酸样品时,由于超强酸的强氧化性,使得碱性探针分子氧化,如吡啶-TPD的高温脱附物有C02、S03、具有极少量的吡啶。NH3的碱性极强,其脱附温度已超过某些超强酸样品酸分解的温

度,因此,用TPD技术研究超强酸SO42-/MxOy需进一步探讨。

(C)红外光谱法:它可以确定SO42-/MxOy超强酸体系的酸中心类型。测试表明:SO42-/Zr02、SO42-/Ti02、SO42-/Fe203样品上仅有Lewis酸中心,当吸水后,部分L酸转化为B酸。

(D)正丁烷异构化反应法:利用正构烷烃在固体超强酸存在下可在室温下进行异构化反应的特点,表征固体超强酸的强度。通常采用正丁烷或正戊烷为探针分子,正丁烷异构化反应属于单分子反应,符合一级可逆反应公式,其反应速度常数与强度有较好的对应关系。

负载金属氧化物的固体超强酸 如上所述,负载硫酸的超强酸在液体中会缓慢溶出。另外,虽然超强酸较耐高温,但在焙烧温度以上使用会迅速失活。为解决此问题,荒田一志等在SO42-/MxOy超强酸的基础上合成了负载金属氧化物的超强酸,它在溶液中和对热的稳定性都很高。

根据复合氧化物酸性的理论,二元氧化物的最高酸强度与其金属离子的平均电负性之间呈线形关系,因此复合氧化物金属离子的电负性越大,其酸强度越高。在20世纪80年代前所发现的二元氧化物中,酸度最高的是Si02-Ti02、Si02-Zr2、Si02-A1203、Ti02-Zr03,它们都有Ho<—8.2的表面酸性中心。其中Si02-A1203已用于多种有机反应,曾经测得其最强酸性为Ho≈—12,接近了超强酸的标准。

荒田一志等合成的是W03/Zr2、M003/Zr02二元氧化物,方法是Zr(OH)4或无定形Zr02浸渍钼酸氨溶液,蒸发水分后在600~1000℃的空气中焙烧。在850℃下焙烧对于苯甲酰化和烷烃异构化反应具有最大活性,而对此反应在同样条件下Si02-A1203完全没有活性。光电子能谱和指示剂法测定W03/Zr02、M003/Zr02的酸强度分别为Ho<—14.52和Ho<—13。

W03/ZrO2、M003/Zr02目前的研究也仅限于苯甲酰化反应,其研究领域还有待进一步扩展。另外,W03/Zr02和M003/Zr02均比Zr02的表面积大许多,这类超强酸催化剂同时存在B酸和L酸中心,以L酸中心为主,吸水样品部分L酸转化为B酸。并且,不同焙烧温度和组成对其酸强度有较大影响,如表3-27所示。

固体超强酸在石油化工中的应用 超强酸作为催化剂在化工领域中应用广泛。液体超强酸除被作为饱和烃的异构化、分解、缩聚、烷基化的催化剂以外,还被用做链烷烃和芳烃的反应、链烷烃的氯化和氯化分解、链烷烃的硝化和硝化分解,链烷烃和一氧化碳的反应、链烷烃及芳香化合物之类的氧化、苯的氢化、氯苯及氯代烷的还原等的催化剂。 固体超强酸作为催化剂比液体超强酸有如下的优点:①反应生成物与催化剂容易分离;②催化剂可以反复使用;③催化剂对反应器无腐蚀作用;④废催化剂引起的“三废”问题较少;⑤催化剂的选择性一般都较高。

以前链烷烃的反应都是在高温下进行的,但由于固体超强酸的出现,使反应能在较低温度及压力下进行。从节约资源和节能的观点考虑,固体超强酸的工业利用具有重要的现实意义。

(1)烃类异构化 丁烷、戊烷等饱和烃,即使用100%硫酸或Si02-A1203作催化剂,在室温下也不发生反应,而用固体超强酸作催化剂,在室温下就可引起反应。使用SbP5-A1203作催化剂时,丁烷异构化主要生成异丁烷,其选择性达80%~90%。

直链的戊烷、己烷、庚烷、辛烷等都是汽油的组成成分,但辛烷值都较小,所以需添加铅或芳香族化合物等以提高辛烷值,但无论加铅还是加芳香族化合物都会带来公害问题。因此,现在希望添加无害的带支链的异戊烷、异己烷、异庚烷、异辛烷等以提高其辛烷值。有的固体超强酸作催化剂时,在0℃时可使戊烷生成异戊烷,同时还生成异丁烷、丙烷和异己烷。催化剂的活性和选择性会因其种类不同而有相当大的差别,戊烷在SbF5-Si02-A1203催化剂上的反应初速度比丁烷快200倍。这种催化剂的选择性达90%以上。

以SbF5-Si02-A1203为催化剂进行己烷异构化反应速度更快,是戊烷的3倍,丁烷的1000倍,反应达30min时,异己烷的选择性达100%。

相关文档
最新文档