约分与通分

合集下载

约分和通分的概念

约分和通分的概念

约分和通分的概念①互质数: 最大公因数是11.最大公因数的几种情况 ②存在倍数关系:最大公因数是较小数 ③一般情况: 短除法2.把一个分数化成和它相等,但分子和分母都比较小的分数叫约分。

约分的理论依据是分数的基本性质(除法); 约分的最后结果是最简分数。

3.分子和分母只有公因数1,像这样的分数叫最简分数。

也就是分子和分母是互质数的分数是最简分数。

4.约分的方法:①逐次约分(用分子和分母的公因数去约,可能约两次也可能约三次)②一次约分(用分子和分母的最大公因数去一次性约分)5.几个数公有的倍数,叫它们的公倍数,其中最小的倍数叫它们的最小公倍数。

公倍数的个数是无限的因此没有最大公倍数。

公倍数和最小公倍数的关系:公倍数是最小公倍数的倍数,最小公倍数是公倍数的因数。

6. 求最小公倍数的方法:①列举法 ②筛选法 ③集合圈 ④分解质因数 ⑤短除法①互质数: 最小公倍数是它们的乘积7.最小公倍数的几种情况 ②存在倍数关系: 最小公倍数是较大数③一般情况: 短除法8.比较大小:①分母相同(即分数单位相同),分子大则分数就大。

②分子相同(即取的份数相同,不同分数单位的个数相同)分母小则分数反而大。

9.把异分母分数分别化成和原来分数相等的同分母分数叫通分。

通分的理论依据是分数的基本性质(乘法) 通分的关键:找出几个分母的公分母(最小公倍数);求最小公分母的方法和求最小公倍数的方法相同。

10.小数化成分数的方法:①一位小数写成10几 ②两位小数写成100几③三位小数写成1000几…… 再约分化简,结果必须是最简分数。

11. 分数化小数的方法 ①一般情况:分子÷分母(除不尽的保留两位小数)②特殊情况:分母是2、5、20、25、50等(同时乘一个数)化为分母是10、100、1000再化为相应的小数。

12.怎么样的最简分数能化为有限小数? 能:分母中除了含有2和5以外,不含有其他质因数不能 :分母中含有2和5以外的质因数,不能化为有限小数。

分数的通分、约分基础知识

分数的通分、约分基础知识

分数的通分、约分基础知识
通分:把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

约分:把一个分数化成同它相等的,但分子和分母都比较小的分数,叫做约分。

最简分数:分子和分母只有公因数1,这样的分数叫做最简分数。

分数计算到最后,得数必须化成最简分数。

分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。

异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。

方程式:含有未知数的等式叫方程式。

准确数与近似数(近似值):与实际情况完全符合的数,叫做准确数。

与实际情况接近而有一定误差的数,叫做近似数(或叫近似值)。

直线:没有端点,可以向两端无限延长。

射线:只有一个端点,可以向一端无限延长。

线段:有两个端点。

射线和线段都是直线的一部分。

两点之间,线段最短。

角:锐角(小于90 的角)、直角(等于90 的角)、钝角(大于90 而小于180 的角)、平角(等于180 的角)、
周角(等于360的角)
平行线:在同一平面内的两条不相交的直线,叫做平行线。

面积:物体的表面或者平面图形的大小。

体积:物体所占空间的大小,叫做体积。

容积:一个容器所能容纳物体的体积,叫做容积或容量。

分数的约分与通分

分数的约分与通分

分数的约分与通分分数是数学中常见的表达方式,用于表示一个数相对于整数的部分。

而在计算和比较分数时,经常需要进行约分和通分的操作,以便简化计算和比较的过程。

本文将详细介绍分数的约分和通分的概念、方法以及应用。

一、分数的约分分数的约分是指将一个分数化简为最简形式,即将分子和分母的公因数约去,使得分数的值保持不变。

下面以一个例子来说明约分的步骤:例:将分数 8/12 约分为最简形式。

解:首先找到分子和分母的公因数。

8 和 12 都可以被 2 整除,所以公因数为 2。

然后,将分子和分母都除以公因数 2,得到的最简形式为 8 ÷ 2 / 12÷ 2,即 4/6。

可以再次约分,得到最简形式 4 ÷ 2 / 6 ÷ 2,即 2/3。

经过约分,原分数 8/12 最终化简为最简形式 2/3。

二、分数的通分分数的通分是指将两个或多个分数的分母设为相同的数,使得不同分数之间能够进行加减乘除等计算。

下面以一个例子来说明通分的步骤:例:将分数 1/3 和 1/4 进行通分。

解:首先找到两个分数的公倍数。

1/3 的分母是3,1/4 的分母是4,它们的最小公倍数是 12。

然后,将两个分数的分子分别乘以公倍数除以原来的分母。

1/3 乘以 12/3,得到 12/9。

1/4 乘以 12/4,得到 12/12。

因此,分数 1/3 和 1/4 在通分后,变为 12/9 和 12/12。

三、分数的比较在分数的比较中,经常需要将分数化为相同分母的形式,然后比较分子的大小。

下面以一个例子来说明分数的比较:例:比较分数 2/5 和 3/7 的大小。

解:首先进行通分,将两个分数的分母设为相同的数。

2/5 乘以7/7,得到 14/35。

3/7 乘以 5/5,得到 15/35。

然后,比较分子的大小。

14/35 小于 15/35。

因此,分数 2/5 小于分数 3/7。

四、分数的四则运算分数的四则运算包括加法、减法、乘法和除法。

约分和通分的依据是什么

约分和通分的依据是什么

约分和通分的依据是什么
约分和通分的依据都是分数的基本性质。

分数的分子和分母同时乘以或除以一个相同的且不为零的数,分数的大小不变。

约分:约分是分式约分,把一个分数的分子、分母同时除以公因数,分数的值不变。

通分:根据分数(式)的基本性质,把几个异分母分数(式)化成与原来分数(式)相等的同分母的分数(式)的过程,叫做通分。

通分方法:
1.求出原来几个分数的分母的最小公倍数;
2.根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数。

约分方法:
根据分数的基本性质:“分数的分子和分母同时除以一个相同的数(0除外),分数的大小不变——分数的基本性质”来进行约分。

方法一:可以用分子和分母的公因数(1除外)去除;
方法二:直接用分数的分子和分母的最大公因数(1除外)去除。

分数约分通分知识点总结

分数约分通分知识点总结

分数约分通分知识点总结一、分数的概念及简化分数分数是表示一个整体被等分成几份中的一部分的数。

分数由分子和分母组成,如1/2,3/4等。

简化分数是指将分数的分子和分母约去公因数得到最简分数的过程。

即如果分子和分母有公因数,就可以约去这个公因数,得到最简分数。

二、最大公因数及约分原理1. 最大公因数:两个或多个数的公因数中最大的一个因数称为它们的最大公因数。

2. 约分原理:即分母和分子同时除以它们的最大公因数,得到的新的分数称为原分数的约分。

三、分数的通分及通分原理1. 分数的通分:分母不同的分数,要想进行加减运算,就需要找到它们的公分母,这种操作叫做分数的通分。

2. 通分原理:分数的通分,就相当于将分子和分母同时乘以某数,使得两个分数的分母都变成通分的数。

四、分数的加减运算分数的加减运算是指对两个或多个分数进行加或减的运算。

具体步骤如下:1. 先进行通分,将分数的分母变成相同数;2. 然后对分母相同的两个分数进行加减运算,分子和分母分别相加。

五、分数的乘除运算分数的乘除运算是指对两个或多个分数进行乘或除的运算。

具体步骤如下:1. 将分数的分子相乘,分母相乘;2. 对于除法,将分数化为乘法的倒数再进行乘法运算。

六、分数的化简分数的化简是指将分数变成最简分数的过程。

分子和分母没有公因数时,分数已经是最简分数;若有公因数,则需要进行约分得到最简分数。

七、分数的应用1. 分数可以表示一个整体被等分成几份的一部分,常用于表示比率和百分比;2. 在日常生活中,用分数表示各种比例,如食物的配方,液体的混合比例等;3. 在数学中,分数常用于求解各种比例问题和解方程等。

八、通分相关练习题1. 计算下列分数,并化为最简分数:(1) 2/3 + 5/6(2) 4/5 - 1/4(3) 3/4 * 2/3(4) 5/6 ÷ 1/22. 求下列分数的最小公倍数,并将分数通分:(1) 1/3, 2/5(2) 4/7, 3/103. 求下列分数的和,并化为最简分数:(1) 2/3, 1/4(2) 5/6, 3/84. 求下列分数的差,并化为最简分数:(1) 4/5, 1/3(2) 7/8, 3/95. 求下列分数的积,并化为最简分数:(1) 2/3, 3/4(2) 4/5, 2/3以上是分数约分通分的基本知识点总结和相关练习题,希望对你有所帮助。

分式的约分与通分技巧

分式的约分与通分技巧

分式的约分与通分技巧在数学中,分式是由分子和分母组成的表达式,分式可以通过约分和通分来进行简化或合并。

约分是指分式的分子与分母同时除以它们的公约数,使分子和分母尽可能小。

通分则是将两个分式的分母统一为相同的数,以便进行比较或运算。

在本文中,我们将介绍分式的约分与通分的一些技巧。

一、分式的约分技巧当一个分式的分子和分母有公约数时,可以进行约分。

约分的目的是使得分子和分母尽可能地简化,这样可以方便计算和比较。

1. 找出分子和分母的公约数:公约数是指能够同时整除两个或多个数的数。

例如,对于分式4/8,公约数有1、2和4。

2. 除去公约数:将分子和分母分别除以它们的公约数。

对于分式4/8,我们可以除以公约数2,得到最简分式1/2。

3. 化简分式:如果分式的分子和分母仍然有公约数,可以继续进行约分操作,直到无法再约分为止。

例如,对于分式12/24,我们可以先找出它们的最大公约数为12,然后进行除法操作,得到最简分式1/2。

二、分式的通分技巧在进行分式的比较或运算时,往往需要将分式的分母统一为相同的数,这就是通分操作。

1. 找出分式的最小公倍数:最小公倍数是指两个或多个数的公倍数中最小的一个数。

例如,对于分式1/2和3/4,我们可以找出它们的最小公倍数为4。

2. 乘以适当的倍数:将分子和分母同时乘以适当的倍数,使得分母变为最小公倍数。

对于分式1/2,我们乘以2/2得到2/4;对于分式3/4,我们乘以1/1得到3/4。

3. 进行比较或运算:通分后的分式可以进行比较或运算。

例如,对于分式1/2和3/4,通分后分别为2/4和3/4,可以直接比较它们的大小。

三、约分与通分的应用约分与通分技巧在数学中的应用非常广泛,特别是在分数的计算、比较和运算中。

1. 分数的加减运算:当进行分数的加减运算时,需要先找到它们的最小公倍数,然后进行通分操作,最后进行相应的运算。

例如,对于分式1/2和1/3的相加,我们可以找到它们的最小公倍数为6,然后分别将它们通分为3/6和2/6,再进行加法运算得到5/6。

数学知识点分数的约分与通分

数学知识点分数的约分与通分

数学知识点分数的约分与通分数学知识点: 分数的约分与通分分数是数学中常见的数形式之一,用于表示整数与真分数的关系。

在分数的运算中,约分和通分是非常重要的概念。

本文将介绍分数的约分与通分的概念、方法和应用。

一、分数的约分分数的约分是将分子和分母的公因数约除,使得分数的值保持不变但表达更简洁。

约分过程需要找到分子与分母的最大公因数,然后将其约除。

以分数⅔为例,分子为2,分母为3,它们的最大公因数为1。

将分子分母都除以最大公因数1,得到的结果是⅔,这就是分数⅔的最简形式。

同样的方式可以用于其他分数的约分。

约分的好处在于简化了分数的表达,便于进行后续的计算。

此外,约分还能使得分数更具可读性和直观性。

二、分数的通分分数的通分是指将两个或多个分母不同的分数转化为具有相同分母的分数,以便进行比较、计算和运算。

通分可以通过以下步骤实现:1. 找到两个分数的最小公倍数,将其作为通分的分母;2. 将分子按照最小公倍数与原分母的比值相乘,得到新的分子;3. 重复以上步骤,将多个分数统一为相同分母的形式。

举例说明,假设有分数⅓和¼,它们的最小公倍数为12。

将⅓通分为12分之几,计算过程如下:分子:(12 ÷ 3)× 1 = 4;分母:12。

同样地,将¼通分为12分之几,计算过程如下:分子:(12 ÷ 4)× 1 = 3;分母:12。

运算过后,两个分数⅓和¼均转化为了12分之几,即4/12和3/12,此时它们具备了相同的分母,可以方便地进行运算和比较。

三、约分与通分的应用约分和通分在数学的各个领域应用广泛,其中几个典型的应用包括:1. 分数的加减运算:在对分母不同的分数进行加减运算时,需要先进行通分,再按照相同的分母进行计算;2. 分数的比较:为了比较两个分数的大小,需要先将它们通分,再比较分子的大小;3. 分数的化简:在解决实际问题时,通常需要将结果化为最简形式,这涉及到约分的概念。

约分通分知识点总结

约分通分知识点总结

约分通分知识点总结一、约分的概念和方法1.1 约分的概念约分是指将一个分数化为最简分数的过程,即分子和分母没有公因数。

比如:把3/6约分为1/2。

1.2 约分的方法对于给定的分数,我们可以通过求出它们的公因数,然后将分子和分母各除以最大公因数的方法进行约分。

二、通分的概念和方法2.1 通分的概念通分是指将分母不同的分数化为相同分母的过程。

比如:把1/2和1/3进行通分,得到2/4和3/6。

2.2 通分的方法通分的方法主要有以下几种:(1)将分数的分母相乘,得到公分母,然后将分子按比例扩大;(2)找到分母的最小公倍数,然后将分子按比例扩大。

三、约分通分的应用3.1 分数的加减乘除在进行分数的加减乘除运算时,必须对分数进行约分和通分,化简为最简分数和相同分母的形式,然后再进行运算。

3.2 解决实际问题在解决实际问题中,约分通分的知识点也经常被用到。

比如:在菜谱中,需要根据原有的配料量按比例进行计算,就需要进行分数的加减乘除运算。

四、约分通分的注意事项4.1 分数的取值范围在进行约分通分的过程中,需要注意分数的取值范围。

尤其是在使用计算机进行分数运算时,需要考虑到分子和分母的范围,避免产生溢出或错误结果。

4.2 分数的约分规则在进行约分的过程中,需要注意分数约分的规则,例如:分子和分母同时除以一个公因数,不能漏掉任何一个公因数。

五、特殊情况有些情况下,分数的约分通分可能会涉及到特殊情况,如:分数为零、分母为1、分子为0等。

在这些情况下,需要特别注意进行约分通分的操作。

注意:以上是约分通分的知识点总结,希望对你有所帮助,如有错误或补充欢迎指正。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

据是什么?
22 11 60x 30x
15x 45x2
1 3x

分式的基本性质

我们把分式的这种变形叫分式
互 动
的 约分,有时也叫 化简分式
把一个分式的分子和分母的 公因式约去,这种变形叫做分 式的约分
约分的依据是什么?
师 生

分式的基本性质

例1 化简下列分式:
(1)
8ab 2c 12a2b
小结
①分式的约分的定义和根据。 ②分式的约分的方法和步骤。 ③ 分式的约分的最后结果一定是最 简分式或整式。
16.1.2 约分和通分
确定目标 合作探究
①分式的约分的定义和根据 ②分式的约分的方法和步骤 ③ 分式的约分的最后结果是什么形式?
复习引入
下列式子是怎样从左边到右边的,根 据是什么?
22 11 15 1 60 30 45 3
分数的基本性质
我们把分数的这种变形叫 分数的约分有时也叫化简分数
下列式子是怎样从左边到右边的,根
(1)若分子﹑分母都是单项式,则约简系数, 并约去相同字母的最低次幂; (2)若分子﹑分母含有多项式,则先将多项式 分解因式,然后约去分子﹑分母所有的公因式.
注意:约分过程中,有时还需运用分式的符号 法则使最后结果形式简捷;约分的依据是分式 的基本性质
下列约分的方法
对不对?
xa x ya y
x2 2 x
(2)
a2 4a 4 a2 4
8ab 2c 12a2b
4ab (2bc) 4ab (3a)
2bc 3a

a2 4a 4 a2 4
(a (a 2
2)2 4)
生 互 动
=
(a 2)2 (a 2)(a 2)
a2 a2
你能总结出分式约分的基本步骤吗?
约分的基本步骤:
师 生 互

例2、化简下列分式
(1)
5xy 20x2y
1 5xy 1 4x • 5xy 4x
(2) a(a b) b(a b)
aHale Waihona Puke b反馈检测:化简下列分式。
((((((1(((32321)321))))))))xxxxxxxxxxxx2222222y222222(yy(2(2xxxx21xxxy21x21xxxyyxxxxyyyyyyyyy2))2)2222yyy222xxxxxy211xxxx•xxxxxx1y1yyy1yy2222xx12x1xxy1
相关文档
最新文档