非正弦周期电流电路分析(专业)
非正弦周期性电流电路

增加能耗
非正弦周期性电流可能导致额外的 能耗,增加能源消耗和运营成本。
非正弦周期性电流的消除方法
电路中加入滤波器可以 滤除非正弦周期性电流成 分。
优化电源设计
优化电源设计,提高电源 的输出质量,减少非正弦 周期性电流的产生。
采用线性负载
采用线性负载可以减少谐 波干扰和非正弦周期性电 流的影响。
非正弦周期性电流电 路
目录
• 非正弦周期性电流电路概述 • 非正弦周期性电流的产生与影响 • 非正弦周期性电流电路的分析方法
目录
• 非正弦周期性电流电路的实验研究 • 非正弦周期性电流电路的工程应用 • 非正弦周期性电流电路的发展趋势与展望
01
非正弦周期性电流电路概 述
定义与特点
特点
定义:非正弦周期性电流电 路是指电路中的电流呈非正
在控制系统中的应用
执行器控制
非正弦周期性电流电路可以用于执行器的控制,以实现系统的稳 定性和动态性能。
传感器信号处理
非正弦周期性电流电路可以用于传感器信号的处理,以提取有用 的信息并进行反馈控制。
伺服系统
非正弦周期性电流电路可以用于伺服系统的设计,以实现精确的 位置和速度控制。
06
非正弦周期性电流电路的 发展趋势与展望
如雷电、电磁场等外部因素可能对电 路产生干扰,导致非正弦周期性电流 的产生。
电路中元件的非线性
电路中的元件,如电阻、电容、电感 等,可能具有非线性特性,导致非正 弦周期性电流的产生。
非正弦周期性电流对电路的影响
电压波动
非正弦周期性电流可能导致电压 波动,影响用电设备的正常运行。
谐波干扰
非正弦周期性电流可能产生谐波干 扰,影响通信和信号处理设备的性 能。
非正弦周期电流电路

第9章非正弦周期电流电路电子技术中广泛使用着非正弦周期信号,例如脉冲信号发生器、锯齿波发生器等。
本章首先介绍了非正弦周期量产生的原因,其次讲述了非正弦周期信号的分解与合成,在此基础上对非正弦周期信号进行了谐波分析;介绍了非正弦周期信号的频谱表示法及频谱的特点;最后对非正弦周期信号作用下线性电路的分析计算进行了研究。
本章的学习重点:●非正弦周期信号的谐波分析法;●非正弦周期信号的频谱分析法;●非正弦周期信号作用下线性电路的分析与计算。
9.1 非正弦周期信号1、学习指导(1)非正弦周期信号的产生当电路中激励是非正弦周期信号时,电路中的响应也是非正弦的;当不同波形的周期信号加到电路中,在电路中产生的电压和电流当然也是非正弦波;若一个电路中同时有几个不同频率的正弦激励共同作用,电路中的响应一般也是非正弦量;电路中含有非线性元件时,即使激励是正弦量,电路中的响应也可能是非正弦周期函数。
非正弦周期信号的波形变化具有周期性,这是它们的共同特点。
(2)非正弦周期信号的合成与分解电子技术工程中大量使用着非正弦周期信号,当几个不同频率的正弦波合成时,其合成的结果是一个非正弦波,受此分析结果的启发,设想一个非正弦周期信号也一定可以分解为一系列的振幅不同、频率成整数倍的正弦波,由此引入了利用傅里叶级数表示非正弦周期信号的分析方法。
2、学习检验结果解析(1)电路中产生非正弦周期波的原因是什么?试举例说明。
解析:电路中产生非正弦周期波的原因一般有以下几个方面:①当电路中激励是非正弦周期信号时,电路中的响应当然也是非正弦的。
例如实验设备中的函数信号发生器,其中的方波和等腰三角波,它们在电路中产生的电压和电流不再是正弦的;123②同一电路中同时作用几个不同频率的正弦激励时,电路中的响应一般不再是正弦的。
例如晶体管放大电路,它工作时既有为静态工作点提供能量的直流电源,又有需要传输和放大的正弦输入信号,在它们的共同作用下,放大电路中的电压和电流既不是直流,也不是正弦交流,而是二者相叠加以后的非正弦波;③当电路中含有非线性元件时,即使激励是正弦量,电路中的响应也可能是非正弦周期函数。
第十二章 非正弦周期电流电路

is1
is3
华东理工大学 上 页 下
页
§12-3 有效值、平均值和平均功率
一. 有效值
根据周期量有效值的定义, 为其方均根值:
I
1 T
0
T
[it ] dt U
2
1 T
0
T
[u t ]2 dt
it I 0 I km cos(k1t k )
k 1
P U 0 I 0 U k I k cos k
k 1
(三角函数的正交性)
U 0 I 0 U 1 I1 cos1 U 2 I 2 cos 2 U k I k cos k
Um Im 式中 : U k , Ik , k uk ik , k 1,2, 华东理工大学 2 2
0
ui
t
+ uo
③非正弦激励下的线性电路
0
-
+
0
t
ui
t
uo
0
t
页
- 华东理工大学 上 页 下
§12-2 周期函数分解为傅里叶级数 (谐波分析) 一. 数学分析
设非正弦周期电流i(t)=i(t+T) ,当满足狄里赫利条件 ( ① i(t)在一周期内连续or有有限多个第一类间断点; ② i(t)在一周期内有有限多个极大值与极小值 )时, 可展成收敛的傅里叶级数:
I av
1 T i dt 0 T
例:正弦电流的平均值 为 1 T 2 I av 0 I m cost dt I M 0.898 I M 0.637 I T 恒定分量(直流分量) 磁电系仪表:
电磁系仪表: 全波整流仪表:
电子技术课件_非正弦周期电流电路

非正弦周期电流电路
第五章 非正弦周期电流电路
概述
§5.1. 非正弦周期量的分解 §5.2. 非正弦周期量的有效值 §5.3. 非正弦周期量的计算
§5.3. 非正弦周期电流电路中 的平均功率
概述
非正弦周期交流信号的特点:
不是正弦波 按周期规律变化
半波整流电路的输出信号:
非正弦周期交流信号
f (wt ) = A0 + Bkm sin kwt + Ckm coskwt
k =1 k =1
f (wt ) = A0 + Bkm sin kwt + Ckm coskwt
k =1 k =1
1 2 教材p174 A0 = f ( w t ) d ( w t ) (5.1.5)式 2 0 1 2 Bkm = f (w t ) sin kw td (w t )
① ② 式联立求解得: L=0.01H
② C=100µ F
1 2000L 0 2000 C arctg = 20 + R =36.30
P=P1 + P2 + U1I1COS 1+U2I2COS2 = 538.4W
例2 方波信号激励的电路
iS
Im
T/2 T
R
t
iS
C
u
L
已知: R
= 20、 L = 1mH、C = 1000 pF I m = 157 μ A、 T = 6.28S
直流分量
级数
基波(和原 函数同频)
+ …..
= A0 + Akm sin(kwt + fk )
k =1
电路分析_非正弦周期电流电路

u U 0 U km sin(k t uk )
k 1
i I 0 I km sin(k t ik )
k 1
1 T P [U 0 U km sin(kt uk )][I 0 I km sin(kt ik )]dt T 0 k 1 k 1
图6.7正弦波u1 u3 u5 合成非正弦波u
• 6.2.2 非正弦波的分解
任何一 个周期性非正弦量 可以分解为一系列不 同频率的正弦量。 由高等数学知识可知,凡满足狄利赫里条件的周 期函数都可以分解为傅里叶级数。在电工技术中所遇 到的周期性非正弦量,一般情况下都能满足狄利赫里 条件,因此都可以分解为傅里叶级数。
电路分析_非正弦周期电流电路
6.1 非正弦周期量
• 常见非正弦周期量
图6.1 全波整流电压波形
图6.2 半波整流电压波形
图6.3 尖脉冲波形
图6.4 矩形脉冲波形
图6.5 锯齿波形
6.2 非正弦周期信号的谐波分析
• 6.2.1 非正弦波的合成
、
图6.6 正弦波
图6.6 正弦波u1 u3 合成非正弦波u
使某一频率范围内的谐波分量顺利通过,而其它频率的谐波 分量受到抑制的滤波电路称为带通滤波器
型
型
图6.15 带通滤波器
6.4.4带阻滤波器
• 使某一频率范围内的谐波分量受到抑制,而其它频率的谐
波分量顺利通过的滤波电路称为带阻滤波器
型
图6.16 带阻滤波器
型
非正弦周期电流平均值为
I av 1 T
T
T
0
| i |d t
非正弦周期电压平均值为
第8章 非正弦周期电流电路

I0(1) I1(1) I 2(1) 18.57 21.801 5.547 56.31
(20.319 j2.281) 20.446 6.405 A
u(3) =70.7cos(3t 30 )V 单独作用(图c)
70.7 U (3) 2 30 V 50 30 V
第八章 非正弦周期电流电路
非正弦周期电流电路:线性电路在非正弦周期电 源或直流电源与不同频率正弦电源的作用下,达到稳 态时的电路。 本章主要介绍非正弦周期电流电路的一种分析方 法:谐波分析法。
8-1 非正弦周期电流和电压 8-2 非正弦周期信号的傅立叶展开 8-3 非正弦周期量的有效值、平均值 和平均功率 8-4 非正弦周期电流电路的计算
其平均功率为
1 T P pdt T 0
代入 (8 7) 式展开有以下各项
1 T 0 U 0 I 0dt U 0 I 0 T
1 T 0 U mk cos(kt uk ) I mk cos(kt ik )dt U k I k cos( uk ik ) T 1 T 0 U 0 I mk cos(kt ik )dt 0 T 1 T 0 I 0U mk cos(kt uk )dt 0 T 1 T 0 U mk cos(kt uk ) I mn cos(nt in )dt 0 (k n) T
U 0 I 0 U k I k cos k
k 1
(8 8)
式中
I 0、U 0 为直流分量, I k、U k 为 k 次谐波有效值,
k uk ik
第k次谐波电压电流的相位差。
注意
直流与交流分量之间不产生平均功率;不同频率的 正弦分量之间也不产生平均功率。
非正弦周期电流电路分析

非正弦周期电流电路分析简介非正弦周期电流电路是一种电路,其中电流的波形不是正弦曲线。
这种电路通常由非线性元件或者非理想元件构成,导致电流波形发生变化。
本文将对非正弦周期电流电路进行分析,探讨其中的特点和应用。
非正弦周期电流的产生非正弦周期电流可以由多种方式产生,包括以下几种常见情况:1.非线性元件的非线性特性导致电流波形变化。
例如,二极管在反向偏置时会产生非线性特性,导致电流波形不是正弦曲线。
2.非理想元件的特性导致电流波形变化。
例如,电感元件的饱和和饱和恢复会导致电流波形非正弦。
3.控制信号或输入信号的特性导致电流波形变化。
例如,方波、脉冲或其他非正弦的控制信号输入到电路中时,会引起电流波形的变化。
非正弦周期电流的特点非正弦周期电流具有以下几个特点:1.波形失真:由于非线性元件或非理想元件的特性,非正弦周期电流的波形会失真。
这种失真包括高次谐波的增加或者波形畸变。
2.频谱分布:非正弦周期电流的频谱分布比正弦电流更加复杂。
由于波形的非线性和不规则,频谱中会包含多个谐波成分。
3.能量损耗:非正弦周期电流的能量损耗比正弦电流更大。
由于电流波形的非正弦特性,导致电路中存在额外的损耗。
4.信号干扰:非正弦周期电流会产生更多的信号干扰。
由于频谱中存在多个谐波成分,这些谐波会干扰其他电路或设备的正常运行。
非正弦周期电流电路分析方法对于非正弦周期电流电路的分析,可以采用以下方法:1.线性电路分析:首先将非正弦周期电流分解为多个谐波成分,然后对每个谐波成分进行线性电路分析。
通过将各个谐波成分的响应叠加,可以得到整个非正弦周期电流电路的响应。
2.时域分析:使用时域分析方法,通过观察电流波形的变化来理解非正弦周期电流电路的工作情况。
这种方法适用于简单的电路,可以直接观察电流波形的特点。
3.频域分析:使用频域分析方法,对非正弦周期电流的频谱进行分析。
通过观察频谱中的谐波成分,可以了解电流波形的非正弦特性。
4.仿真分析:使用电路仿真软件,对非正弦周期电流电路进行仿真分析。
《电路理论》第八章 非正弦周期电流电路(第1-5节)课堂笔记及练习题

《电路理论》第八章非正弦周期电流电路(第1-5节)课堂笔记及练习题主题:第八章非正弦周期电流电路(第1-5节)学习时间: 2016年1月18日--1月24日内容:一、本周知识点及重难点分布表17-1 本周知识点要求掌握程度一览表序号学习知识点要求掌握程度本周难点了解熟悉理解掌握1 非正弦周期信号★2 非正弦周期信号的频谱★3 非正弦周期信号的有效值、平均值、平均功率★4 线性非周期电流电路的分析与计算★5 第八章小结★二、知识点详解【知识点1】非正弦周期信号1、非正弦周期信号的产生(1)电源电压不是理想的正弦交流量(2)电路中有几个不同频率的电源共同作用(3)电路中含有非线性元件2、常见的非正弦周期信号图17-1 非正弦电源电压信号如果上述激励和响应按一定规律周而复始地变化,称为非正弦周期电压和电流。
3、非正弦周期信号的表示既然两个不同频率的正弦信号叠加后得到一个非正弦周期变化的信号。
所以有:()()k k 0sin k f t A k t ωφ∞==+∑分析非正弦周期电流电路:利用傅里叶级数分解非正弦周期电压或电流;分别计算各频率正弦信号单独作用下的分量;根据叠加定理将分量相加得电路实际电压或电流。
【知识点2】非正弦周期信号的频谱1、周期函数的傅里叶级数周期为T 的时间函数()f t 展开:()()()01s 1s 2s 2s cos sin cos2sin 2f t a a t b t a t b t ωωωω=+++++()0k s k s 1cos sin k a a k t b k t ωω∞==++∑s 2T πω= 傅里叶系数()()()00k s 0k s 01d 2cos d 2sin d T T T a f t t T a f t k t t T b f t k t t T ωω⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩⎰⎰⎰ 01m s 12m s 20km s k 1()sin()sin(2)sin()k f t A A t A t A A k t ωφωφωφ∞==+++++=++∑其中:0k km k k km k km k k kcos sin arctan A aa Ab A A b a φφφ⎧=⎪=⎪⎪=⎨⎪=⎪⎪=⎩谐波分析:将周期函数()f t 分解为直流分量、基波分量和一系列不同频率的各次谐波分量之和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5000 2
mV
(c)三次 is3 33.3sin 3 106 t谐波作用
X C3
1
31C
1 3106 1000 1012
0.33K
iS
X L3 31L 3106 103 3kΩ
R
Cu L
Z (31 )
(R R
jXL3)( jXC 3) j( XL3 XC 3)
I0
is1
is
is3
is5
T/ T
iS 2
Im 2
2Im
(sin
t
1 sin 3
3t
1 sin 5
5
t
)
I0
is1
is3
is5
iS
R
等效
I0
is1
is
is3
is5
R
C
C
L
L
12.4 非正弦周期交流电路的计算
1. 计算步骤
(1) 利用付里叶级数,将非正弦周期函数展开 成若干种频率的谐波信号;
等效电源
iS
Im
T/2 T
等效
IS0
is1
is3
is is5
t
iS
Im 2
2Im
(sin t 1 sin
3
3t 1 sin
5
5
t )
IS0
is1
is3
is5
幅度频谱图
iS
Im
T/2 T
Akm
0.64I m
频谱图
0.21I m
t
0 3 5 7 k
iS
Im 2
2Im
1L 106 103 1k
XL>>R
Z(1 )
( R jX L ) ( jX C ) X L XC
R j( X L XC )
R
L RC
50k
is1 100 sin106 t μ A
U 1
I1
Z
(1)
100
10 6 2
50 103
89.53 mV
C
u U 0 u1 u3 u5
1.57 5000 sin t 12.47 sin( 3t 89.2 )
1 k
sin kt
0
0
AK
bK2
a
2 K
bK
2Im
k
K
arctan aK bK
0
is 的展开式为:
(K为奇数)
iS
Im 2
2Im
(sint
1 sin 3t
3
1 sin 5t
5
)
周期性方波波形分解 直流分量
谐波合成示意图
t t
基波
t
三次谐波
t
t
等效电源示意图
[ak cos(k1t) bk sin(k1t)]
a0 [ak cos(k1t) bk sin(k1t)] (k 1,2,3,) k 1
其中各个系数按下式求解:
2
bk T
T
0 f (t)sin(k1t)dt
2 T
T
2
T 2
f (t)sin(k1t)dt
208.3 89.53 2
4.166 89.53mV 2
u5 4.166sin( 5t 89.53 ) mV
R
u
L
(3)各谐波分量计算结果瞬时值迭加:
U0 1.57 mV
U 3
12.47 2
89.2 mV
iS
U1
5000mV 2
U 5
4.166 2
a0 [ak cos(k1t) bk sin(k1t)] (k 1,2,3,) k 1
其中各个系数按下式求解:
1 T
1
a0 T
0
f (t)dt T
T 2
T 2
f (t)dt
证明
ak
2 T
T
0 f (t)cos(k1t)dt
2 T
T
2
T 2
1
0
Em
cos(k1t )d (1t )
1
2
Em cos(k1t)d(1t)
2Em
0 cos(k1t)d(1t) 0
1
bk
2
0 f (t)sin(k1t)d(1t)
1
0
Em
sin( k1t )d (1t )
1
2
Em sin(k1t)d(1t)
2Em
0
sin( k1t )d (1t )
2Em
[
1 k
cos(k1t )]0
2Em [1 cos(k )] k
0 4Em
k
k为偶数 k为奇数
因此可得
f
(t)
4Em
[sin(1t )
1 3
(2) 对各种频率的谐波分量单独计算:
(a) 直流分量 IS0 78.5A单独作用 iS
电容断路,电感短路:
R
Cu L
U0 RI S0 2078 .5106 1.57 mV
(b)基波 is1 100sin106 t 作用
1
1C
106
1 1000 1012
1k
I
0
k 1
I km
coskt
k
2
d (t)
I
2 0
k 1
I
2 km
2
I
I
2 0
I12
I
2 2
12.3 有效值、平均值、和平均功率
2. 非正弦周期函数的平均值
若 i(t ) I0 Ik cos(kt k ) k 1
f (t)cos(k1t)dt
1
2 0
f (t)cos(k1t)d(1t)
1
f (t)cos(k1t)d(1t)
12.2 周期函数分解为付里叶级数
f (t) f (t kT ) 展开成付里叶级数:
f (t) a0 [a1 cos(1t) b1 sin(1t)] [a2 cos(21t) b2 sin(21t)]
k 1
利用三角函数的正交性,得:
P U0 I0 Uk Ik cos k ( k uk ik ) k 1
P PU0 0 IP01 UP21I1...c..o. s1 U2 I2 cos2
12.4 非正弦周期交流电路的计算
iS
Im
t
等效
[ak cos(k1t) bk sin(k1t)]
a0 [ak cos(k1t) bk sin(k1t)] (k 1,2,3,) k 1
工程上经常作如下变形:
a0
k1
ak2 bk2 [
ak ak2 bk2
cos(k1t)
第12章 非正弦周期电流电路
重点 1. 周期函数分解为付里叶级数 2. 非正弦周期函数的有效值和平均功率
3. 非正弦周期电流电路的计算
12.1 非正弦周期信号
生产实际中不完全是正弦电路,经常会遇到非正弦周期 电流电路。在电子技术、自动控制、计算机和无线电技术等 方面,电压和电流往往都是周期性的非正弦波形。
例2. 求图示周期性矩形信号f(t)的 Em
傅里叶级数展开式及其频谱。
T/2 T
t
O
2
1t
解:f(t)在第一个周期内的表达式为 - Em
f (t)=Em
0≤t ≤(T/2)
f (t)=-Em
(T/2)≤t ≤T
则
1T
a0 T 0 f (t)dt 0
1
ak
2
0 f (t)cos(k1t)d(1t)
0 iS (t) dt T
T /2
0 Imdt
Im 2
谐波分量: bk
1
2
0 iS ( t) sin k td ( t)
Im
(
1 k
cos
k
t)
0
0 2Im
k
K为偶数 K为奇数
2
ak
2
0
iS
(t ) cos
ktd (t )
2Im
1
2
0 f (t)sin(k1t)d(1t)
1
f (t)sin(k1t)d(1t)
12.2 周期函数分解为付里叶级数
f (t) f (t kT ) 展开成付里叶级数:
f (t) a0 [a1 cos(1t) b1 sin(1t)] [a2 cos(21t) b2 sin(21t)]
i
T