八年级数学下册 单项式乘以单项式课件 新人教版
【数学课件】单项式乘以单项式

3、自我教育需要有非常重要而强有力的促进因素——自尊心、自我尊重感、上进心。——苏霍姆林斯基 4、追求理想是一个人进行自我教育的最初的动力,而没有自我教育就不能想象会有完美的精神生活。我认为,教会学生自己教育自己,这是一种
最高级的技巧和艺术。——苏霍姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身
上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱
八年级数学14.1.4单项式乘以单项式优秀课件

⑴5a2 2a3 10a6
10a5
⑵2x 3x4 5x5
6x5
⑶ 3s 2s7 6s7 6s8
⑷ 2 a3 a6
2a3
⑸ 28 2a3 29 a3
单项式与单项式相乘法那么:
单项式与单项式相乘,把它们的系数、相 同字母分别相乘,对于只在一个单项式里含有 的字母,那么连同它的指数作为积的一个因式.
(1) 系数相乘
注意符号
(2) 相同字母分别相乘
指数相加
(3)单独字母因式
连同指数整体写进积中
【综合运用】
计算:
(1) (2x)3(-5xy2) (2) (-2a2)3 ·(-3a3)2
练习2 :
计算:
(1) (-5x2y)·(-4x3y2)·(xy)2 (2) (-3a)2·(32 ab2)4·(-6b)
单项式与单项式的乘法口诀:
鱼归鱼,虾归虾; 同底数幂是一家; 单独因式别丢下。
系数相乘, 指数相加; 积的 乘方, 先展开它。
单项式乘以单项式,要用到乘法交换律、乘 法结合律、幂的三个运算性质;
单项式乘以单项式的结果仍然是一个单项式, 结果要把系数写在字母因式的前面;
单项式乘法的法则对于三个及以上的单项式 相乘同样适用。
2
A.4x6 B.- 4x7 C.8x7 D.- 8x7
作业2:P99 练习1、2题
感谢大家参与 ,再见!
作业1 :
(1)计算: (-2a)·( 1 a3)=
.
4
(2)计算:(0.ቤተ መጻሕፍቲ ባይዱ×102)×(1.25×105)=____.
(3)以下各式计算正确的选项是( )
A.2m2·3m3=5m5
八年级数学上册14.1整式的乘法14.1.4整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版

八年级数学上册 14.1 整式的乘法 14.1.4 整式的乘法第1课时单项式乘以单项式说课稿(新版)新人教版一. 教材分析新人教版八年级数学上册第14.1节整式的乘法,主要介绍了单项式乘以单项式的运算方法。
这是初中数学中基础而重要的一部分,对于学生来说,这部分内容既是复习和巩固之前学过的知识,又是学习更复杂数学运算的基础。
二. 学情分析学生在学习这一节之前,已经学习了有理数的乘法、乘方以及单项式的概念。
他们对这些基础知识有一定的理解和掌握,但可能对于如何将乘法应用到单项式上,以及如何处理符号等问题会感到困惑。
因此,在教学过程中,我需要针对学生的这些特点进行引导和解释。
三. 说教学目标1.知识与技能目标:使学生掌握单项式乘以单项式的运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例演示和练习,培养学生独立解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们勇于探索的精神。
四. 说教学重难点1.教学重点:单项式乘以单项式的运算方法。
2.教学难点:如何处理符号问题,以及如何将乘法应用到单项式上。
五. 说教学方法与手段在教学过程中,我将采用讲授法、引导法、实践法等多种教学方法。
通过实例讲解,引导学生自己探索和发现规律,再通过练习巩固所学知识。
同时,我会利用黑板、粉笔等教学手段,清晰地展示运算过程,帮助学生理解和记忆。
六. 说教学过程1.导入:通过一个实际问题,引导学生思考如何进行单项式的乘法运算。
2.讲解:讲解单项式乘以单项式的运算规则,并通过示例进行演示。
3.练习:学生进行练习,教师引导学生思考和解决问题。
4.总结:对本节课的内容进行总结,强调重点和难点。
5.作业布置:布置相关的练习题,巩固所学知识。
七. 说板书设计板书设计要清晰、简洁,能够突出重点。
我会用不同的颜色标注出运算规则和注意事项,帮助学生理解和记忆。
八. 说教学评价教学评价主要通过学生的练习情况和课堂表现来进行。
人教版数学八年级上册1.4单项式乘单项式和单项式乘多项式课件

练习1 下列计算对吗?若不对,应该怎样改? (1) 3(a a-1)=3a2; (2) 2x(2 x-y)=2x3-2x2; (3)(-3x2)(x-y)=-3x3-3x2 y; (4)(-5a)(a2 -b)=-5a3+5ab.
八年级 数学 单项式与多项式相乘
第十四章 整式的乘法
练习2 计算下列各式: (1) 3(a 5a-2b); (2)(x-3 y)(-6 x); (3) 5(x 2x2 -4x 3); (4)(-2a)(a2 -ab+b2).
第十四章 整式的乘法
深入探索----解一解
解不等式: 2x(x 1) 2x2 5
解:去括号得:
2x2 2x > 2x2 5
移项合并得:2x>-5
解得:x> 5 2
八八年年级级 数数学学 单项式与多项式相乘
第十四章 整式的乘法
知识运用----试一试
小李家住房的结构如图所示,小李打算把客
厅和卧室铺上木地板,请你帮他算一算,他至少
第十四章 整式的乘法
深入探索----算一算
先化简再求值:
x2 (x2 x 1) x(x3 x2 x 5),其中x 1 . 25
解:原式 x4 x3 x2 x4 x3 x2 5x
5x
当x 1 时 25
原式 5 1 1 25 5
八八年年级级 数数学学
第十四章 整式的乘法
①
-2a2b
×
-
1 4
ab2c
=
1 2
a3b3
1 2
a
3
b3c×
② 3a2b 1 - ab2c = -3a3b3 3a2b - 3a3b3c ×
③ -3a2 a2 + 2a -1 = -3a4 + 6a3 - 3a2 ×
人教版数学八年级上册《单项式乘单项式和单项式乘多项式》说课稿2

人教版数学八年级上册《单项式乘单项式和单项式乘多项式》说课稿2一. 教材分析《单项式乘单项式和单项式乘多项式》是人教版数学八年级上册的一章内容。
这一章主要介绍了单项式乘以单项式和单项式乘以多项式的运算法则。
通过这一章的学习,学生能够掌握单项式乘法的运算方法,并能够运用到实际问题中。
在教材中,首先介绍了单项式的定义和特点,然后引出了单项式乘以单项式的运算法则。
接着,通过实例的讲解和练习,让学生理解和掌握单项式乘以多项式的运算法则。
最后,通过巩固练习和拓展应用,使学生能够熟练运用所学知识解决实际问题。
二. 学情分析在八年级的学生中,他们已经学过单项式的定义和特点,对基本的数学运算也有一定的了解。
但是,对于单项式乘以多项式的运算,他们可能还存在一些困难和模糊的地方。
因此,在教学过程中,需要通过实例的讲解和练习,让学生清晰地理解和掌握单项式乘法的运算方法。
同时,八年级的学生已经具备了一定的逻辑思维和解决问题的能力,他们可以通过实例的分析和练习,逐步掌握单项式乘法的运算规律。
因此,在教学过程中,可以引导学生通过自主学习和合作交流,提高他们对单项式乘法的理解和运用能力。
三. 说教学目标1.知识与技能目标:学生能够理解单项式乘以单项式和单项式乘以多项式的运算法则,并能够运用到实际问题中。
2.过程与方法目标:学生能够通过实例的分析和练习,掌握单项式乘法的运算方法,并能够运用到实际问题中。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。
四. 说教学重难点1.教学重点:学生能够理解和掌握单项式乘以单项式和单项式乘以多项式的运算法则。
2.教学难点:学生能够理解和掌握单项式乘以多项式的运算规律,并能够运用到实际问题中。
五. 说教学方法与手段在教学过程中,我会采用以下方法和手段:1.实例讲解:通过具体的实例,让学生理解和掌握单项式乘法的运算方法。
2.练习巩固:通过练习题目的布置和讲解,让学生巩固所学知识,并能够运用到实际问题中。
14.1.4整式的乘法--单项式乘以单项式(教案)

今天的教学中,我发现学生们在理解单项式乘法的概念和运算法则上存在一些困难。尤其是在处理含有多个字母的乘法时,有些同学容易混淆指数的相加规则。这让我意识到,需要通过更多具体的例子和直观的演示来帮助他们巩固这部分知识。
在讲授过程中,我尽量使用了生动的语言和实际情境来解释抽象的数学概念,比如通过计算长方体的体积来展示单项式乘法的应用。这样的做法似乎能够让学生们更好地理解数学知识在实际生活中的重要性。
2.抽象思维和逻辑推理能力:培养学生从具体实例中提炼规律,形成抽象概念,并能运用逻辑推理进行问题求解。
3.数学建模能力:使学生能够运用所学知识解决实际生活中的问题,如几何图形的面积、体积计算等,增强数学应用的意识。
4.合作交流能力:通过小组讨论、互助学习,培养学生与人合作、沟通的能力,提高解决问题的效率。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“单项式乘法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《整式的乘法--单项式乘以单项式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算面积或体积的情况?”比如,计算一块长方形的面积,这就涉及到了单项式的乘法。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索单项式乘法的奥秘。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
14.1.4 课时1 单项式与单项式、多项式的乘法 初中数学人教版八年级上册课件

3.先化ห้องสมุดไป่ตู้,再求值:3a(2a2-4a+3)-2a2(3a+4),其中a=-2.
解:3a(2a2-4a+3)-2a2(3a+4) =6a3-12a2+9a-6a3-8a2 =-20a2+9a. 当a=-2时, 原式=-20×4-9×2=-98.
方法总结:在做乘法计算时,一定要注意单项式的符号 和多项式中每一项的符号,不要搞错.
p(a+b+c)
pa + pb + pc
单项式乘以多项式的法则
单项式与多项式相乘,就是用单项式乘多项式的每
一项,再把所得的积相加.
注意 (1)依据是乘法分配律 (2)积的项数与多项式的项数相同.
【例5】计算: (1)(-4x)·(2x2+3x-1); 解:(1)(-4x)·(2x2+3x-1)
(2)
【三步走】 (1)系数相乘; (2)相同字母的幂相乘; (3)其余字母连同它的指数不变,作为积的因式.
【例1】计算:(1)(-5a2b)(-3a); 解:(1)(-5a2b)(-3a)
(2)(2x)3(-5xy3). (2)(2x)3(-5xy3)
=[(-5)×(-3)](a2•a)b =15a3b;
=8x3(-5xy3) =[8×(-5)](x3•x)y3 =-40x4y3.
方法总结:单项式相乘的结果仍是单项式 (1)在计算时,应先进行符号运算,积的系数等于各因式系数的积; (2)注意按顺序运算; (3)不要漏掉只在一个单项式里含有的字母因式; (4)此性质对于多个单项式相乘仍然成立.
1.(1) 3x2·5x3 (2)4y·(-2xy2) (3)(-3x)2·4x2 (4)(-2a)3(-3a)2
人教版八年级上册数学精品教学课件 第14章整式的乘法与因式分解 第1课时 单项式与单项式、多项式相乘

pa + pb + pc
知识要点 单项式乘多项式的法则
单项式与多项式相乘,就 p p
是用单项式乘多项式的每一 项,再把所得的积相加.
a
b
注意(1)依据是乘法分配律; (2)积的项数与多项式的项数相同.
p c
典例精析 例3 计算:
(1) (-4x) ·(2x2 + 3x-1);
解:原式=(-4x) ·(2x2) + (-4x) ·3x + (-4x) ·(-1)
解:由题意得
3m 1 n 2n 3 m
6 4, 1,
解得
m 2, n 3.
∴
m2
+
n
=
7.
方法总结:单项式乘单项式就是把它们的系数和同底
数幂分别相乘,结合同类项的定义,列出二元一次方
程组求出参数的值,然后代值计算即可.
二 单项式与多项式相乘
问题 如图,试问三块草坪的的总面积是多少?
问题2 如果将上式中的数字改为字母,比如 ac5 ·bc2, 怎样计算这个式子?
ac5 ·bc2 = (a ·b) ·(c5 ·c2) (乘法交换律、结合律) = abc5+2 (同底数幂的乘法) = abc7.
根据以上计算,想一想如何计算单项式乘单项式?
知识要点 单项式与单项式的乘法法则
单项式与单项式相乘,把它们的系数、同底数 幂分别相乘,对于只在一个单项式里含有的字母, 则连同它的指数作为积的一个因式.
八年级数学上(RJ) 教学课件
第十四章 整式的乘法与因式分解
14.1 整式的乘法
14.1.4 整式的乘法
第1课时 单项式与单项式、多项式相乘
导入新课
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注:以上 m,n 均为正整数
判断并纠错:并说出其中所使用的性质名称与法则
× ①m2 ·m3=m6 ( ) × ②(a5)2=a7( ) × ③(ab2)3=ab6( ) × ④m5+m5=m10( )
√ ⑤ (-x)3·(-x)2=-x5 ( )
m5 a10 a3b6 2m5
(1)4a2 •2a4 = 8a8 ( × )
(2)6a3 •5a2=11a5 ( × )
系数相乘
(3)(-7a)•(-3a3) =-21a4
(× )
求系数的积, 应注意符号
(4)3a2b •4a3=12a5 ( )
×
只在一个单项式里含有的字母,要连 同它的指数写在积里,防止遗漏.
精心选一选:
1、下列计算中,正确的是( B)
光的速度约为3×105千米/秒,太阳光照射到地球上 需要的时间大约是5×102秒,你知道地球与太阳的 距离约是多少千米吗?
分析:距离=速度×时间;即(3×105)×(5×102);
怎样计算(3×105)×(5×102)?
地球与太阳的距离约是:
(3×105)×(5×102) =(3 ×5) ×(105 ×102) =15 ×107 =1.5 ×108(千米)
A、2a3·3a2=6a6
B、4x3·2x5=8x8
C、2X·2X5=4X5
D、5X3·4X4=9X7
2、下列运算正确的是( D )
A、X2·X3=X6
B、X2+X2=2X4
C、(-2X)2=-4X2 D、(-2X2)(-3X3)=6x5
若n为正整数,且x3n=2,求 2x2n ·x4n+x4n ·x5n的值。
= 15a3b
=[8×(-5)](x3•x)y2
=-40x4y2
解题格式规范训练 计算:① (-5a2b3 )·(-4b2c);②(2x)3(解5x:①y2() -5a2b3 )·(-4b2c)
=[(-5) ×(-4)] ·a2 ·(b3 ·b2) ·c =20 a2 b5 c ②(2x)3(- 5xy2)
(2) x3y2·(-xy3)2= x5y8
练习2 :
下面的计算对不 对?如果不对,怎样改正?
⑴5a22a31 10 aa 056 ⑵2x3x45 6xx5 5
⑶ 3 s 2 s7 6 6s s7 8 ⑷ 2a3a 26 a3 ⑸ 2 8 2 a 3 2 9 a 3
求系数的积,应注意符号;
相同字母因式相乘,是同底数幂的乘法,底 数不变,指数相加; 只在一个单项式里含有的字母,要连同它的 指数写在积里,防止遗漏; 若某一单项式是乘方的形式时,要先乘方再算乘法
单项式乘以单项式的结果仍然是一个单项式, 结果要把系数写在字母因式的前面;
单项式乘法的法则对于三个以上的单项式 相乘同样适用。
同底数幂的乘法,底 数不变,指数相加
(2)底数相同的幂分别相乘,用它们的 指数的和作为积里这个字母的指数,
(3)只在一个单项式因式里含有的字母, 连同它的指数)(-3a);
(2) (2x)3(-5xy2).
解:(1) (-5a2b)(-3a) (2) (2x)3(-5xy2) = [(-5)×(-3)](a2•a)b =8x3(-5xy2)
=8x3 ·(- 5xy2) =[8 ×(- 5)] ·(x3 ·x) ·y =- 40x4y2
例3 计算 (1)(-2a2)3 ·(-3a3)2
观察一下,多了什么运算?
讨论解答:遇到积的乘方怎么办? 运算时应先算什么?
注意: (1)先做乘方,再做单项式相乘。 (2)系数相乘不要漏掉负号
练习1.细心算一算: (1) -5a3b2c·3a2b= -15a5b3c
例1(1) 4a2x53a3b2x
4ax3abx 解: 25
3 2 相同字母的指数的和作
为积里这个字母的指数
= 43a2a3x5x2b= 12a5x7 b
各因式系数的积 作为积的系数
只在一个单项式里含有 的字母连同它的指数作
为积的一个因式
单项式乘以单项式的结果仍是单项式.
例1 (2) 3x2y2(2xyz3)
1、经历探索单项式乘法运算 法则的过程,能熟练地正确
地进行单项式乘法计算。
2、培养归纳、概括能力,以 及运算能力。
记住:
1、同底数幂相乘: 底数不变,指数相加。
a · m
式子表达:
an =am + n
2、幂的乘方: 底数不变,指数相乘。
式子表达: (am)n = amn
3、积的乘方:等于把积的每一个因式分别 乘方,再把所得幂相乘。
解:原式 3( 2 )(x2x)(y2y)z3
各因数系数 相同的字母 结合成一组 结合成一组
6x3y3z3
系数的积作 为积的系数
对于相同的字母, 对于只有一个单项
用它们的指数和 式里含有的字母,
作为积里这个字 连同它的指数作为
母的指数
积的一个因式
单项式与单项式相乘法则:
注意符号 (1)各单项式的系数相乘;
解: 2x2n ·x4n+x4n ·x5n =2x6n+x9n =2(x3n)2+(x3n)3 =2×22+23 =8+8 =16
∴原式的值等于16。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!