最新中考数学指导思想及考试内容与要求
关于中考数学命题的指导思想和改革内容

关于中考数学命题的指导思想和改革内容
中考数学命题指导思想与改革
中考数学作为一个重要的考试,在进行命题时,要始终坚持实用性、贴近实际、贴近生活、以及紧扣大纲同步教学要求的原则。
首先,要扎扎实实分析年级学生的学习特点,注意不同的学生的不同的特点,主要集中在儿童认知发展的规律,以及学生喜爱好的因素等。
了解学生,用心设计中考数学试题。
命题时,要把握规律,注重小平衡大、细节联系全局,做到以精细命题相激励,以能测试知识点为主。
其次,要有效利用好现代化教学手段,充分的发挥互联网的优势,结合科技和教育的发展,开展视频等教学活动,培养学生的空间思维和实践能力。
同时,还要做好引导教师的教学工作,让老师正确而有效的使用多媒体、虚拟实验等新型教学手段,让课堂更有趣、更有活力。
再者,要积极推进中考数学素质教育,在课堂上多开展一些能引导学生从数学角度思考问题和分析解决问题的实践活动,培养学生通过实践来解决问题的能力,以提高学生的综合素质。
总之,中考数学命题必须以大纲要求为准,结合各分年级学生的学习特点,做到贴近实际、实用性等原则,注重引导学生的动手实践能力,使其更好地掌握数学知识,提高综合素质,为了孩子的乐学、乐成而努力。
初中数学中考考试重点与提纲

初中数学中考考试重点与提纲导语:初中数学中考是中学阶段的重要考试,对于学生的数学素养和数学思维能力有着很大的考察。
下面是初中数学中考考试的重点内容和提纲,希望能够帮助同学们做好备考。
一、重点内容1.等差数列和等比数列等差数列的公式、前n项和、等差数列中项的位置、求和,以及等比数列的公式、求和的前n项和等都是重要的考点。
要掌握等差数列和等比数列的基本概念、性质和计算方法。
2.函数函数的定义、函数的概念、函数的图像以及函数的性质是初中数学的重要内容。
要掌握函数的基本知识,并且能够应用函数进行问题求解。
3.平方根和立方根平方根和立方根的定义、计算和应用是数学中非常基础和常见的内容。
要掌握平方根和立方根的运算规则和运算方法,并能够灵活运用。
4.代数式化简代数式化简是数学中重要的数学运算之一、要能够理解和熟练运用代数式化简的基本方法,以及应用代数式化简进行问题求解。
5.分式分式的概念、计算以及分式的性质都是初中数学中的重点内容。
要掌握分式的基本知识和计算方法,并能够应用分式进行问题求解。
6.平行线和相交线平行线和相交线是几何中的重要内容。
要掌握平行线和相交线的基本概念和性质,并能够应用平行线和相交线进行几何问题的证明和解答。
7.统计与概率统计与概率是数学中非常重要的部分。
要能够理解统计与概率的基本概念和计算方法,并能够应用统计与概率进行问题求解。
以上是初中数学中考的重点内容,学生们在备考时要针对这些内容进行深入学习和复习,熟练掌握相关概念、性质和运算方法。
二、考试提纲1.选择题选择题是数学中考试中常见的题目类型。
要注意审题,理解问题,同时要熟悉和掌握不同类型的选择题解题方法。
2.填空题填空题是考察学生计算和运算能力的题目类型。
要注意运算的准确性和方法的清晰性,同时要注意判别数据的有效性。
3.计算题计算题是考察学生应用知识进行计算和运算的题目类型。
要注意计算的准确性和方法的完整性,同时要合理安排计算过程和计算步骤。
青岛市数学中考大纲

青岛市数学中考大纲一、总体要求青岛市数学中考大纲旨在规范中考数学考试的内容和要求,对考生的数学能力和素质进行全面评价,从而促进数学教学的有效推进和学生数学素养的全面发展。
二、考试范围和内容1. 数与代数(1)有理数的概念与运算(2)整式的概念与运算(3)一元一次方程与一元一次不等式的概念与运算(4)二次根式的概念与运算(5)函数的概念与运算2. 几何与图形(1)角的概念与运算(2)图形的基本性质与判定(3)相似三角形与等腰三角形的性质与运算3. 数据与统计(1)统计调查与统计分析(2)概率的概念与运算三、考试要求1. 知识与技能(1)掌握数与运算、代数式与方程、几何图形的定义、性质;(2)掌握基本的计算技能和应用解题方法;(3)理解并能运用数学中的基本概念、定理和定律。
2. 运用与拓展(1)能运用所学数学知识解决有关实际问题;(2)具备一定的拓展思维能力,能够进行简单的推理与证明。
四、考试形式1. 笔试考试形式主要为纸质笔试,考生需用笔书写答案。
试卷包括选择题、填空题和解答题,以考查考生对数学知识的理解和应用能力。
2. 实际操作考试形式中也将包含一些实际操作的题目,以考查考生对数学知识的应用和解决实际问题的能力。
五、考试评分与评价1. 考试评分(1)选择题部分根据答题卡上的选择选项进行自动评分;(2)填空题和解答题部分根据考生书写的答案进行批改评分。
2. 考试评价(1)以总分作为考生数学水平的评价指标;(2)对考生数学能力的总体评价分为优秀、良好、及格和不及格。
六、考试时间和地点具体的考试时间和地点将由有关部门在考前通知发布。
七、成绩查询与申诉1. 成绩查询考试成绩将在规定时间内发布,考生可通过指定的成绩查询渠道查询自己的成绩。
2. 成绩申诉对于成绩有异议的考生,可在规定时间内提出成绩申诉,有关部门将进行核实与处理。
八、其他注意事项1. 遵守考场规则考生在考试期间需服从考场管理人员的指导,保持安静,不得进行作弊等违规行为。
2024年中考数学备考方案

初三数学复习的内容面广量大,知识点多,要想在短暂的时间内全面复习初中三年所学的数学知识,形成基本技能,提高解题技巧、解题能力,并非易事。如何提高复习的效率和质量,下面我谈一些自己的想法。
一、明确指导思想
新的数学课程标准指出:“数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生。所以数学复习要面向全体学生,要使各层次的学生对初中数学基础知识、基本技能和基本方法的掌握程度均有所提高,还要使尽可能多的学生形成良好的思维能力、较强的综合能力、创新意识和实践能力。”
中考数学备考方案 篇2
本学期对我们初三数学老师来说,有一个非常重要的工作,即迎接中考。为确保教学计划按期完成,更为了在中考中创造佳绩,使学生在最后一学期内对初中数学进行全面的、针对性的、有效的复习,达到事半功倍的效果,特制定计划如下:
一、把握中考方向,做到心中有数
1 、在实施教学过程中要狠抓“双基’ 教学,要创设教学情景,让学生了解科学发展的历程,学习科学的研究问题的方法,学习科学家追求真理精神;让学生形成清晰的数学概念及规律;平时训练应重视基础知识、基本技能的考查,加强作图基本功、试题的审题和规范解题的训练。
15 和16 班是我们第二阶段的实验班,这两个班有四分之三的学生是可以拿优分的,所以对这些学生我们采取的要求是和7 班8 班一样的,但这两个班中是存在有四分之一的学生的基础不扎实,甚至有一小部分连及格都难的学生,所以针对这种情况,就要求教这两个班的老师上课的内容跨度要很大,既要保证四分之三学生的提高,还要保证小部分学生基础知识的过关。
(5)实际出发,面向全体学生,因材施教,即分层次开展教学工作,全面提高复习效率。课堂复习教学实行“低起点、多归纳、快反馈”的方法。
第二阶段:专题复习
福建福州市中考数学大纲

福建福州市中考数学大纲一、考试内容福建福州市中考数学考试内容包括以下几个方面:1. 知识与技能考生需要掌握数学基本概念、基本定理、基本公式和基本计算技能,包括数的四则运算、分数、百分数、小数、代数式、方程、函数等方面的知识与技能。
2. 运算与应用考生需要熟练掌握整数、分数、小数的加、减、乘、除运算,能够运用所学的数学知识解决实际问题。
3. 几何与图形考生需要熟练掌握平面图形的性质、图形的相似、全等与合同、平面内外角的性质等几何知识,并能灵活运用于实际问题中。
4. 统计与概率考生需要了解统计和概率的基本概念和基本方法,能够进行数据的整理和统计,并能根据统计结果进行简单的分析和判断。
二、考试要求1. 理解与掌握考生需要理解和掌握数学基本概念、基本定理、基本公式和基本方法,能够准确运用所学的知识解决问题。
2. 分析与计算考生需要有良好的分析问题的能力和解决问题的能力,能够熟练运用所学的数学知识进行计算。
3. 推理与判断考生需要具备一定的推理和判断能力,能够根据所给条件进行合理的推理和判断,并给出正确的结论。
考生需要能够将所学的数学知识应用于实际问题,并能够进行一定的拓展和延伸。
三、考试形式福建福州市中考数学考试采用笔试形式,包括选择题、填空题、计算题等多种题型,具体要求如下:1. 选择题选择题是考试的主要题型,考生需要从给定的选项中选择正确的答案。
选择题可以测试考生对基本概念和方法的理解与掌握程度。
2. 填空题填空题要求考生根据题目给出的条件进行计算,并将计算结果填入相应的空格中。
3. 计算题计算题是考试的重点,要求考生在限定的时间内完成一定难度的计算题,考察考生的计算能力和解决问题的能力。
四、备考建议为了更好地备考福建福州市中考数学,考生可以参考以下几点备考建议:1. 掌握基础知识重点掌握数的四则运算、分数、百分数、小数、代数式、方程、函数等基本知识,建立扎实的基础。
2. 做题巩固通过大量做题来巩固所学的知识,特别是做一些典型题和难题,以提高解决问题的能力。
新课改中考数学备考复习策略

新课改中考数学备考复习策略随着新课改的推行,中考数学考试也进行了一定的调整。
这就要求考生在备考过程中注重策略和方法,提高自己的复习效率。
本文将从考试形式、内容重点、备考策略等方面为大家分享一些备考经验。
一、考试形式新课改中考数学考试分为两部分,分值分别为60分和40分,其中60分部分为必考题,考察内容相对固定,40分部分为选考题,考生自主选择。
60分与40分部分的分值占比不同,因此需要考生在复习备考过程中进行权衡和策略选择。
二、内容重点根据中考数学考试的试卷构成,我们可以得到以下的内容重点:1、必考题:其中必须要掌握的考点包括函数、图形的绘制、三角函数、几何(包括数、代数和几何的应用题),其中最具代表性的就是函数和几何部分。
2、选考题:结合自己的学习情况和个人特长,可选择复习重点如:三角函数、立体几何、数与代数等内容。
三、备考策略1、制定合理的学习计划在复习备考过程中,必须制定合理的学习计划,按照考试内容的重点和难点合理安排时间,确保每个知识点都能够得到充分的复习。
同时,还要注意统筹考试的两个部分,合理安排考试时间,避免一部分得分过高或过低的风险。
2、打牢基础知识中考数学的测试对象是初中三年的学习内容,因此必须要在之前的学习过程中打牢每个知识点的基础。
在复习过程中,可以通过回顾课堂笔记、做练习题、刷真题等方式巩固自己的基础知识,提高做题的正确率和速度。
3、注重锻炼解题能力中考数学考试注重解题能力,因此备考过程中还需要注重锻炼解题能力。
可以通过多做练习题,尤其是做真题,提高自己的解题思路和应变能力。
在解题过程中,还需要注意多理解题目,理清题目的背景和目的,以便更好地解决问题。
4、提升数学思维能力数学思维是中考数学考试中一个非常重要的部分,能力强的考生在考试中会更加游刃有余。
在备考过程中,可以注意提升自己的数学思维能力,比如运用数学常识解决实际问题、发掘问题中的隐藏关系等,这些都有利于提升自己的思维能力和综合应变能力。
2024年全国中考数学考试大纲详解
2024年全国中考数学考试大纲详解数学一直以来都是中考科目中的重中之重,对于考生来说,掌握数学考试大纲的内容和要求至关重要。
在2024年的全国中考数学考试中,考生将会面临怎样的题型和知识点呢?本文将对2024年全国中考数学考试大纲进行详解,以帮助考生更好地备考。
一、数与代数1. 数的运算2024年的中考数学考试将重点考查数的四则运算,包括加减乘除,并增加了较复杂的混合运算。
考生需要注意运算的优先级和法则,并能够准确地进行计算。
2. 代数式与简单方程本部分考查代数式的展开和化简,以及简单方程的解法。
考生需要熟悉代数式的基本性质和操作法则,并能够解一元一次方程和一元一次不等式。
3. 等式与不等式考生需要掌握等式和不等式的性质和解题方法,包括一元一次方程、一元一次不等式的解法,以及含有绝对值的方程和不等式的解法。
二、几何与图形1. 两角关系与直角三角形本部分考查角的度量和角的关系,以及直角三角形的性质和求解。
考生需要掌握角的度量单位和换算,熟练计算角的大小和角的关系,能够运用正弦、余弦、正切等概念解决直角三角形的相关问题。
2. 勾股定理与平面向量考生需要熟悉勾股定理的表述和应用,能够判断三边长度是否构成直角三角形,以及利用勾股定理计算未知边长。
此外,平面向量的基本概念和运算法则也是考试的重点内容。
3. 图形的性质与计算本部分考查各种图形的性质和计算方法,包括平行四边形、矩形、正方形、菱形等的特点和计算公式,以及圆的性质和相关计算。
考生需要熟练运用相关公式解决与图形相关的计算题。
三、数据与统计1. 数据的收集与整理考生需要了解数据的搜集方法和整理方式,包括样本调查、问卷调查等常用方法,并能够正确地整理数据,用表格、折线图等形式直观地展示数据结果。
2. 代表值与频数分布本部分考查代表值的计算和频数分布的分析,包括平均数、中位数、众数等的计算方法和应用,以及频数分布的制表和分析。
3. 概率的计算与应用考生需要熟悉概率的基本概念和计算方法,包括事件的概率计算、事件间的关系、互斥事件和独立事件的判断等。
2024安徽中考数学考试纲要
2024年安徽中考数学考试大纲是针对中考数学考试范围和考试要求所制定的指导性文件,对于考生和教师来说都具有重要的参考意义。
在2024年安徽中考数学考试大纲中,主要包含了考试形式、试卷结构、考试内容、题型示例等方面的内容。
首先,从考试形式来看,安徽中考数学将采用闭卷、笔试的形式进行,考试时间为120分钟。
这种形式对于考生来说,需要掌握一定的数学知识,并能够运用这些知识解决实际问题。
其次,试卷结构方面,安徽中考数学试卷将包括选择题、填空题和解答题等形式。
选择题和填空题主要考察学生的基础知识和基本技能,而解答题则更注重学生的综合运用能力和应变能力。
在试卷难度上,安徽中考数学试卷的难度适中,但也需要考生具备一定的解题技巧和思维能力。
在考试内容方面,安徽中考数学大纲强调了数学的基础知识和基本技能,包括数与代数、空间与图形、统计与概率等三个方面的内容。
具体来说,数与代数包括有理数、实数、代数式等知识点;空间与图形包括图形的认识、测量等知识点;统计与概率则包括数据的收集、分析等知识点。
这些内容是中考数学考试的重点,也是考生需要重点复习的内容。
最后,在题型示例方面,安徽中考数学大纲给出了选择题、填空题和解答题的题型示例,这些示例可以帮助考生了解各种题型的解题方法和技巧。
同时,大纲中也提供了部分综合题目的解题思路和步骤,这些思路和步骤对于考生来说具有重要的参考价值。
根据以上分析,我们可以得出以下几点启示:首先,考生需要全面掌握数学基础知识,包括数与代数、空间与图形、统计与概率等三个方面的内容。
只有掌握了这些基础知识,才能更好地应对各种题型。
其次,考生需要注重解题技巧的训练,包括选择题、填空题和解答题的解题技巧。
通过训练,可以提高解题速度和准确性。
最后,考生需要注重综合题目的训练和解题思路的总结。
综合题目需要考生具备较强的综合运用能力和应变能力,而总结解题思路可以帮助考生更好地理解题目本质,提高解题效率。
总之,2024年安徽中考数学考试大纲对于考生来说具有重要的参考价值。
2024年全国中考数学大纲重点解析
2024年全国中考数学大纲重点解析中考对于每一位初中学生来说,都是一次重要的挑战,而数学作为其中的关键学科,更是备受关注。
了解中考数学大纲的重点,对于学生的备考有着至关重要的指导作用。
接下来,我们就对 2024 年全国中考数学大纲的重点进行详细解析。
一、数与代数在数与代数部分,实数的运算依旧是基础且重要的考点。
学生需要熟练掌握有理数、无理数的概念和运算规则,包括加、减、乘、除、乘方以及开方运算。
代数式的化简与求值也是常见题型。
这要求学生掌握整式、分式的运算,以及因式分解等方法。
例如,运用平方差公式、完全平方公式进行整式的乘法运算和因式分解。
方程与不等式更是重中之重。
一元一次方程、二元一次方程组、一元二次方程的解法以及应用,都需要学生熟练掌握。
在解决实际问题时,能够根据题目中的数量关系列出方程,并求出正确的解。
函数部分,一次函数、反比例函数和二次函数的图像与性质是考查的重点。
学生要能够根据函数解析式画出函数图像,通过图像分析函数的单调性、最值等性质,并且能够运用函数解决实际问题。
二、图形与几何在图形与几何领域,三角形的相关知识占据重要地位。
三角形的内角和定理、三边关系定理,以及全等三角形和相似三角形的判定和性质,都是必须掌握的内容。
四边形方面,平行四边形、矩形、菱形、正方形的性质和判定定理要牢记于心。
能够通过已知条件判断四边形的类型,并运用相应的定理进行计算和证明。
圆的相关知识也是考点之一。
圆的基本性质,如垂径定理、圆周角定理等,以及直线与圆的位置关系、圆与圆的位置关系,都需要学生理解和掌握。
图形的变换,包括平移、旋转、轴对称,不仅要了解其性质,还要能够在具体问题中运用这些变换来解决问题。
三、统计与概率统计部分,数据的收集、整理与描述是基础。
学生要能够理解并运用平均数、中位数、众数等统计量来描述数据的集中趋势和离散程度。
概率方面,了解随机事件的概率定义,能够通过列举法或树状图计算简单随机事件的概率。
2024年全国中考数学考试大纲
2024年全国中考数学考试大纲一、考试目标和要求2024年全国中考数学考试旨在全面评估学生对数学知识和技能的掌握程度,培养学生的逻辑思维和问题解决能力。
考试内容涵盖数学的基本概念、运算技巧、应用能力和数学思维方法。
具体考试目标和要求如下:1. 理解与应用知识学生应掌握数与代数、几何、函数、统计与概率等方面的基本概念和基本原理,并能灵活运用这些知识解决实际问题。
2. 计算与推理能力学生应具备基本的计算能力,能熟练运用数与代数、几何、函数等方面的运算技巧。
同时,学生应具备良好的逻辑思维和推理能力,能运用数学方法和思维解决实际问题。
3. 建模与解决问题能力学生应具备基本的建模能力,能从具体问题中抽象出数学模型,并能利用数学模型解决实际问题。
4. 快速反应与解决问题能力学生应具备较强的计算与推理能力,能在一定时间内迅速反应和解决问题,提高解决问题的效率。
二、考试内容2024年全国中考数学考试内容包括数与代数、几何、函数、统计与概率四个方面。
其中,数与代数占30%,几何占30%,函数占20%,统计与概率占20%。
具体内容如下:1. 数与代数(1)整数、有理数和无理数的概念与性质;(2)代数式及其运算;(3)一元一次方程及其应用;(4)比例与比例方程;(5)四则运算和整式的运算;(6)一元二次方程及其应用。
2. 几何(1)相交线与平行线;(2)三角形的性质与构造;(3)多边形的性质与构造;(4)相似与全等三角形;(5)三角形的面积;(6)圆的性质与构造;(7)平面图形的投影与旋转。
3. 函数(1)函数的概念与性质;(2)一次函数与二次函数的图象与性质;(3)函数的运算与复合函数;(4)函数方程与应用。
4. 统计与概率(1)统计调查与统计表的分析;(2)图表的绘制与分析;(3)样本调查与抽样方法;(4)概率的概念与计算。
三、考试要求和评分标准2024年全国中考数学考试采用闭卷形式,考试时间为120分钟。
考试试卷分为选择题和解答题两部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考试说明Ⅰ.命题指导思想一、命题依据《全日制义务教育数学课程标准(2011年版》(以下简称《课程标准》),体现基础性、全面性和发展性。
二、命题结合我市初中数学教学实际,体现数学学科的性质和特点,注重考查初中数学的核心基础知识、基本技能、数学思想方法和综合运用能力,注重考查学生提出问题、分析问题、解决问题的能力,全面考查学生的数学素养,鼓励学生多角度、创造性地思考和解决问题。
三、命题保持相对稳定,体现新课程理念。
四、命题力求科学、准确、公平、规范,试卷应有较高的信度、效度、必要的区分度和适当的难度。
Ⅱ.考试内容及要求一、考试要求(一)知识要求根据《课程标准》中第三学段的具体目标,在“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”等四个学习领域中,前三个领域将考试要求由低到高分为四个层次:了解、理解、掌握和灵活运用,其具体含义是:1.了解:能从具体事例中,知道或能举例说明对象的有关特征(或意义);能根据对象的特征,从具体情境中辨认出这一对象。
2.理解:能描述对象的特征和由来;能明确地阐述此对象与有关对象之间的区别和联系。
3.掌握:能在理解的基础上,把对象运用到新的情境中。
4.灵活运用:能综合运用知识,灵活、合理地选择与运用有关的方法完成特定的数学任务。
(二)能力要求主要包括数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想、应用意识、创新意识。
数感主要是指关于数与数量、数量关系、运算结果估计等方面的感悟。
建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。
建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。
空间观念主要是指根据物体特征抽象出几何图形,根据几何图形想象出所描述的实际物体;想象出物体的方位和相互之间的位置关系;描述图形的运动和变化;依据语言的描述画出图形等。
几何直观主要是指利用图形描述和分析问题。
借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。
几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。
数据分析观念包括:了解在现实生活中有许多问题应当先做调查研究,收集数据,通过分析做出判断,体会数据中蕴涵着信息;了解对于同样的数据可以有多种分析的方法,需要根据问题的背景选择合适的方法;通过数据分析体验随机性,一方面对于同样的事情每次收集到的数据可能不同,另一方面只要有足够的数据就可能从中发现规律。
数据分析是统计的核心。
运算能力主要是指能够根据法则和运算律正确地进行运算的能力。
培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。
推理能力的发展应贯穿于整个数学学习过程中。
推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。
推理一般包括合情推理和演绎推理,合情推理是从已有的事实出发,凭借经验和直觉,通过归纳和类比等推断某些结果;演绎推理是从已有的事实(包括定义、公理、定理等)和确定的规则(包括运算的定义、法则、顺序等)出发,按照逻辑推理的法则证明和计算。
在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
模型思想的建立是学生体会和理解数学与外部世界联系的基本途径。
建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果并讨论结果的意义。
这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。
应用意识有两个方面的含义,一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中问题;另一方面,认识到现实生活中蕴含着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。
在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。
创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终。
二、考试内容(一)、考试范围我市初中学生学业考试数学学科的考试范围是《全日制义务教育数学课程标准(2011年版)》规定的所有内容。
(二)、具体考试内容及要求根据《课程标准》,本说明将考试内容按“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”分别列出。
一、数与代数(一)数与式1.有理数(1)理解有理数的意义,能用数轴上的点表示有理数,能比较有理数的大小。
(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法,知道|a|的含义(这里a表示有理数)。
(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。
(4)理解有理数的运算律,能运用运算律简化运算。
(5)能运用有理数的运算解决简单的问题。
2.实数(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、算术平方根、立方根。
(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。
(3)了解无理数和实数的概念,知道实数与数轴上的点一一对应,能求实数的相反数与绝对值。
(4)能用有理数估计一个无理数的大致范围。
(5)了解近似数,在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。
(6)了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算。
3.代数式(1)借助现实情境了解代数式,进一步理解用字母表示数的意义。
(2)能分析具体问题中的简单数量关系,并用代数式表示。
(3)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。
4.整式与分式(1)了解整数指数幂的意义和基本性质;会用科学记数法表示数(包括在计算器上表示)。
(2)理解整式的概念,掌握合并同类项和去括号的法则,能进行简单的整式加法和减法运算;能进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。
(3)能推导乘法公式:(a+b)( a-b) = a 2- b 2;(a±b)2= a 2±2ab + b 2,了解公式的几何背景,并能利用公式进行简单计算。
(4)能用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。
(5)了解分式和最简分式的概念,能利用分式的基本性质进行约分和通分;能进行简单的分式加、减、乘、除运算。
(二)方程与不等式1.方程与方程组(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。
(2)经历估计方程解的过程。
(3)掌握等式的基本性质。
(4)能解一元一次方程、可化为一元一次方程的分式方程。
(5)掌握代入消元法和加减消元法,能解二元一次方程组。
(6)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。
(7)能用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。
(8)能根据具体问题的实际意义,检验方程的解是否合理。
2.不等式与不等式组(1)结合具体问题,了解不等式的意义,探索不等式的基本性质。
(2)能解数字系数的一元一次不等式,并能在数轴上表示出解集;会用数轴确定由两个一元一次不等式组成的不等式组的解集。
(3)能根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。
(三)函数1.函数(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。
(2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。
(3)能结合图像对简单实际问题中的函数关系进行分析。
(4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。
(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系。
(6)结合对函数关系的分析,能对变量的变化情况进行初步讨论。
2.一次函数(1)结合具体情境体会一次函数的意义,能根据已知条件确定一次函数的表达式。
(2)会利用待定系数法确定一次函数的表达式。
(3)能画出一次函数的图像,根据一次函数的图像和表达式 y = kx + b (k ≠0)探索并理解k >0和k <0时,图像的变化情况。
(4)理解正比例函数。
(5)体会一次函数与二元一次方程的关系。
(6)能用一次函数解决简单实际问题。
3.反比例函数(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。
(2)能画出反比例函数的图像,根据图像和表达式 xk y (k ≠0)探索并理解k >0和k <0时,图像的变化情况。
(3)能用反比例函数解决简单实际问题。
4.二次函数(1)通过对实际问题的分析,体会二次函数的意义。
(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。
(3)会用配方法将数字系数的二次函数的表达式化为k-(y+=2)hxa的形式,并能由此得到二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。
(4)会利用二次函数的图像求一元二次方程的近似解。
二、图形与几何(一)图形的性质1.点、线、面、角(1)通过实物和具体模型,了解从物体抽象出来的几何体、平面、直线和点等。
(2)会比较线段的长短,理解线段的和、差,以及线段中点的意义。
(3)掌握基本事实:两点确定一条直线。
(4)掌握基本事实:两点之间线段最短。
(5)理解两点间距离的意义,能度量两点间的距离。
(6)理解角的概念,能比较角的大小。
(7)认识度、分、秒,会对度、分、秒进行简单的换算,并计算角的和、差。
2.相交线与平行线(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。
(2)理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线。
(3)理解点到直线的距离的意义,能度量点到直线的距离。
(4)掌握基本事实:过一点有且只有一条直线与已知直线垂直。
(5)识别同位角、内错角、同旁内角。
(6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。
(7)掌握基本事实:过直线外一点有且只有一条直线与这条直线平行。
(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等。
(9)能用三角尺和直尺过已知直线外一点画这条直线的平行线。