导数课件

合集下载

高等数学导数的概念教学ppt课件.ppt

高等数学导数的概念教学ppt课件.ppt

h0
h
h0 h 0.
即 (C ) 0.
9
第二章 导数与微分
第一节 导数的概念
例5 设函数 f ( x) sin x,求(sin x)及(sin x) x . 4
解:(sin x) lim sin( x h) sin x
h0
h
h
lim cos( x
h0
h) sin 2 2h
cos
x.
2 即 (sin x) cos x.
定理2.1.2 凡可导函数都是连续函数.
证 设函数 f ( x)在点 x0可导, 即
lim y x0 x
f ( x0 )

lim y
x0
lim
x0
y x
x
f
(
x0
)
lim
x0
x
0
函数 f ( x)在点 x0连续 .
注意: 该定理的逆定理不成立.
15
第二章 导数与微分
第一节 导数的概念
例10 讨论函数 f ( x) x 在x 0处的可导性.
1.左导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
2.右导数:
f( x0 )
lim
x x0
f ( x) f ( x0 ) lim
x x0
x0
f ( x0 x) x
f ( x0 ) ;
定理2.1.1
函数 f ( x)在点x0 处可导 左导数 f( x0 ) 和右 导数 f( x0 )都存在且相等.
解: f (0 h) f (0) h ,

高等数学(第二版)上册课件:导数概念

高等数学(第二版)上册课件:导数概念

右极限都存在且相等,因此有:
定理2.2 函数 f (x) 在点 x0 处可导
左导数 f(x0 )和右
导数 f(x0 ) 都存在且相等 .
例 2.1.4 讨论函数 f (x) x 在 x 0 处的可导性 .

lim f (0 h) f (0) lim h 1
h0
h
h h0
lim f (0 h) f (0) lim h 1
y x3 的切线方程.

设切点为 x0 , y0 曲线 y x3 在点 x0 , y0
处的切线斜率为 k1, 直线的斜率为 k2 则:
| k1
y
x x0
3x02 ,
k2
1 27
而 k1. k2 1, 得 x0 3 则切点为 3, 27 或 3, 27
切线方程为
27x y 54 0 或 27x y 54 0
从高速到低速,最后速度减为0 . 这个过程每一时刻的汽车
的速度都不相同,如何求某时刻 t0汽车的瞬时速度呢?
设汽车所经过的路程s是时间t的函数:s s t ,
任取接近于 t0 的时刻 t0 t ,则汽车在这段
时间内所经过的路程为
s s(t0 t) s(t0 )
而汽车在这段时间内的平均速度为
当自变量 x 在 x 0 处取得增量 x (点 x0 x 仍在该
邻域内),相应地函数取得增量 y f ( x0 x) f ( x0 )
.
如果 y 与 x 之比当 x 0 时的极限存在,
则称函数 y f ( x) 在点 x 0 处可导,并称这个极限值

f
(x0 )
lim
x0
f
解 当 x 由1变到 1 x 时,函数相应的增量为

1.1.3导数的几何意义课件共35张PPT

1.1.3导数的几何意义课件共35张PPT

(3)设切点为(a,b),则 y′|x=a=a2=1, ∴a=±1, 当 a=1 时,b=53,切点为1,53, 当 a=-1 时,b=1,切点为(-1,1), ∴切线方程为 3x-3y+2=0 或 x-y+2=0. ………………………………………………………………………………12 分
[反思提升] (1)求“在某点处”的切线:该点必在曲线上且是切点,而求“过某 点”的切线该点不一定在曲线上,且该点不一定是切点. (2)求“过某点”的切线方程的步骤 ①设“过某点”的切线 l 与曲线相切的切点坐标为(x0,y0). ②用“在点(x0,y0)处”的切线求法,写出切线 l 的方程. ③利用切线“过某点”,其坐标满足切线方程,求出 x0 与 y0. ④将(x0,y0)代入②中的切线 l 化简即求出“过某点”的切线方程. (3)求“过某点”的曲线的切线方程中,该点在曲线上时,所求点的切线中一定包 括“在该点”处曲线的切线.
∴曲线 y=1x在点(1,1)处的切线方程为 y-1=-(x-1),即 y=-x+2. 曲线 y=x2 在点(1,1)处的切线斜率为
f′(1)=liΔmx→0 1+ΔΔxx2-12=liΔmx→0 2Δx+ΔxΔx2=liΔmx→0 (2+Δx)=2, ∴曲线 y=x2 在点(1,1)处的切线方程为 y-1=2(x-1),即 y= 2x-1. 两条切线方程 y=-x+2 和 y=2x-1 与 x 轴所围成的图形如图 所示, ∴S=12×1×2-12=34,即三角形的面积为34.
导数几何意义应用问题的解题策略: (1)导数几何意义的应用问题往往涉及解析几何的相关知识,如直线斜率与方 程以及直线间的位置关系等,因此要综合应用所学知识解题. (2)解题的关键是函数在某点处的导数,已知切点可以求斜率,已知斜率也可 以求切点,切点的坐标是常设的未知量. (3)一定要区分曲线 y=f(x)在点 P(x0,f(x0))处的切线与过点 P(x0,f(x0))的切线 的不同,前者 P 为切点,后者 P 不一定为切点.

导数的概念课件

导数的概念课件

03
通过求解能量和功率函数的导数,可以得到物体的能量守恒关
系。
05
导数的实际应用案例 分析
导数在经济学中的应用案例分析
边际分析和最优化问题
导数可以用来分析经济函数的边际变化,帮助决策者找到经 济活动的最优解。例如,在生产函数中,通过求导可以找到 生产要素的最佳组合。
弹性分析
复合函数的导数
复合函数的导数是内外函数导数的乘积
$(f(g(x)))' = f'(g(x)) \times g'(x)$
举例
$(sin(x^2))' = cos(x^2) \times 2x$
03
导数在几何中的应用
导数在曲线切线中的应用
切线的斜率
导数可以用来表示曲线在某一点 的切线斜率,斜率越大,曲线在
THANKS
感谢观看
该点的变化率越大。
切线的方向
导数还可以用来确定曲线在某一 点的切线方向,即函数值增加或
减少最快的方向。
极值点与拐点
导数的符号可以用来判断函数在 某一点的极值点与拐点,当一阶 导数大于0时,函数在该点单调 递增;当一阶导数小于0时,函
数在该点单调递减。
导数在曲线长度中的应用
曲线长度的计算
通过利用导数求出曲线的斜率, 可以计算出曲线的长度,即曲线 与x轴围成的面积。
导数可以用来计算需求的弹性,即需求量对价格变动的敏感 程度。这可以帮助企业了解产品价格的变动对市场需求的影 响,从而制定更合理的定价策略。
导数在物理学中的应用案例分析
速度和加速度
在物理学中,导数被用来表示物体的 速度和加速度。例如,一个物体的位 移对时间的导数就是它的速度,速度 对时间的导数就是它的加速度。

高等数学导数的计算教学ppt课件

高等数学导数的计算教学ppt课件

25
第二章 导数与微分
第二节 导数的计算
三.隐函数与参数式函数的导数
(一)隐函数的导数
显函数:因变量可由自变量的某一分析式来表示 的函数称为显函数.例如:
y 1 sin3 x , z x2 y2 .
隐函数:由含x,y的方程F(x, y)=0给出的函数称 为隐函数.例如:
x2/ 3 y2/ 3 a2/ 3 , x3 y3 z3 3xy 0 .
32
第二章 导数与微分
第二节 导数的计算
(二)参数式函数的导数
由参数方程给出的函数:
x y
x(t) y(t )
t
确定了y与x的函数关系.其中函数x(t),y(t)可导,且
x (t)0, ,则函数y=f (x)可导且
f ( x) 1
( y)

dy dx
1 dx
.
dy
7
第二章 导数与微分
第二节 导数的计算
例5 求y=arcsinx的导数.
解:由于y=arcsinx,x(-1,1) 为x=siny,y (-/2, /2) 的反函数,且当y (-/2, /2)时,
(siny)=cosy>0. 所以
(arcsin x)' 1 1 1 1 (sin y)' cos y 1 sin2 y 1 x2
f
( x)
3
1
x2
1
x2
1
3
x2
2
2
例10 设y arcsin x 2 x x
解:
y
arcsin
x
3
2x4
,求 y .
1
3
x
1 4
1 x2 2

导数的运算法则 课件

导数的运算法则     课件

(5)y′=cos3x-π4·3x-π4′=3cos3x-π4. (6)y′=2cosx·(cosx)′=-2cosx·sinx=-sin2x.
[方法规律总结] 应用复合函数的导数公式求导时,应把 握好以下环节:
(1)选取恰当的中间变量,使构成复合函数的基本函数,符 合导数公式中的函数结构.
(2)从外到内,层层剥皮,依次求导. (3)把中间变量转换成自变量的表达式.
(8)y′=2sinx(sinx)′=2sinxcosx=sin2x. (9)∵y=sin2x-2sinx+3,∴y′=sin2x-2cosx. (10)y′=cos2x′x·2x-cos2x=-2xsinx2x2-cos2x =-xsin2x2+x22cos2x.
典例探究学案
复合函数的导数
求下列函数的导数:
写出下列函数的导数:
(1)y=lnsixnx,y′=________________;
(2)y= 1-x x,y′=________________;
(3)y=sin2x1-2cos24x,y′=________________.
[答案]
xcosx-sinx (1) xsinx
(2)12x-12(1-x)-32
1 x
(3)-
2
3 1-3x
(4)22xln2
(5)2e2x-ex
2lnx+1 (6) x
sinx (7)cos2x
(8)sin2x (9)sin2x-2cosx
(10)-xsin2x2+x22cos2x
[解析] (1)解法1:y′=(sin2x)′=(2sinxcosx)′ =2(sinx)′·cosx+2sinx(cosx)′ =2cos2x-2sin2x=2cos2x. 解法2:y′=cos2x·(2x)′=2cos2x. (2)解法1:∵y=ln1-lnx=-lnx, ∴y′=-1x. 解法2:y′=x·(1x)′=-1x.

导数的概念-课件-导数的概念


导数在现代数学中的地位和作用
基本概念
导数是现代数学的基本概念之一,是研究函数性质和解决实际问题的 重要工具。
数学分析
导数是数学分析的重要分支,是研究函数的可微性、可导性和连续性 的基础。
应用领域
导数的应用领域非常广泛,不仅限于数学和物理领域,还涉及到工程 学、经济学和计算机科学等多个领域。
数学建模
导数的应用发展
物理学
工程学
导数在物理学的各个分支中都有广泛的应 用,如力学、电磁学、热学等。
在机械工程、航空航天工程、土木工程等 领域,导数被用于优化设计、控制工程和 流体力学等方面。
经济学
计算机科学
导数在经济学中被用于研究经济系统的变 化率和最优决策问题。
在计算机图形学、数值分析和机器学习等 领域,导数被用于计算图像处理、数据拟 合和模型训练等方面。
高阶导数在研究函数的极值、拐 点、曲线的形状等方面有重要应 用。
微分学基本定理
微分学基本定理的内容
微分学基本定理是导数与微分之间的关系,即函数在某点的导数 等于该函数在该点的切线的斜率。
微分学基本定理的推导
通过极限的概念和性质,利用切线斜率的定义推导出微分学基本定 理。
微分学基本定理的应用
微分学基本定理是微分学的基础,在研究函数的增减性、极值、曲 线的形状等方面有重要应用。
复合函数求导法则
若$y = f(u)$和$u = g(x)$都可导, 则复合函数$y = f[g(x)]$的导数为 $(y)' = u' cdot (u)' = u' cdot v'$。
隐函数的导数
由显函数表示的隐函数求 导
若由显函数$F(x, y) = 0$表示的隐函数为$y = f(x)$,则通过求偏导数$frac{partial F}{partial x}$和$frac{partial F}{partial y}$ ,可以得到隐函数$y = f(x)$的导数。

导数的课件ppt

导数的课件
目录
Contents
• 导数的定义与几何意义 • 导数的计算 • 导数在几何中的应用 • 导数在实际问题中的应用 • 导数的历史与发展
01 导数的定义与几何意义
导数的定义
总结词
导数描述了函数在某一点处的切线斜率,是函数值随自变量变化的瞬时速度。
详细描述
导数是微积分中的一个基本概念,它表示函数在某一点处的切线斜率。具体来说 ,对于可导函数$f(x)$,其在点$x_0$处的导数$f'(x_0)$定义为函数在$x_0$附近 的小范围内变化时,函数值$f(x)$随自变量$x$变化的瞬时速度。
导数的几何意义
总结词
导数的几何意义是函数图像在某一点处的切线斜率。
详细描述
导数的几何意义是函数图像在某一点处的切线斜率。也就是说,对于可导函数 $f(x)$,其在点$x_0$处的导数$f'(x_0)$等于函数图像在点$(x_0, f(x_0))$处的 切线的斜率。
导数与切线斜率
总结词
导数与切线斜率是等价的,导数即为 函数在某一点处的切线斜率。
通过导数的符号变化,可以判断函数的凹凸性。
详细描述
在凹区间内,二阶导数大于0;在凸区间内,二阶导数小于0。
04 导数在实际问题中的应用
导数在物理中的应用
速度与加速度
导数可以用来描述物体的速度和 加速度,例如在分析物体的运动 轨迹时,可以运用导数来计算瞬
时速度和加速度。
弹性分析
在物理中,弹性分析是一个重要的 概念,导数可以用来描述弹性体的 应变和应力之间的关系,帮助我们 理解物体的弹性行为。
对于两个函数的和或差, 其导数等于两个函数导数 的和或差。
乘法运算规则
对于两个函数的乘积,其 导数为两个函数导数的乘 积加上被乘函数自身的导 数。

《高等数学导数》课件


答案
2. 求下列函数的极值:
$f'(x) = 3x^2 - 6x + 2$,极值点为 $x=1 pm sqrt{2}$,极大值为 $f(1+sqrt{2}) = 1 + 2sqrt{2}$,极小值为 $f(1-sqrt{2}) = 1 - 2sqrt{2}$。
$f'(x) = ln x + 1$,极值点为 $x=1$,极大值为 $f(1) = 0$。
《高等数学导数》ppt 课件
contents
目录
• 导数的基本概念 • 导数的计算 • 导数的应用 • 导数的扩展 • 习题与答案
CHAPTER 01
导数的基本概念
导数的定义
总结词
导数是函数在某一点的变化率,表示 函数在该点的切线斜率。
详细描述
导数定义为函数在某一点附近取得的 最小变化率,即函数在这一点处的切 线斜率。导数的计算公式为lim(x→0) [f(x+h) - f(x)] / h,其中h趋于0。
2. 求下列函数的极值:
01
03 02
习题
$f(x) = frac{1}{x}$
$f(x) = e^x$
答案
01
1. 求下列函数的导数:
02
$y' = 2x + 2$
03
$y' = -frac{1}{x^2}$
答案
• $y' = \sin x + x \cdot \cos x$
答案
• $y' = e^x$
总结词
导数的四则运算在解决实际问题中具 有广泛的应用,例如在经济学、物理
学和工程学等领域。
详细描述
导数的四则运算法则是基于极限理论 推导出来的,通过这些法则,可以方 便地求出复杂函数的导数。

高等数学导数的概念ppt课件.ppt


x0 处的右 (左) 导数, 记作
y
y x
o
x
机动 目录 上页 下页 返回 结束
定理2. 函数 是
在点 可导的充分必要条件 且
简写为 f (x0) 存在
f(x0 )
定理3. 函数 在点 处右 (左) 导数存在
在点 必 右 (左) 连续.
若函数
在开区间
内可导, 且
都存在 , 则称
在闭区间
上可导.
显然:
f
(0)
lim
x 0
sin x
x
0
0
1
ax 0
f
(0)
lim
x 0
x0
a
故 a 1 时
此时

都存在,
机动 目录 上页 下页 返回 结束
作业
P49 5 , 7, 9
第二节 目录 上页 下页 返回 结束
备用题
1. 设
存在, 且

解: 因为
1 f (1 (x)) f (1)
lim
2 x0
(x)
在闭区间 [a , b] 上可导
与 f(b)
机动 目录 上页 下页 返回 结束
练习:讨论下列函数在x=0时候的连 续性与可导性.
练习:习题2.1题8
f
x
xk
sin
1 x
,
x0
0, x 0.
若函数在x 0连续,则
lim f x lim xk sin 1 f 0 0,
x0
x0
x
必须满足 lim xk 0, k 0即可. x0
反例:
在 x = 0 处连续 , 但不可导. o
x
机动 目录 上页 下页 返回 结束
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数定义:
设函数y=f(x)在点x0处及其附近有定义,当自变量 x在点x0处有改变量Δx时函数有相应的改变量 Δy=f(x0+ Δx)- f(x0).如果当Δx0 时,Δy/Δx的极限 存在,这个极限就叫做函数f(x)在点x0处的导数(或变化 率)记f作( x0 )或y |xx0 , 即:
f
( x0 )
3.1 变化率与导数定义
一、提出问题,激发思维
问题1、(物理问题)
1、一辆汽车的运动方程是 s t2 2t 1
s为路程,单位(千米),t为时间,单位秒

(1)求汽车在t∈2,10 内的平均速度 v1 。 —
(2)求汽车在t∈2,3内的平均速度 v2 。

(3)求汽车在t∈ 2,2 t内的平均速度 v0 。
— V1
14
— v2
7
— v0
t
6
1、一辆汽车的运动方程是 s t2 2t 1
s为路程,单位(千米),t为时间,单位(秒)


(4)试比较 v1 和 v2,请思考:哪一个平
均速度更接近t=2秒时的瞬时速度?为什么?
(5)求t=2秒时的瞬时速度。 vt2 6
(6)如何求 t0 时刻的瞬时速度。
在t 5时的瞬时速度为__1__0____.
题型二、求函数的切线方程
例1:求曲线y=f(x)=x2+1在点P(1,2)处的切线方程.
yQ
解 : k lim f ( x0 x) f ( x0 )
三、研究题型,总结方法源自题型一:求函数的点导数由导数的定义可知,求函数y=f(x)在
点x0处的导数的方法是:
(1)求函数的增量 y f x0 x f x0
(2)求平均变化率
y x
f x0 x f x0
x
(3)取极限,得导数
f
x0
lim
x0
y x
例1 已知 f (x) x2, 求曲线 y f (x) 在x 2 处的切线的斜率.
瞬时速度与切线斜率为瞬时变化率:
lim x 0
y x
lim x 0
f
(x x) x
f
(x)
lim xx0
f (x) f (x0 ) x x0
它反映了函数相对于自变量在某一点处的 大小变化快慢的单位量度。
类似实例大量存在,如:
(1)人的身高相对于年龄在某年龄段时的 增长率。 (2)国民生产总值相对于年份的增长率。
同特征?
在t
2时的瞬时速度v
lim t2
_
v
lim t2
s(t) s(2) t-2
lim t 0
s(2 t)- s(2) t
在x
2时的切线斜率k切
lim x2
k AM
lim x2
f (x) f (2) x-2
lim x 0
f(2 x)- f 2
x
因此,它们是同一种数学方法,都是应用平均变
化率求极限的方法,我们称之为瞬时变化率。
当t
0时, vtt0
s(t0
t)-s(t0)的值。 t
2、几何问题: 已知函数f(x)=x²,试求:
(1)函数f(x) x2在点A(2,f (2))
与点M(1 4,f (4))处的割线斜率k AM1 . 6
(2)函数f(x) x2在点A(2,f(2)
与点M(2 3,f(3))处的割线斜率k
5。
(3)某企业运输成本相对于货物量在某区 间内的平均成本(或在某货物量时的边际成 本)。
(4)某企业的生产成本相对于产量在某区 间内的平均成本。 某企业的生产成本相对于产量在某产值的 边际成本。
(5)变力做功的平均功率或变力做功的瞬时 功率。
(6)容器的体积相对于高度的平均变化 率与瞬时变化率。
上述问题都是平均变化率与瞬时变化率 的问题,在现实生活、生产及科学研究中有 广泛的应用。因此,有必要定义新的数学模 型加以研究。

v
s(t)- s(2) t-2
s(2
t) t
s(2)
s t
k f (x)- f (2) f (2 x) f (2) y
x-2
x
x
2)从意义上看, 反映了路程函数s(t) 相对于时间(t)在某段时间内的大小 变化快慢的单位量度。 割线斜率k反映了函数f(x)(纵坐标) 相对于自变量x(横坐标)在某区间的大 小变化快慢的单位量度。
分析:为求得过点(2,4)的切线的斜率, 可从经过点(2,4) 的任意一条直线(割线)入手.
解: 设 P(2,4), Q(2 x, (2 x)2 ) , 则割线PQ的斜率
(2 x)2 4
kPQ
x
4 x
当x 无限趋近于0时, kPQ 无限趋近于常数4, 即
f (2) lim (4 x) 4, x0
f
(x0) 不存在,则称
函数在点x0处不可导。
由导数的定义可知, 求函数 y = f (x)的导数的一般方法:
1、求函数的改变量 f f (x0 x) f (x0 );
2、 求平均变化率 3、求值
f f (x0 x) f (x0 ) ;
x
x
f
(
x0
)
lim
x0
f x
.
一差、二化、三极限
从而曲线 y f (x)在点P(2,4)处的切线斜率为4.
1、已知函数f(x) 2x2 -1的图像上一点(1,1)
及邻近一点(1 x,1 y),则y 等于(C)
x A、4,B、4 x,C、4 2x,D、4x (x)2
2、一球沿斜面自由滚下,其运动方程是 s t(2 s的单位:m;t的单位:s)则小球
AM 2
(3)函数f(x)在点A(2,f(2)) △x+4
与点M(2
x,f(2
x))的割线斜率k

AM
(4)比较k AM1与k AM2,哪一个更接近点M处 的切线斜率k,为什么?
(5)求函数f(x) x2 在点A(2,f(2))处的切线斜率。
k=4
1、抽象模型,形成概念
1)从数学结构看,两题有哪些共同 特 点?
因此,它们是同一个数学结构模 型,我们称之为平均变化率,即
因此,它们是同一个数学结构
模型,我们称之为平均变化率,
即:
y
f(x)-
f (x0)
f (x x)
f (x0)
x x x0
x
平均变化率 ,反映了函数值相对于自 变量在某区间内大小变化快慢的单位 量度。
3)从数学方法上看,以上两题又有何共
lim
x0
y x
lim
x0
f
(x0
x) x
f
(x0) .
注意:
1、函数应在点的附近有定义, 否则导数不存在。
2、在定义导数的极限式中,△x趋近于0 可正、可负,但不为0,而△y可能为0。
3、导数是一个局部概念,它只与函数在x0 及其附近的函数值有关,与△x无关。
4、若极限
lim
x0
f
(x0
x) x
相关文档
最新文档