传感器英文翻译
电梯专业词汇英文翻译汇总

电梯专业词汇的英语翻译hacksaw 锯子hair line 发纹hair-line finish 发纹处理hairline finished stainless steel 发纹处理不锈钢half wrap 半绕halfway junction box 中间接线盒hall门厅,候梯厅hall buttons召唤盒,呼梯按钮hall call厅门呼梯hall call button厅门呼梯按钮hall call cancel厅门呼梯取消hall door层门,厅门hall fixtures门厅讯号装置hall landing门厅停站hall lantern厅外指示灯hall position indicator 层门指示灯hall station门厅讯号装置hall stop门厅呼梯停车hall wait passenger seconds 门厅候梯时间hall waiting time门厅候梯时间hall way门厅通道hammer锤子hand drill手电钻hand hammer 手锤hand lamp手提灯hand operated手动操作hand operated door 手动门hand powered lift手动提升机hand pump手压泵hand reset手动复位hand rope 绳hands-on experence 实地经验handwheel手动盘车装置,盘车手轮handwinding device盘车手轮,手动盘hanger悬吊器,吊门滑轮盒hanger plate 吊门板hanger rail吊门轨道hanger roller吊门滚轮hanger sheave 吊门轮hanger track 吊门轨道hanger trough吊门槽板hard disc 硬盘hard wire硬电线harden quench 硬淬hard—hat安全帽hardware (计算机)硬件,(机械)标准件,五金件harm损伤harmonic distortion 谐波失真harmonics 谐波harness 把,束hatch围井(船用电梯井道)出口hatchway 井道hatchway enclosure 井道围封hatchway type elevator 井道式电梯hauling hope 曳弓|绳haunched beam井道内牛腿,加腋梁hazard危险HCR (highest call reversal)顶层呼梯反向head jamb 上门套,顶门套head room顶房,顶部空间head room height 顶层高度head trim 上门套,顶门套header上门坎,门顶部header case 门顶箱header cover 门顶罩header track门上坎轨道,门顶部轨道headquarters 总部headroom height 顶层高度heat absorption 热量吸收heat accumulation 热量积聚heat dissipation 热量消耗heat emission热量散发heat output热量输出heat transfer传感器,热传导heat treatment 热处理heater发热器heating device 取暖器heatsink散热片heavy demand floor 繁忙楼层heavy demand floor call 繁忙楼层呼梯heavy demand floor control 繁忙楼层控制heavy duty dloor 繁忙楼层heavy duty dloor call繁忙楼层呼梯heavy duty dloor control 繁忙楼层控制heavy duty traffic 繁忙交通heavy duty zone 繁忙区域heavy traffic繁忙交通heavy-duty大载重,交通繁忙height above the hightest level 顶层高度helical螺旋的helical gear斜齿轮的,斜齿轮传动的,螺旋齿轮helical gear machine 斜齿轮曳弓|机helical gear reducer 斜齿轮减速器helical machin斜齿轮曳弓机helical speed reduction gear 斜齿轮减速机helical spring 螺旋弹簧helper助手,帮工hemp core 麻芯hemp rope 麻绳hemp rope core 大麻绳芯hermetically sealed 气封的Hertz (Hz)赫兹(频率单位,周/秒)hex head bolt (HHB) 六角螺栓hex screw六角螺钉hexagon head 六角头hexagonal screw 六角螺钉high efficiency 高效率的high frequency chopping 高频斩波high gain高增益high grade高级的high pressure rubber hose 高压胶皮管high pressure rubber hydraulic hose 高压橡胶液压管high rise building 高层建筑high rise elevator 高层电梯high rise escalator大高度自动扶梯high rise lift高层电梯high rise zone 高层区high signal-noise ratio 高信号噪声比high speed escalator高速自动扶梯high speed steel 高速钢high speed winding 高速绕组high tension 高张力high tension bolt耐拉螺栓,强力螺栓high tension supply 高电压higher harmonics 高次谐波highest call reversal (HCR)顶层呼梯反向highest reversal floor 最高反向楼层highlighting bar (计算机)强光线条,重点线条high-speed slevator/lift 高速电梯hight高度hilti bolt膨胀螺栓hinge铰链hinge door铰链门,外敞门hinge plate 铰链板hinged platform sill轿箱铰接式地坎hitch plate钢丝绳绳头夹板hitch rod绳头杆hob滚刀hobbing滚铳齿hobbing machine 滚齿机hohder固定架hoist起重器hoist machine提升机,曳引机hoist ropes 曳弓|绳hoist ropes ratio of lift电梯曳引绳曳引比hoisting cable 曳引绳hoisting machine提升机,曳弓|机hoisting motor曳引电动机hoisting rope 曳引绳hoistway 井道hoistway access switch 井道通道开关hoistway door 厅门hoistway door catch门厅挈,厅门捕捉器hoistway door electric contact 井道门触点hoistway door interlock 厅门联锁装置hoistway door lock device 厅门门锁装置hoistway door mechanical lock 厅门机械锁hoistway enclosure 井道围封hoistway equipment 井道设备hoistway rope 起重绳hoistway sill aprope 厅门地坎裙板hoistway sill guard厅门地坎护板hoistway telltale井道内信号灯hoistway wall井道壁,井道墙hoistway wiring harness 井道内把线holding time保持时间hole 孔hole base system 基孔制hole countersunk 沉孔holeless无孔的,无孔式hollow guide rail 空心导轨hollow rivet空心铆钉home car驻停轿箱,停在基站的轿箱home elevator/lift 家用电梯home floor驻停楼层,基站home landing 基站hood挡板hook钩,圈horizontal 水平horizontal axis 水平轴horizontal elevator 水平电梯horizontal projection 水平投影horizontal seismic force 水平地震力horizontal shaft governor 横轴式限速器horizontal transportation 水平运输horizontally sliding door 水平滑动门horizontally step run梯级水平移动距离hose软管hose connector软管连接器hose coupling软管接头hose fitting软管接头hose proof软管套hospital elevator 病床梯host主机,宿主hostile environments 有害环境hotel旅馆hourly rate小时定额housing 套hub轮毂,中心hudraulic lift 液压电梯hum嗡嗡声human interface 人机界面human safety人身安全humidity 湿度hung door悬吊门hydrant消防栓,消防龙头hydraulic液压的hydraulic buffer油压缓冲器,耗能型缓冲器hydraulic drive 液压驱动hydraulic driving machine 液压驱动机hydraulic equipment液压梯,液压设备hydraulic fluid液压用液体hydraulic hose 液压软管hydraulic installation 液压设备hydraulic jack液压千斤顶hydraulic lift nominal speed of up (down)motion 液压梯上(下)行额定速度hydraulic lift of directly-pushed 直顶式液压梯hydraulic lift of double 倍率液压梯hydraulic oil 液压油hydraulic parts 液压件hydraulic piping 液压配管hydraulic power unit 液压泵站hydraulic pump 液压泵hydraulic relevelling device 液压再平层装置hydraulic valve 液压阀I-bar工字钢I-beam工字梁idea想法,概念,意见ideal理想的identical相同的identification 鉴定,鉴别identification tag 标签idler pulley空转轮,惰轮idler sheave 惰轮IGBT (isolated grid binary transistor)隔离双栅极晶体管ignition voltage 点火电压illuminate透明,透光illuminated button 发光按钮illumination 照明illustrated sheet 图解说明iluminate ceiling 透光吊顶immunity抗干扰度impact冲击impact load冲击载荷impact loading to pit floor底坑地面冲击载荷impedance 阻抗imperfection不完整性,缺陷imperforate无孔洞的imperial system 英制impregnation 注入,饱和impulse generator 脉冲发生器impulse processing 脉冲处理in car inspection 轿内检修in service服务中,运行中in use在使用中inaccessible 准入内inadvertent operation 粗心大意操作incandescent lamp 白炽弧光灯incandescent tube 白炽灯管inch英寸inching 点数inching button 点动按钮inching feature 点动,微动inching switch 点动开关incident 事件inclination 倾斜度incline 斜面incline section 倾斜部分inclined elevator 倾斜式电梯inclined lift倾斜式电梯inclined wheel chair lift 倾斜式轮椅电梯incombustible非易燃的,不燃的ncoming panel 受电盘ncoming traffic进入交通,来到交通ncrease 增力口ncrement disk 增加盘ncrement pulse generator增量盘脉冲发生器ndependent operation 独立操作ndependent service 独立服务ndicatiing lamp 指示灯ndicating arrow 指示箭头ndicating circuit 指示电路ndicating electrical instrument 指示型电气仪表ndication contral 显示控制ndicator指示器ndicator device 指示装置ndicator face plate 指示器(灯)面板ndicator for stop 层站指示器ndicator lamp 指示灯ndicator machine 指示器(灯)机械ndirect间接的ndirect acting hyfraulic lift 间接式液压梯ndirect back plunger 柱塞后置式ndirect side plunger 柱塞侧置式ndirectly heated cathod 旁热式阴极ndirect-plunger hydraulic elevator 间接柱塞式液压梯nduced感应的nductance 电感nduction asynchtonous motor 感应异步电动机nduction furnace 感应电炉nduction motor感应电动机nductor 电感nductor plate感应器板nductor replay感应继电器ndustrial building 工业建筑物ndustrial plant 工业工厂ndustrial television 工业电视机ndustry 工业ner ledge内凹缘(壁架)nertia转动惯量nfermation 信息nformation apparatus信息器件,信息装置nformation transmitter 信息传送器nfra-red multi-beam screen detector 红外线光幕检查器,电眼nfrared ray 红外线n-ground掩埋式initial excitation timer 额外励磁时间initial failure 初期故障initial position 起始位置initial setting 初期设定initialization初始化(计算机)预置initialization travel 起始运行inlet入口,吸收inlet guard 入口护板inlet of handrail 扶手带入口inlet switch扶手带入口开关inner deck内侧盖板inoperative不运行,不工作inoperative position 不工作位置i叩ut输入input signal输入信号inrush current冲击电流,启动电流insert插件,井道预埋件insert nut嵌入螺母inserting mortar 添缝insopection traveling speed 检修运行速度inspection检查,检修inspection button 检修按钮inspection control 检修控制inspection control device 检修控制装置inspection device on top of the car 轿箱检修装置inspection door 检修门inspection operation 检修操作inspection speed 检修速度inspection switch 检修开关inspection trap检修用活板门inspection travel 检修运行inspector检测人员,验收机构inspector knife switch 检修闸刀开关installation 安装installation documents 安装文件installation drawing 安装图纸installation instructions 安装说明书installation manager 安装经理installation period 安装周期installation personnel 安装人员installation superintendent 安装总监installer安装工instantaneous瞬时的,瞬息的instantaneous safety 瞬时式安全钳instantaneous safety gear瞬时式安全钳装置instantaneously type safety gear 瞬时式安全钳institute building公共事业机构性建筑instructed person受过训练的人员instruction指示,指令instruction drawing 要领图instruction ROM指令寄存器instruction system 指令系统instruction user经训练的使用者instrument仪器,仪表insulating coupling 绝缘接头insulating material 绝缘材料insulating resistance 绝缘电阻insulating sleeve 绝缘套管insulating strength 绝缘强度insulating tape 绝缘带insulation 绝缘insulation class 绝缘等级insulation rubber防震橡胶,绝缘橡胶insulation test 绝缘试验insulator绝缘子,电瓷integrate积分,整化,结合integrated circuit 集成电路integrating electronic element 集成电子元件integrating error 累计误差intense traffic密集交通,繁重交通intense up peak 上行密集交通intensive duty traffic密集客流,繁重交通intensive traddic 稠密交通intercom device 对讲装置interconnect elevator 并联梯interface 接口,界面interference 干扰interference suppression 消除干扰interfloor balance traffic 楼层间平衡交通interfloor distance 层间距离interfloor flight time 层间运行时间interfloor height 层间高度interfloor jump time 层间跨越时间interfloor passenger arrival-rate 层间乘客至胜占率interfloor passenger traffic 层间客流交通interfloor traffic层间交通,中间楼层交通interfloor traffic mode中间楼层交通模式interim payment 分期付款nterior 内部nterior circuit 内绕圈nterior decoration 内部装潢nterior panel 内侧板nterior paneling护壁板,护栏板nterior profile 内侧盖板nterlock门联锁nterlock circuit 互锁电路nterlock switch 联锁开关nterlocking contact 联锁触点nterlocking device 联锁装置nterlocking element 联锁元件nterlocking motor 联锁电动机ntermediate floor 中间楼层ntermediate landing 中间层站ntermediate machine room 中间机房ntermediate speed 中间速度ntermediate stop中间停车,中间停站ntermediate support中心支撑,中间支撑,第三支撑ntermediate support beam 中间支撑架ntermediate tie-bracket 中间束架ntermittent间歇的,周期性的ntermittent problem间歇性的问题,时有时无的问题ntermittent service 间隙运行nternal fault内部故障nternal gear 内齿轮nternal resistance 内阻nternal soore apparaus 内部存储器nternal stress 内应力nternal traffic 内部交通nternational safety standard 国际安全标准nterphone对讲机nterpole中间极nterpole coil附加磁极线圈nterpole winding换向极绕组nterruption control 中断控制nterstice 间隙nterval 间隔ntroductory message 弓I导信息nventory 库存nventory verification 库存盘点nverse current 反向电流nverse proportion 成反比例nverse ratio 反比inverter逆变器,变频器inverter control逆变器控制inverter panel 逆变器盘investigation 调查研究invoice 发票invoicing 结账involuntary operation 偶然性操作involute tooth 渐开线齿iope slippage绳滑移,绳打滑IPM (incidental phase modulation)偶发的相位控制IPM (intelligent power module)智能化电力模块,智能功率元件iron ore 铁矿iron vronze 铁青铜irregular不规则的irregularity 不匀度irreversibility 不可逆性irreversible不可逆的I-section工字钢截面I-shape工字形ISO国际化标准组织isolate 分离isolation 隔离isolation pad 隔离垫isolation rubber 隔震橡胶item项目。
传感器——通信电子工程类中英文翻译、外文翻译

What is a smart sensorOne of the biggest advances in automation has been the development and spread of smart sensors. But what exactly is a "smart" sensor? Experts from six sensor manufacturers define this term.A good working "smart sensor" definition comes from Tom Griffiths, product manager, Honeywell Industrial Measurement and Control. Smart sensors, he says, are "sensors and instrument packages that are microprocessor driven and include features such as communication capability and on-board diagnostics that provide information to a monitoring system and/or operator to increase operational efficiency and reduce maintenance costs."No failure to communicate"The benefit of the smart sensor," says Bill Black, controllers product manager at GE Fanuc Automation, "is the wealth of information that can be gathered from the process to reduce downtime and improve quality." David Edeal, Temposonics product manager, MTS Sensors, expands on that: "The basic premise of distributed intelligence," he says, is that "complete knowledge of a system, subsystem, or component's state at the right place and time enables the ability to make 'optimal' process control decisions."Adds John Keating, product marketing manager for the Checker machine vision unit at Cognex, "For a (machine vision) sensor to really be 'smart,' it should not require the user to understand machine vision."A smart sensor must communicate. "At the most basic level, an 'intelligent' sensor has the ability to communicate information beyond the basic feedback signals that are derived from its application." saysEdeal. This can be a HART signal superimposed on a standard 4-20 mA process output, a bus system, or wireless arrangement. A growing factor in this area is IEEE 1451, a family of smart transducer interface standards intended to give plug-and-play functionality to sensors from different makers.Diagnose, programSmart sensors can self-monitor for any aspect of their operation, including "photo eye dirty, out of tolerance, or failed switch," says GE Fanuc's Black. Add to this, says Helge Hornis, intelligent systems manager, Pepperl+Fuchs, "coil monitoring functions, target out of range, or target too close." It may also compensate for changes in operating conditions. "A 'smart' sensor," says Dan Armentrout, strategic creative director, Omron Electronics LLC, "must monitor itself and its surroundings and then make a decision to compensate for the changes automatically or alert someone for needed attention."Many smart sensors can be re-ranged in the field, offering "settable parameters that allow users to substitute several 'standard' sensors," says Hornis. "For example, typically sensors are ordered to be normally open (NO) or normally closed (NC). An intelligent sensor can be configured to be either one of these kinds."Intelligent sensors have numerous advantages. As the cost of embedded computing power continues to decrease, "smart" devices will be used in more applications. Internal diagnostics alone can recover the investment quickly by helping avoid costly downtime.Sensors: Getting into PositionAs the saying goes, 'No matter where you go, there you are.' Still, most applications require a bit more precision and repeatability than that, so here's advice on how to select and locate position sensors.The article contains online extra material.What's the right position sensor for a particular application? It depends on required precision, repeatability, speed, budget, connectivity, conditions, and location, among other factors. You can bet that taking the right measurement is the first step to closing the loop on any successful application.Sensor technologies that can detect position are nearly as diverse as applications in providing feedback for machine control and other uses. Spatial possibilities are linear, area, rotational, andthree-dimensional. In some applications, they're used in combination. Sensing elements are equally diverse.Ken Brey, technical director, DMC Inc., a Chicago-based system integrator, outlined some the following position-sensing options.Think digitallyFor digital position feedback:∙Incremental encoders are supported by all motion controllers; come in rotary and linear varieties and in many resolutions; are simulated by many other devices; and require a homing process to reference the machine to a physical marker, and when power is turned off.∙Absolute encoders are natively supported by fewer motion controllers; can be used by all controllers that have sufficient available digital inputs; report a complete position within theirrange (typically one revolution); and do not require homing.∙Resolvers are more immune to high-level noise in welding applications; come standard on some larger motors; simulate incremental encoders when used with appropriate servo amps; and can simulate absolute encoders with some servo amps.∙Dual-encoder feedback, generally under-used, is natively supported by most motion controllers; uses one encoder attached to the motor and another attached directly to the load; and is beneficial when the mechanical connection between motor and load is flexible or can slip.∙Vision systems , used widely for inspection, can also be used for position feedback. Such systems locate objects in multiple dimensions, typically X, Y, and rotation; frequently find parts ona conveyor; and are increasing in speed and simplicity.A metal rolling, stamping, and cut-off application provides an example of dual-encoder feedback use, Brey says. 'It required rapid and accurate indexing of material through a roll mill for a stamping process. The roll mill creates an inconsistent amount of material stretch and roller slip,' Brey explains.'By using the encoder on the outgoing material as position feedback and the motor resolver as velocity feedback in a dual-loop configuration, the system was tuned stable and a single index move provided an accurate index length. It was much faster and more accurate than making a primary move, measuring the error, then having to make a second correction move,' he says.Creative, economicalSam Hammond, chief engineer, Innoventor, a St. Louis, MO-area system integrator, suggests that the application's purpose should guide selection of position sensors; measurements and feedback don't have to be complex. 'Creative implementations can provide simple, economical solutions,' he says. For instance, for sequencing, proximity sensors serve well in many instances.Recent sensor applications include the AGV mentioned in lead image and the following.∙In a machine to apply the top seals to tea containers, proximity and through-beam sensors locate incoming packages. National Instruments vision system images are processed to find location ofa bar code on a pre-applied label, and then give appropriate motorcommands to achieve the desired position (rotation) setting to apply one of 125 label types. Two types of position sensors were used. One was a simple inductive proximity sensor, used to monitor machine status to ensure various motion components were in the right position for motion to occur. The camera also served as a position sensor, chosen because of its multi purpose use, feature location, and ability to read bar codes.∙ A progressive-die stamping machine operates in closed loop. A linear output proximity sensor provides control feedback for optimizing die operation; a servo motor adjusts die position in the bend stage. A linear proximity sensor was selected to give a dimensional readout from the metal stamping operation; data are used in a closed-loop control system.∙Part inspection uses a laser distance measurement device to determine surface flatness. Sensor measures deviation in return beams, indicating different surface attributes to 10 microns insize. An encoder wouldn't have worked because distance was more thana meter. Laser measurement was the technology chosen because it hadvery high spatial resolution, did not require surface contact, and had a very high distance resolution.An automotive key and lock assembly system uses a proximity sensor for detecting a cap in the ready position. A laser profile sensor applied with a robot measures the key profile.What to use, where?Sensor manufacturers agree that matching advantages inherent to certain position sensing technologies can help various applications.David Edeal, product marketing manager, MTS Sensors Div., says, for harsh factory automation environments, 'the most significant factors even above speed and accuracy in customer's minds are product durability and reliability. Therefore, products with inherently non-contact sensing technologies (inductive, magnetostrictive, laser, etc.) have a significant advantage over those that rely on physical contact (resistive, cable extension, etc.)'Other important factors, Edeal says, are product range of use and application flexibility. 'In other words, technologies that can accommodate significant variations in stroke range, environmental conditions, and can provide a wide range of interface options are of great value to customers who would prefer to avoid sourcing a large variety of sensor types. All technologies are inherently limited with respect to these requirements, which is why there are so many options.'Edeal suggest that higher cost of fitting some technologies to a certain application creates a limitation, such as with linear variabledifferential transformers. 'For example, LVDTs with stroke lengths longer than 12 inches are rare because of the larger product envelope (about twice the stroke length) and higher material and manufacturing costs. On the other hand, magnetostrictive sensing technology has always required conditioning electronics. With the advent of microelectronics and the use of ASICs, we have progressed to a point where, today, a wide range of programmable output types (such as analog, encoder, and fieldbus) are available in the same compact package. Key for sensor manufacturers is to push the envelope to extend the range of use (advantages) while minimizing the limitations (disadvantages) of their technologies.'Listen to your appDifferent sensor types offer distinct advantages for various uses, agrees Tom Corbett, product manager, Pepperl+Fuchs. 'Sometimes the application itself is the deciding factor on which mode of sensing is required. For example, a machine surface or conveyor belt within the sensing area could mean the difference between using a standard diffused mode sensor, and using a diffused mode sensor with background suppression. While standard diffused mode models are not able to ignore such background objects, background suppression models evaluate light differently to differentiate between the target surface and background surfaces.'Similarly, Corbett continues, 'a shiny target in a retro-reflective application may require use of a polarized retro-reflective model sensor. Whereas a standard retro-reflective sensor could falsely trigger when presented with a shiny target, a polarized retro-reflective model uses a polarizing filter to distinguish the shiny target from the reflector.'MTS' Edeal says, 'Each technology has ideal applications, which tend to magnify its advantages and minimize its disadvantages. For example, inthe wood products industry, where high precision; varied stroke ranges; and immunity to high shock and vibration, electromagnetic interference, and temperature fluxuations are critical, magnetostrictive position sensors are the primary linear feedback option. Likewise, rotary optical encoders are an ideal fit for motor feedback because of their packaging, response speed, accuracy, durability, and noise immunity. When applied correctly, linear position sensors can help designers to ensure optimum machine productivity over the long haul.'Thinking broadly first, then more narrowly, is often the best way to design sensors into a system. Edeal says, 'Sensor specifications should be developed by starting from the machine/system-level requirements and working back toward the subsystem, and finally component level. This is typically done, but what often happens is that some system-level specifications are not properly or completely translated back to component requirements (not that this is a trivial undertaking). For example, how machine operation might create unique or additional environmental challenges (temperature, vibration, etc.) may not be clear without in-depth analysis or past experience. This can result in an under-specified sensor in the worst situation or alternatively an over-specified product where conservative estimates are applied.'Open or closedEarly in design, those involved need to decide if the architecture will be open-loop or closed-loop. Paul Ruland, product manager, AutomationDirect, says, 'Cost and performance are generally the two main criteria used to decide between open-loop or closed-loop control in electromechanical positioning systems. Open-loop controls, such as stepping systems, can often be extremely reliable and accurate when properly sized for the system. The burden of tuning a closed-loop systemprior to operation is not required here, which inherently makes it easy to apply. Both types can usually be controlled by the same motion controller. A NEMA 23 stepping motor with micro-stepping drive is now available for as little as $188, compared to an equivalent servo system at about $700.'Edeal suggests, 'Control systems are created to automate processes and there are many good examples of high-performance control systems that require little if any feedback. However, where structural system (plant) or input (demand or disturbance) changes occur, feedback is necessary to manage unanticipated changes. On the process side, accuracy—both static and dynamic—is important for end product quality, and system stability and repeatability (robustness) are important for machine productivity.'For example,' Edeal says, 'in a machining or injection molding application, the tool, mold or ram position feedback is critical to the final dimension of the fabricated part. With rare exceptions, dimensional accuracy of the part will never surpass that of the position sensor. Similarly, bandwidth (response speed) of the sensor may, along with response limitations of the actuators, limit production rates.'Finally, a sensor that is only accurate over a narrow range of operating conditions will not be sufficient in these types of environments where high shock and vibration and dramatic temperature variations are common.'The latestWhat are the latest position sensing technologies to apply to manufacturing and machining processes and why?Ruland says, 'Some of the latest developments in positioning technologies for manufacturing applications can be found in even the simplest ofdevices, such as new lower-cost proximity switches. Many of these prox devices are now available for as little as $20 and in much smaller form factors, down to 3 mm diameter. Some specialty models are also available with increased response frequencies up to 20 kHz. Where mounting difficulties and cost of an encoder are sometimes impractical, proximity switches provide an attractive alternative; many position control applications can benefit from increased performance, smaller package size, and lower purchase price and installation cost.'Corbett concurs. 'Photoelectric sensors are getting smaller, more durable, and flexible, and are packed with more standard features than ever before. Some new photoelectrics are about half the size of conventional cylindrical housings and feature welded housings compared with standard glued housings. Such features are very desirable in manufacturing and machining applications where space is critical and durability is a must. And more flexible connectivity and mounting options—side mount or snout mount are available from the same product—allow users to adapt a standard sensor to their machine, rather than vice versa.'Another simple innovation, Corbett says, is use of highly visible,360-degree LED that clearly display status information from any point of view. 'Such enhanced LED indicates overload and marginal excess gain, in addition to power and output. Such sensors offer adjustable sensitivity as standard, but are available with optional tamperproof housings to prevent unauthorized adjustments.'Photoelectric SensorsPhotoelectric sensors are typically available in at least nine or more sensing modes, use two light sources, are encapsulated in three categories of package sizes, offer five or more sensing ranges, and can be purchasedin various combinations of mounting styles, outputs, and operating voltages. It creates a bewildering array of sensor possibilities and a catalog full of options.This plethora of choices can be narrowed in two ways: The first has to do with the object being sensed. Second involves the sensor's environment.Boxed inThe first question to ask is: What is the sensor supposed to detect? "Are we doing bottles? Or are we detecting cardboard boxes?" says Greg Knutson, a senior applications engineer with sensor manufacturer Banner Engineering.Optical properties and physical distances will determine which sensing mode and what light source work best. In the case of uniformly colored boxes, for example, it might be possible to use an inexpensive diffuse sensor, which reflects light from the box.The same solution, however, can't be used when the boxes are multicolored and thus differ in reflectivity. In that case, the best solution might be an opposed or retroreflective mode sensor. Here, the system works by blocking a beam. When a box is in position, the beam is interrupted and the box detected. Without transparent boxes, the technique should yield reliable results. Several sensors could gauge boxes of different heights.Distance plays a role in selecting the light source, which can either be an LED or a laser. LED is less expensive. However, because LED are a more diffuse light source, they are better suited for shorter distances. A laser can be focused on a spot, yielding a beam that can reach long distances. Tight focus can also be important when small features have tobe sensed. If a small feature has to be spotted from several feet, it may be necessary to use a laser.Laser sensors used to cost many times more than LED. That differential has dropped with the plummeting price of laser diodes. There's still a premium for using a laser, but it's not as large as in the past.Environmental challengesOperating environment is the other primary determining factor in choosing a sensor. Some industries, such food and automotive, tend to be messy, dangerous, or both. In the case of food processing, humidity can be high and a lot of fluids can be present. Automotive manufacturing sites that process engines and other components may include grit, lubricants, and coolants. In such situations, the sensor's environmental rating is of concern. If the sensor can't handle dirt, then it can't be used. Such considerations also impact the sensing range needed because it may be necessary to station the sensor out of harm's way and at a greater distance than would otherwise be desirable. Active alarming and notification may be useful if lens gets dirty and signal degrades.Similar environmental issues apply to the sensor's size, which can range from smaller than a finger to something larger than an open hand. A smaller sensor can be more expensive than a larger one because it costs more to pack everything into a small space. Smaller sensors also have a smaller area to collect light and therefore tend to have less range and reduced optical performance. Those drawbacks have to be balanced against a smaller size being a better fit for the amount of physical space available.Sensors used in semiconductor clean room equipment, for example, don't face harsh environmental conditions, but do have to operate in tight spaces. Sensing distances typically run a few inches, thus the sensorstend to be small. They also often make use of fiber optics to bring light into and out of the area where changes are being detected.Mounting, pricingAnother factor to consider is the mounting system. Frequently, sensors must be mechanically protected with shrouds and other means. Such mechanical and optical protection can cost more than the sensor itself—a consideration for the buying process. If vendors have flexible mounting systems and a protective mounting arrangement for sensors, the products could be easier to implement and last longer.List prices for standard photoelectric sensors range from $50 or so to about $100.Laser and specialty photoelectric sensors cost between $150 and $500. Features such as a low-grade housing, standard optical performance, and limited or no external adjustments characterize the lower ends of each category. The higher end will have a high-grade housing, such as stainless steel or aluminum, high optical performance, and be adjustable in terms of gain or allow timing and other options. Low-end products are suitable for general applications, while those at the higher end may offer application-specific operation at high speed, high temperature, or in explosive environments.Finally, keep in mind that one sensing technology may not meet all of the needs of an application. And if needs change, a completely different sensor technology may be required. Having to switch to a new approach can be made simpler if a vendor offers multiple technologies in the same housing and mounting footprint, notes Ed Myers, product manager at sensor manufacturer Pepperl+Fuchs. If that's the case, then one technology can be more easily swapped out for another as needs change.译文什么是智能传感器自动化领域所取得的一项最大进展就是智能传感器的发展与广泛使用。
实验室专业术语中英文翻译对照

实验室专业术语中英文翻译对照自动化实验室Automation Lab语言实验室Language Lab现代产品设计与制造技术实验室Modern Product Design & Manufacturing Tec hnology Lab计算机集成制造实验室Computer Integrated Manufac turing Sy stem Lab先进设计技术实验室Adv anced Design Tec hnology Lab机械设计基础实验室Machine Design Lab包装工程实验室Pac k ing Engineering Lab机械制造技术实验室Machine Manufacturing Lab精密机械测量技术实验室Precise Mac hine M easuring Tec hnology Lab数控技术与传动控制实验室NC Technol ogy & Trans mission C ontrol Lab设计创新实验室Innov ati on & Practic e Lab机械CAD中心Mechanic al CAD Center工作设计与时间研究实验室Job Design & Time Study Lab企业资源规划实验室Enterprise Resource Planning Lab系统仿真与设施规划实验室Sy s tem Si mulation & Facility Layout Lab人因工程实验室Human Fac tors & Ergonomics Lab液压与气动实验室Hy draulic & Pneumatic Lab汽车性能和结构实验室Auto Performanc e & C onstruc tion Lab发动机性能实验室Engine Perfor mance Lab汽车电子电气实验室Auto Elec tronic & Electric Lab数字媒体技术实验室Digital Media Technolog y Lab数字媒体技术基础实验分室Digital Media Technolog y Foundati on Lab数字影视实验分室Digital TV & Film Lab计算机动画与虚拟现实实验室Computer Animation & Virtual Reality Lab先进控制技术实验室Adv anced Control Tec hnology Lab楼宇智能化实验分室Intelligent Buildi ng Lab智能测控实验分室Intelligent Meas urement & Control Technolog y Lab运动控制与图象识别系统实验分室Motion C ontrol & Image R ecognition Sy stem Lab控制网络实验分室Control Network Lab自动控制系统实验分室Automatic Control System Lab自动控制原理实验分室Automatic Control Principl e Lab自动化学科创新实验室Automation Subject Innovation Lab电力电子技术分室Power El ectronics Technolog y Lab计算机控制技术实验分室Computer Control Technolog y Lab高压实验室High Voltage Technolog y Lab电机与控制实验室Electrical Machi ner y & C ontrol Lab电路与系统实验室Circuitry & Sy stem LabIC设计实验室IC Design LabESDA 与嵌入式技术实验室ESDA & Embedded Technolog y Lab微机原理实验室Microcomputer Principle Lab电力系统继电保护实验室Power Sy s tem Relay Protection Lab供配电技术实验室Power Supply Lab电力系统仿真实验室Power Sy s tem Emul ation Lab基础化学实验室Basic Chemistr y Lab无机化学分室Inorganic Chemistry Lab有机化学分室Organic Chemistry Lab基础分析化学分室Basic Analytical Chemistr y Lab物理化学分室Phy sical Chemistr y Lab综合仪器实验室Instrumental Lab化工原理实验室Chemic al Engineering Principle Lab化学工程与工艺实验室Chemic al Engineering & Tec hnology Lab食品科学与工程实验室Food Science & Engineering Lab生物工程实验室Biological Engineering Lab应用化学实验室Applied Chemistr y Lab制药工程实验室Phar mac y Engineering Lab清洁化学技术实验室Clean Chemical Tec hnol ogy Lab电动汽车研究实验室Electro-Motion Auto Res earch Lab电动汽车驱动性能检测分室Electro-Motion Auto Perfor manc e Tes t Lab现代信息技术实验室Modern Information Technol ogy Lab宽带及视频通信分室ADSL & Video Communic ation LabSDH技术分室SDH Technology Lab虚拟测试技术分室Virtual Test Technolog y Lab网络测控与光机电一体化分室Network Control & Electromec hanical Lab光电信息分室Photo-Electricity Infor mati on Technolog y Lab网络多媒体技术分室Network Multimedia Technolog y Lab生物特征图像识别技术分室Bio- Charac ter Image R ecognition Tec hnol ogy Lab EDA与DSP技术分室EDA & DSP Technolog y Lab现代通信技术实验室Modern C ommunicati on Technolog y Lab通信原理分室Communic ation Principl e Lab现代交换技术分室Modern Switch Tec hnolog y Lab无线通信分室Wireless Communic ation Tec hnol ogy Lab光纤通信分室Optic-Fiber Communic ation Lab移动通信分室Mobile Communic ation Lab网络通信与软件分室Network & Software Lab应用电子技术实验室Applied El ectronic Technolog y Lab信号与系统实验室Signal & Sy s tem Lab数字电视实验室Digital TV Lab微机测控技术实验室Microcomputer Measurement & Control Tec hnology Lab单片微机与嵌入式系统实验室Single Chip-Microcomputer & Embedded Sy stem Lab 动态测试与控制实验室Dy namic Test & Control Lab传感器与检测技术实验室Sens or & Measurement Technolog y Lab精密仪器与光电工程实验室Precise Instrument & Optoel ectronic Engineering Lab信息技术基础实验室IT Foundation Lab高频技术实验室High Frequenc y Tec hnol ogy Lab道路与桥梁工程实验室Highway & Bridge Engineering Lab给水排水工程实验室Water Suppl y & Was te Water Lab土木工程材料实验室Civ il Engineering Materials Lab唯雅诺自动化网建筑设备工程实验室Building Equipment Lab建筑学实验室Architectural Lab交通运输工程实验室Communic ation & Trans portation Lab结构工程实验室Structural Engineering Lab控制测量实验室Control Sur v ey Lab力学实验室Mechanics Lab流体力学实验室Hy drody namics Lab"S"技术实验室S Technolog y Lab岩土工程实验室Geotechnical Engineering Lab城市规划实验室Urban Pl anning Lab工程管理模拟实验室Engineering Management Si mulating Lab电子商务专业实验室Electronic C ommerc e Lab企业管理实验室Enter prise Management Lab地理信息系统实验室Geographic Information Sy stem Lab信息系统基础实验室Infor mati on Sy stems Lab会计手工模拟实验室Hand Acc ounting Imitati v e Lab计算机体系结构实验室Computer Architectures & Organization Lab计算机组成原理分室Computer Organization Lab接口与通讯分室Interface & Communic ation Lab智能工程分室Intelligent Engineering Lab微处理器设计分室Microprocessor Design Lab计算机软件工程实验室Computer Software Engineering Lab软件分室Computer Software Lab.图象处理和图形学分室Image Processi ng & Computer Gr aphics Lab网络安全分室Network Sec urity Lab软件项目管理分室Softwar e Projec t Management Lab现代计算机技术实验室Modern C omputer Tec hnol ogy LabSUN工作站分室SUN Wor k Station Lab计算机网络工程分室Computer Networ k Engineering Lab材料与能源学院热处理实验室Heat Treatment Lab金属腐蚀与防护实验室Metal Corrosion & Protec tion Lab金相显微镜实验室Metallographical Microscope Lab物理性能实验室Phy sical Pr operty Lab高分子材料制备实验室Pol y mer Materials Preparation Lab高分子材料结构与性能实验室Pol y mer Materials Str ucture & Properties Lab 高分子材料成型实验室Pol y mer Materials Processing Lab热工基础实验室Basic Ther mal Engineering Lab制冷与空调实验室Air Conditioning & R efrigeration Lab集成电路工艺实验室IC Process Lab电子元器件测试实验室Electronic D ev ice Measurement Lab电子薄膜材料实验室Electronic Fil m Materials Lab材料成型及控制实验室Material Proc essing & Control Lab模具技术实验室Die & Moul d Tec hnology Lab功能材料的制备与应用技术实验室非晶态材料分室Amor phous Materials Lab表面工程分室Surfac e Engineering Lab热型连铸分室Heated Mold Continuous C asting Lab储能材料分室Energy Storage M aterials Lab先进材料结构与性能分室Adv anced Materials Structure & Properties Lab 环境工程实验室Env ironmental Engineering Lab水污染控制工程分室Water Polluti on Control Lab大气污染控制工程分室Air Pollution Control Lab固体废物处理工程分室Solid Waste Treatment Lab噪声污染控制工程分室Noise Pollution Control Lab环境监测分室Env ironment Monitoring Lab环境科学实验室Env ironmental Scienc e Lab环境信息分室Env ironmental Information Sy stem Lab环境化学分室Env ironmental C hemistry Lab环境生物实验室Env ironmental Biolog y Lab大型精密仪器室Exactitude Apparatuses Room信息与计算科学实验室Infor mati on & Computati on Scienc e Lab光电技术实验室Optoelectronic Tec hnology Lab光信息技术实验室Technolog y of Optical Information Lab微电子技术实验室Microelectronic Tec hnology Lab电子技术综合实验室Electronic Technolog y Lab工业设计实验室Industrial Design Lab服装设计与工程实验室Apparel Design Lab基础造型实验室Fundamental Design Lab摄影分室Photography Lab陶艺设计与制作分室Pottery Design & F acture Lab环境艺术设计实验室Env ironment Design Lab视觉传达设计实验室Visual Communic ation Design Lab家具设计实验室Furniture D ecorati on Lab模拟法庭Mock Trial Room数码钢琴室Digital Piano Room社会工作实验室Social Wor k Lab工程训练实验教学示范中心Engineering Training Demons tration Center 铸造实习室Casting铣刨磨实习室Milling/ Planer/Grinder数控加工实习室CNC Machining数控编程实习室Programmi ng普通车床实习室Turning Lathe焊接实习室Welding钳工实习室Benc h Work热处理/金相分析实习室Heat Treatment & Microstructure压力加工实习室Forging测量实习室Measurement唯雅诺自动化网大学物理基础实验室College Phy sics F oundation Lab大学物理综合实验室College Phy sics Sy nthesized Lab电工电子实验中心Electrical & Electronic Ex perimental C enter电工基础实验室Electronic F oundation Lab电子技术实验室Electrical Technol ogy Lab电工与电子技术实训室Electrical & Electronic Training计算机基础实验中心Computer Ex perimental Center计算机基础实验室Computer Foundation Lab计算机组装实验室Computer Assembling Lab计算机组网实验室Computer Networ k Lab实验仪器名称中英文对照表仪器中文名称仪器英文名称英文缩写原子发射光谱仪Atomic Emission Spectrometer AES电感偶合等离子体发射光谱仪Inducti v e C oupl ed Plas ma Emission Spectrometer ICP直流等离子体发射光谱仪 Direct Current Pl asma Emission Spec trometer DCP紫外-可见光分光光度计 UV-Visible Spec trophotometer UV-Vis微波等离子体光谱仪 Microwave Induc tive Pl asma Emission Spectrometer MIP原子吸收光谱仪Atomic Absorption Spec troscopy AAS原子荧光光谱仪Atomic Fluoresc enc e Spectroscopy AF S傅里叶变换红外光谱仪FT-IR Spectrometer FTIR傅里叶变换拉曼光谱仪FT-Raman Spectrometer FTIR-Raman气相色谱仪 Gas Chromatograph GC高压/效液相色谱仪High Pressure/Performance Liquid Chr omatography HPLC离子色谱仪 Ion Chromatograph凝胶渗透色谱仪Gel Per meation Chromatograph GPC体积排阻色谱 Size Ex cl usion Chromatograph SECX射线荧光光谱仪 X-Ray Fluoresc enc e Spectrometer XRFX射线衍射仪X-Ray Diffractomer XRD同位素X荧光光谱仪Isotope X-Ray Fluoresc enc e Spectrometer电子能谱仪 Elec tron Energy Disperse Spectroscopy能谱仪 Energ y Disperse Spec troscopy ED S质谱仪 Mass Spec trometer MSICP-质谱联用仪ICP-MS IC P-MS 气相色谱-质谱联用仪 GC-MS GC-MS 液相色谱-质谱联用仪 LC-MS LC-MS 核磁共振波谱仪Nuclear Magnetic R esonanc e Spectrometer NMR电子顺磁共振波谱仪 Electron Paramagnetic Resonance Spectrometer ESR极谱仪 Polarograph伏安仪 Voltammerter自动滴定仪 Automatic Titrator电导仪 Conducti v ity MeterpH计 pH Meter水质分析仪 Water Tes t Kits电子显微镜 Elec tro Microscopy光学显微镜 Optical Microscopy金相显微镜 Metallurgical Microscopy扫描探针显微镜Sc anning Probe Microscopy表面分析仪 Surface Anal y z er无损检测仪 Ins trument for N ondestructi ve Testi ng物性分析Phy sical Property Anal y sis热分析仪Thermal Anal y zer粘度计 Visc ometer流变仪 Rheometer粒度分析仪 Particle Size Anal y zer热物理性能测定仪 Ther mal Phy sical Property Tester电性能测定仪 Electrical Property Tester光学性能测定仪Optical Property Tester机械性能测定仪Mechanic al Property Tes ter燃烧性能测定仪Combustion Property Tester老化性能测定仪Aging Property Tes ter生物技术分析 Biochemic al anal y sisPCR仪Instrument for Pol ymeras e Chain R eaction PCR DNA及蛋白质的测序和合成仪 Sequencers and Synthesizers for DNA and Protein传感器 Sens ors其他 Other/Miscellaneous流动分析与过程分析 Fl ow Anal y tic al and Pr ocess Anal y tical C hemistry气体分析Gas Anal y sis基本物理量测定Basic Phy sics样品处理Sample Handling金属/材料元素分析仪 Metal/material el emental anal y sis环境成分分析仪CHN Anal y sis发酵罐 F ermenter生物反应器 Bio-reactor摇床 Shak er离心机 Centrifuge超声破碎仪 Ultrasonic Cell Disruptor超低温冰箱 Ultra-low Temper ature Freezer恒温循环泵 Cons tant Temperature Circulator超滤器 Ultrahigh Purity Filter冻干机 Freeze Dr y ing Equipment部分收集器 Fraction Collector氨基酸测序仪 Protei n Sequenc er氨基酸组成分析仪 Ami no Acid Anal y z er多肽合成仪 Peptide s ynthesizerDNA测序仪 DNA SequencersDNA合成仪 DNA synthesizer紫外观察灯 Ultrav iolet Lamp唯雅诺自动化网化学发光仪 Chemiluminesc enc e Apparatus紫外检测仪 Ultrav iolet Detec tor电泳 Electr ophoresis酶标仪 ELIASACO2培养箱 CO2 Incubators倒置显微镜 Inverted Microscope超净工作台 Bechtop流式细胞仪 Flow C y tometer微生物自动分析系统 Automatic Analy z er for Microbes生化分析仪 Bioc hemical Anal y zer血气分析仪 Blood-gas Anal y zer电解质分析仪 Electrol y tic Anal y zer尿液分析仪 Urine Anal y zer临床药物浓度仪Anal y zer for Clinic Medicine Conc entration 血球计数器 Hematoc y te Counter实验室家具laborator y/lab fur niture威盛亚wilsonart台面countertop/wor k top实验台laborator y cas ewor k/cabinet中央台island bench边台wall benc h试剂架reagent s helf/rac k天平台balance tabl e仪器台instrument table通风系统v entilati on s y s tem通风柜/橱fume hood/c upboard药品柜medical (storage) c abinet/c upboard器皿柜v ess el cabinet气瓶柜gas cy linder (storage) c abinet实验凳laborator y/lab stool实验椅lab chair配件accessories。
实验室专业术语中英文翻译对照

实验室专业术语中英文翻译对照实验室是科学研究和实践的重要场所。
在实验室中,专业术语的准确理解和正确翻译对于顺利进行实验工作至关重要。
本文将为大家介绍一些实验室中常见的专业术语及其中英文翻译对照。
1. 试剂 (Reagent)试剂是实验室中常用的化学物质,用于进行实验操作和测试。
常见的试剂有溶液、固体试剂、气体试剂等。
2. 试管 (Test tube)试管是实验室中常见的小型圆柱形容器,通常用玻璃制成,用于容纳和混合试剂进行反应或者进行小规模试验。
3. 显微镜 (Microscope)显微镜是实验室中用于放大显微观察样本的设备。
它能够放大细胞、细菌等微小物质,帮助科学家进行研究和观察。
4. 数据 (Data)数据是实验中所获得的信息和观测结果。
实验数据通常使用数字或图表的形式记录下来,用于后续的分析和解释。
5. 实验步骤 (Experimental procedure)实验步骤是进行实验时所执行的一系列操作和程序。
它包括实验前的准备、实验中的步骤和实验后的处理等。
6. 样品 (Sample)样品是实验中所使用的具有代表性的物质,用于测试、观察或者分析。
样品可以是固体、液体或者气体。
7. 浓度 (Concentration)浓度指的是一个溶液中溶质的含量。
常见的浓度单位有摩尔/升、毫摩尔/升等。
8. 平台 (Platform)平台是实验室仪器设备的工作表面,用于放置实验材料、试剂和仪器。
9. 温度 (Temperature)温度是一个物体分子热运动程度的量度。
在实验室中,温度的控制对于保证实验的精确性和可重复性非常重要。
10. 反应器 (Reactor)反应器是用于进行化学反应的装置。
它通常由玻璃或者金属制成,具有耐腐蚀和耐高温的性能。
11. 计时器 (Timer)计时器是用于测量时间的设备,用于监控实验的反应时间和持续时间。
12. 加热器 (Heater)加热器是实验室中常见的设备,用于提供热源,加热溶液或样品,促进化学反应的进行。
传感器外文翻译---传感器的基础知识

Basic knowledge of transducersA transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction.Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on.1、Transducer ElementsAlthough there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively.2、Transducer SensitivityThe relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1.3、Characteristics of an Ideal TransducerThe high transducer should exhibit the following characteristicsa) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion.b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way.c) Size. The transducer must be capable of being placed exactly where it is needed.d) There should be a linear relationship between the measured and the transducer signal.e) The transducer should have minimum sensitivity to external effects, pressure transducers,for example,are often subjected to external effects such vibration and temperature.f) The natural frequency of the transducer should be well separated from the frequency and harmonics of the measurand.4、Electrical TransducersElectrical transducers exhibit many of the ideal characteristics. In addition they offer high sensitivity as well as promoting the possible of remote indication or mesdurement. Electrical transducers can be divided into two distinct groups:a) variable-control-parameter types,which include:i)resistanceii) capacitanceiii) inductanceiv) mutual-inductance typesThese transducers all rely on external excitation voltage for their operation.b) self-generating types,which includei) electromagneticii)thermoelectriciii)photoemissiveiv)piezo-electric typesThese all themselves produce an output voltage in response to the measurand input and their effects are reversible. For example, a piezo-electric transducer normally produces an output voltage in response to the deformation of a crystalline material; however, if an alternating voltage is applied across the material, the transducer exhibits the reversible effect by deforming or vibrating at the frequency of the alternating voltage.5、Resistance TransducersResistance transducers may be divided into two groups, as follows:i) Those which experience a large resistance change, measured by using potential-divider methods. Potentiometers are in this group.ii)Those which experience a small resistance change, measured by bridge-circuit methods. Examples of this group include strain gauges and resistance thermometers.5.1 PotentiometersA linear wire-wound potentiometer consists of a number of turns resistance wire wound around a non-conducting former, together with a wiping contact which travels over the barwires. The construction principles are shown in figure which indicate that the wiperdisplacement can be rotary, translational, or a combination of both to give a helical-type motion. The excitation voltage may be either a.c. or d.c. and the output voltage is proportional to the input motion, provided the measuring device has a resistance which is much greater than the potentiometer resistance.Such potentiometers suffer from the linked problem of resolution and electrical noise. Resolution is defined as the smallest detectable change in input and is dependent on thecross-sectional area of the windings and the area of the sliding contact. The output voltage is thus a serials of steps as the contact moves from one wire to next.Electrical noise may be generated by variation in contact resistance, by mechanical wear due to contact friction, and by contact vibration transmitted from the sensing element. In addition, the motion being measured may experience significant mechanical loading by the inertia and friction of the moving parts of the potentiometer. The wear on the contacting surface limits the life of a potentiometer to a finite number of full strokes or rotations usually referred to in the manufacture’s specification as the ‘number of cycles of life expectancy’, a typical value being 20*1000000 cycles.The output voltage V0 of the unload potentiometer circuit is determined as follows. Let resistance R1= xi/xt *Rt where xi = input displacement, xt= maximum possible displacement, Rt total resistance of the potentiometer. Then output voltage V0= V*R1/(R1+( Rt-R1))=V*R1/Rt=V*xi/xt*Rt/Rt=V*xi/xt. This shows that there is a straight-line relationship between output voltage and input displacement for the unloaded potentiometer.It would seen that high sensitivity could be achieved simply by increasing the excitation voltage V. however, the maximum value of V is determined by the maximum power dissipation P of the fine wires of the potentiometer winding and is given by V=(PRt)1/2 .5.2 Resistance Strain GaugesResistance strain gauges are transducers which exhibit a change in electrical resistance in response to mechanical strain. They may be of the bonded or unbonded variety .a) bonded strain gaugesUsing an adhesive, these gauges are bonded, or cemented, directly on to the surface of the body or structure which is being examined.Examples of bonded gauges arei) fine wire gauges cemented to paper backingii) photo-etched grids of conducting foil on an epoxy-resin backingiii)a single semiconductor filament mounted on an epoxy-resin backing with copper or nickel leads.Resistance gauges can be made up as single elements to measuring strain in one direction only,or a combination of elements such as rosettes will permit simultaneous measurements in more than one direction.b) unbonded strain gaugesA typical unbonded-strain-gauge arrangement shows fine resistance wires stretched around supports in such a way that the deflection of the cantilever spring system changes the tension in the wires and thus alters the resistance of wire. Such an arrangement may be found in commercially available force, load, or pressure transducers.5.3 Resistance Temperature TransducersThe materials for these can be divided into two main groups:a) metals such as platinum, copper, tungsten, and nickel which exhibit and increase in resistance as the temperature rises; they have a positive temperature coefficient of resistance.b) semiconductors, such as thermistors which use oxides of manganese, cobalt, chromium, or nickel. These exhibit large non-linear resistance changes with temperature variation and normally have a negative temperature coefficient of resistance.a) metal resistance temperature transducersThese depend, for many practical purpose and within a narrow temperature range, upon the relationship R1=R0*[1+a*(b1-b2)] where a coefficient of resistance in ℃-1,and R0 resistance in ohms at the reference temperature b0=0℃ at the reference temperature range ℃.The international practical temperature scale is based on the platinum resistance thermometer, which covers the temperature range -259.35℃ to 630.5℃.b) thermistor resistance temperature transducersThermistors are temperature-sensitive resistors which exhibit large non-liner resistance changes with temperature variation. In general, they have a negative temperature coefficient. For small temperature increments the variation in resistance is reasonably linear; but, if large temperature changes are experienced, special linearizing techniques are used in the measuring circuits to produce a linear relationship of resistance against temperature.Thermistors are normally made in the form of semiconductor discs enclosed in glass vitreous enamel. Since they can be made as small as 1mm,quite rapid response times are possible.5.4 Photoconductive CellsThe photoconductive cell , uses a light-sensitive semiconductor material. The resistance between the metal electrodes decrease as the intensity of the light striking the semiconductor increases. Common semiconductor materials used for photo-conductive cells are cadmium sulphide, lead sulphide, and copper-doped germanium.The useful range of frequencies is determined by material used. Cadmium sulphide is mainly suitable for visible light, whereas lead sulphide has its peak response in the infra-red regionand is, therefore , most suitable for flame-failure detection and temperature measurement. 5.5 Photoemissive CellsWhen light strikes the cathode of the photoemissive cell are given sufficient energy to arrive the cathode. The positive anode attracts these electrons, producing a current which flows through resistor R and resulting in an output voltage V.Photoelectrically generated voltage V=Ip.RlWhere Ip=photoelectric current(A),and photoelectric current Ip=Kt.BWhere Kt=sensitivity (A/im),and B=illumination input (lumen)Although the output voltage does give a good indication of the magnitude of illumination, the cells are more often used for counting or control purpose, where the light striking the cathode can be interrupted.6、Capacitive TransducersThe capacitance can thus made to vary by changing either the relative permittivity, the effective area, or the distance separating the plates. The characteristic curves indicate that variations of area and relative permittivity give a linear relationship only over a small range of spacings. Thus the sensitivity is high for small values of d. Unlike the potentionmeter, the variable-distance capacitive transducer has an infinite resolution making it most suitable for measuring small increments of displacement or quantities which may be changed to produce a displacement.7、Inductive TransducersThe inductance can thus be made to vary by changing the reluctance of the inductive circuit. Measuring techniques used with capacitive and inductive transducers:a)A.C. excited bridges using differential capacitors inductors.b)A.C. potentiometer circuits for dynamic measurements.c) D.C. circuits to give a voltage proportional to velocity for a capacitor.d) Frequency-modulation methods, where the change of C or L varies the frequency of an oscillation circuit.Important features of capacitive and inductive transducers are as follows:i)resolution infiniteii) accuracy+- 0.1% of full scale is quotediii)displacement ranges 25*10-6 m to 10-3miv) rise time less than 50us possibleTypical measurands are displacement, pressure, vibration, sound, and liquid level.8、Linear Variable-differential Ttransformer9、Piezo-electric Transducers10、Electromagnetic Transducers11、Thermoelectric Transducers12、Photoelectric Cells13、Mechanical Transducers and Sensing Elements传感器的基础知识传感器是一种把被测量转换为光的、机械的或者更平常的电信号的装置。
电子行业电子英文翻译

电子行业电子英文翻译介绍随着国际间贸易的不断发展和深入,电子行业也变得越来越国际化。
在与国外公司合作或进行技术交流时,电子行业常常需要进行电子英文翻译,以便更好地沟通交流。
本文将介绍电子行业中常见的英文术语,以及如何进行准确和专业的电子英文翻译。
电子行业常用英文术语在进行电子英文翻译时,了解电子行业常用的英文术语是非常重要的。
以下是一些常见的电子行业英文术语:1.Integrated Circuit (IC):集成电路2.Printed Circuit Board (PCB):印刷电路板3.Resistor:电阻器4.Capacitor:电容器5.Transistor:晶体管6.Diode:二极管7.Microcontroller:微控制器8.Oscillator:振荡器9.Connector:连接器10.S witch:开关11.P ower Supply:电源12.A mplifier:放大器13.S ensor:传感器14.L ED (Light Emitting Diode):发光二极管15.L CD (Liquid Crystal Display):液晶显示屏以上仅是一些常见的电子行业英文术语,电子行业还有许多其他专业术语,根据需要进行适当的补充。
电子英文翻译的技巧在进行电子英文翻译时,以下是一些技巧和建议,以保证翻译的准确性和专业性:1. 理解上下文在进行电子英文翻译时,首先要理解原文所处的上下文。
根据上下文的不同,同一个术语可能有不同的翻译,因此需要根据具体情况进行判断和选择。
2. 使用专业术语电子行业有许多专业术语,尽可能使用原汁原味的英文术语,以保持翻译的专业性。
如果有必要,可以附上相应的中文解释,以便读者更好地理解。
3. 确保准确性电子行业术语的翻译必须保证准确无误。
在进行翻译时,可以参考相关的标准和行业规范,确保翻译的准确性。
4. 使用在线资源在进行电子英文翻译时,可以借助各种在线资源,如术语在线词典、行业技术论坛等。
sensor 翻译

sensor 翻译sensor 翻译为传感器,是一种能够感知和测量环境中各种物理量和信号的装置或设备。
传感器通常用于将物理量转换为电信号,然后通过电子电路进行处理和分析。
它广泛应用于各个领域,包括工业自动化、医疗、交通、农业等。
以下是一些常见的传感器及其用法和中英文对照例句:1. 温度传感器 (Temperature Sensor):用于测量环境或物体的温度。
- The temperature sensor accurately measures the room temperature. (温度传感器准确地测量室温。
)- The car's engine temperature sensor alerted the driver of overheating. (汽车引擎温度传感器提醒驾驶员发生过热。
)2. 光传感器(Light Sensor):用于检测光照强度或光线的存在与否。
- The light sensor automatically adjusts the screen brightness based on ambient light. (光传感器根据环境光自动调节屏幕亮度。
)- The security system's light sensor triggered the outdoor lights when it detected movement. (安全系统的光传感器在检测到运动时触发室外灯光。
)3. 压力传感器 (Pressure Sensor):用于测量物体或环境的压力。
- The pressure sensor in the car's tire warns the driver whenthe tire pressure is low. (汽车轮胎的压力传感器在轮胎压力过低时警告驾驶员。
)- The pressure sensor accurately measures the fluid pressure in the pipeline. (压力传感器准确测量管道中的流体压力。
传感器的基础知识中英文对照外文翻译文献

中英文对照外翻译Basic knowledge of transducersA transducer is a device which converts the quantity being measured into an optical, mechanical, or-more commonly-electrical signal. The energy-conversion process that takes place is referred to as transduction.Transducers are classified according to the transduction principle involved and the form of the measured. Thus a resistance transducer for measuring displacement is classified as a resistance displacement transducer. Other classification examples are pressure bellows, force diaphragm, pressure flapper-nozzle, and so on.1、Transducer ElementsAlthough there are exception ,most transducers consist of a sensing element and a conversion or control element. For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement. This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance. Such combination of mechanical and electrical elements form electromechanical transducing devices or transducers. Similar combination can be made for other energy input such as thermal. Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical transducers respectively.2、Transducer SensitivityThe relationship between the measured and the transducer output signal is usually obtained by calibration tests and is referred to as the transducer sensitivity K1= output-signal increment / measured increment . In practice, the transducer sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1.3、Characteristics of an Ideal TransducerThe high transducer should exhibit the following characteristicsa) high fidelity-the transducer output waveform shape be a faithful reproduction of the measured; there should be minimum distortion.b) There should be minimum interference with the quantity being measured; the presence of the transducer should not alter the measured in any way.c) Size. The transducer must be capable of being placed exactly where it is needed.d) There should be a linear relationship between the measured and the transducer signal.e) The transducer should have minimum sensitivity to external effects, pressure transducers,for example,are often subjected to external effects such vibration and temperature.f) The natural frequency of the transducer should be well separated from the frequency and harmonics of the measurand.4、Electrical TransducersElectrical transducers exhibit many of the ideal characteristics. In addition they offer high sensitivity as well as promoting the possible of remote indication or mesdurement. Electrical transducers can be divided into two distinct groups:a) variable-control-parameter types,which include:i)resistanceii) capacitanceiii) inductanceiv) mutual-inductance typesThese transducers all rely on external excitation voltage for their operation.b) self-generating types,which includei) electromagneticii)thermoelectriciii)photoemissiveiv)piezo-electric typesThese all themselves produce an output voltage in response to the measurand input and their effects are reversible. For example, a piezo-electric transducer normally produces an output voltage in response to the deformation of a crystalline material; however, if an alternating voltage is applied across the material, the transducer exhibits the reversible effect by deforming or vibrating at the frequency of the alternating voltage.5、Resistance TransducersResistance transducers may be divided into two groups, as follows:i) Those which experience a large resistance change, measured by using potential-divider methods. Potentiometers are in this group.ii)Those which experience a small resistance change, measured by bridge-circuit methods. Examples of this group include strain gauges and resistance thermometers.5.1 PotentiometersA linear wire-wound potentiometer consists of a number of turns resistance wire wound around a non-conducting former, together with a wiping contact which travels over the barwires. The construction principles are shown in figure which indicate that the wiperdisplacement can be rotary, translational, or a combination of both to give a helical-type motion. The excitation voltage may be either a.c. or d.c. and the output voltage is proportional to the input motion, provided the measuring device has a resistance which is much greater than the potentiometer resistance.Such potentiometers suffer from the linked problem of resolution and electrical noise. Resolution is defined as the smallest detectable change in input and is dependent on thecross-sectional area of the windings and the area of the sliding contact. The output voltage is thus a serials of steps as the contact moves from one wire to next.Electrical noise may be generated by variation in contact resistance, by mechanical wear due to contact friction, and by contact vibration transmitted from the sensing element. In addition, the motion being measured may experience significant mechanical loading by the inertia and friction of the moving parts of the potentiometer. The wear on the contacting surface limits the life of a potentiometer to a finite number of full strokes or rotations usually referred to in the manufacture’s specification as the ‘number of cycles of life expectancy’, a typical value being 20*1000000 cycles.The output voltage V0 of the unload potentiometer circuit is determined as follows. Let resistance R1= xi/xt *Rt where xi = input displacement, xt= maximum possible displacement, Rt total resistance of the potentiometer. Then output voltage V0= V*R1/(R1+( Rt-R1))=V*R1/Rt=V*xi/xt*Rt/Rt=V*xi/xt. This shows that there is a straight-line relationship between output voltage and input displacement for the unloaded potentiometer.It would seen that high sensitivity could be achieved simply by increasing the excitation voltage V. however, the maximum value of V is determined by the maximum power dissipation P of the fine wires of the potentiometer winding and is given by V=(PRt)1/2 .5.2 Resistance Strain GaugesResistance strain gauges are transducers which exhibit a change in electrical resistance in response to mechanical strain. They may be of the bonded or unbonded variety .a) bonded strain gaugesUsing an adhesive, these gauges are bonded, or cemented, directly on to the surface of the body or structure which is being examined.Examples of bonded gauges arei) fine wire gauges cemented to paper backingii) photo-etched grids of conducting foil on an epoxy-resin backingiii)a single semiconductor filament mounted on an epoxy-resin backing with copper or nickel leads.Resistance gauges can be made up as single elements to measuring strain in one direction only,or a combination of elements such as rosettes will permit simultaneous measurements in more than one direction.b) unbonded strain gaugesA typical unbonded-strain-gauge arrangement shows fine resistance wires stretched around supports in such a way that the deflection of the cantilever spring system changes the tension in the wires and thus alters the resistance of wire. Such an arrangement may be found in commercially available force, load, or pressure transducers.5.3 Resistance Temperature TransducersThe materials for these can be divided into two main groups:a) metals such as platinum, copper, tungsten, and nickel which exhibit and increase in resistance as the temperature rises; they have a positive temperature coefficient of resistance.b) semiconductors, such as thermistors which use oxides of manganese, cobalt, chromium, or nickel. These exhibit large non-linear resistance changes with temperature variation and normally have a negative temperature coefficient of resistance.a) metal resistance temperature transducersThese depend, for many practical purpose and within a narrow temperature range, upon the relationship R1=R0*[1+a*(b1-b2)] where a coefficient of resistance in ℃-1,and R0 resistance in ohms at the reference temperature b0=0℃ at the reference temperature range ℃.The international practical temperature scale is based on the platinum resistance thermometer, which covers the temperature range -259.35℃ to 630.5℃.b) thermistor resistance temperature transducersThermistors are temperature-sensitive resistors which exhibit large non-liner resistance changes with temperature variation. In general, they have a negative temperature coefficient. For small temperature increments the variation in resistance is reasonably linear; but, if large temperature changes are experienced, special linearizing techniques are used in the measuring circuits to produce a linear relationship of resistance against temperature.Thermistors are normally made in the form of semiconductor discs enclosed in glass vitreous enamel. Since they can be made as small as 1mm,quite rapid response times are possible.5.4 Photoconductive CellsThe photoconductive cell , uses a light-sensitive semiconductor material. The resistance between the metal electrodes decrease as the intensity of the light striking the semiconductor increases. Common semiconductor materials used for photo-conductive cells are cadmium sulphide, lead sulphide, and copper-doped germanium.The useful range of frequencies is determined by material used. Cadmium sulphide is mainly suitable for visible light, whereas lead sulphide has its peak response in the infra-red regionand is, therefore , most suitable for flame-failure detection and temperature measurement. 5.5 Photoemissive CellsWhen light strikes the cathode of the photoemissive cell are given sufficient energy to arrive the cathode. The positive anode attracts these electrons, producing a current which flows through resistor R and resulting in an output voltage V.Photoelectrically generated voltage V=Ip.RlWhere Ip=photoelectric current(A),and photoelectric current Ip=Kt.BWhere Kt=sensitivity (A/im),and B=illumination input (lumen)Although the output voltage does give a good indication of the magnitude of illumination, the cells are more often used for counting or control purpose, where the light striking the cathode can be interrupted.6、Capacitive TransducersThe capacitance can thus made to vary by changing either the relative permittivity, the effective area, or the distance separating the plates. The characteristic curves indicate that variations of area and relative permittivity give a linear relationship only over a small range of spacings. Thus the sensitivity is high for small values of d. Unlike the potentionmeter, the variable-distance capacitive transducer has an infinite resolution making it most suitable for measuring small increments of displacement or quantities which may be changed to produce a displacement.7、Inductive TransducersThe inductance can thus be made to vary by changing the reluctance of the inductive circuit. Measuring techniques used with capacitive and inductive transducers:a)A.C. excited bridges using differential capacitors inductors.b)A.C. potentiometer circuits for dynamic measurements.c) D.C. circuits to give a voltage proportional to velocity for a capacitor.d) Frequency-modulation methods, where the change of C or L varies the frequency of an oscillation circuit.Important features of capacitive and inductive transducers are as follows:i)resolution infiniteii) accuracy+- 0.1% of full scale is quotediii)displacement ranges 25*10-6 m to 10-3miv) rise time less than 50us possibleTypical measurands are displacement, pressure, vibration, sound, and liquid level.8、Linear Variable-differential Ttransformer9、Piezo-electric Transducers10、Electromagnetic Transducers11、Thermoelectric Transducers12、Photoelectric Cells13、Mechanical Transducers and Sensing Elements传感器的基础知识传感器是一种把被测量转换为光的、机械的或者更平常的电信号的装置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、Accelerometer Principles67 ratings | 4.01 out of 5| Print DocumentOverviewThis tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series will teach you a specific topic of common measurement applications by explaining theoretical concepts and providing practical examples. There are several physical processes that can be used to develop a sensor to measure acceleration. In applications that involve flight, such as aircraft and satellites, accelerometers are based on properties of rotating masses. In the industrial world, however, the most common design is based on a combination of Newton's law of mass acceleration and Hooke's law of spring action.Table of Contents1.Spring-Mass System2.Natural Frequency and Damping3.Vibration Effects4.Relevant NI Products5.Buy the BookSpring-Mass SystemNewton's law simply states that if a mass, m, is undergoing an acceleration, a, then there must be a force F acting on the mass and given by F = ma. Hooke's law states that if a spring of spring constant k is stretched (extended) from its equilibrium position for a distance D x, then there must be a force acting on the spring given by F = kDx.FIGURE 5.23 The basic spring-mass system accelerometer.In Figure 5.23a we have a mass that is free to slide on a base. The mass is connected to the base by a spring that is in its unextended state and exerts no force on the mass. In Figure 5.23b, the whole assembly is accelerated to the left, as shown. Now the spring extends in order to provide the force necessary to accelerate the mass. This condition is described by equating Newton's and Hooke's laws:ma = kDx(5.25)where k = spring constant in N/mDx = spring extension in mm = mass in kga= acceleration in m/s2Equation (5.25) allows the measurement of acceleration to be reduced to a measurement of spring extension (linear displacement) becauseIf the acceleration is reversed, the same physical argument would apply, except that the spring is compressed instead of extended. Equation (5.26) still describes the relationship between spring displacement and acceleration.The spring-mass principle applies to many common accelerometer designs. The mass that converts the acceleration to spring displacement is referred to as the test mass or seismic mass. We see, then, that acceleration measurement reduces to linear displacement measurement; most designs differ in how this displacement measurement is made.Natural Frequency and DampingOn closer examination of the simple principle just described, we findanother characteristic of spring-mass systems that complicates the analysis. In particular, a system consisting of a spring and attached mass always exhibits oscillations at some characteristic natural frequency. Experience tells us that if we pull a mass back and then release it (in the absence of acceleration), it will be pulled back by the spring, overshoot the equilibrium, and oscillate back and forth. Only friction associated with the mass and base eventually brings the mass to rest. Any displacement measuring system will respond to this oscillation as if an actual acceleration occurs. This natural frequency is given bywhere f N= natural frequency in Hzk = spring constant in N/mm = seismic mass in kgThe friction that eventually brings the mass to rest is defined by a damping coefficient , which has the units of s-1. In general, the effect of oscillation is called transient response, described by a periodic damped signal, as shown in Figure 5.24, whose equation isX T (t) = Xoe-µt sin(2p f N t) (5.28)where Xr(t) = transient mass positionXo= peak position, initiallyµ = damping coefficientfN= natural frequencyThe parameters, natural frequency, and damping coefficient in Equation (5.28) have a profound effect on the application of accelerometers.Vibration EffectsThe effect of natural frequency and damping on the behavior of spring-mass accelerometers is best described in terms of an applied vibration. If the spring-mass system is exposed to a vibration, then the resultant acceleration of the base is given by Equation (5.23)a(t) = -w2xosin wtIf this is used in Equation (5.25), we can show that the mass motion is given bywhere all terms were previously denned and w= 2p f, with/the applied frequency.FIGURE 5.24 A spring-mass system exhibits a natural oscillation with damping as response to an impulse input.FIGURE 5.25 A spring-mass accelerometer has been attached to a table which is exhibiting vibration. The table peak motion is xand the mass motionois D x.To make the predictions of Equation (5.29) clear, consider the situation presented in Figure 5.25. Our model spring-mass accelerometer has been fixed to a table that is vibrating. The x o in Equation (5.29) is the peak amplitude of the table vibration, and Dx is the vibration of the seismic mass within the accelerometer. Thus, Equation (5.29) predicts that the seismic-mass vibration peak amplitude varies as the vibration frequency squared, but linearly with the table-vibration amplitude. However, this result was obtained without consideration of the spring-mass system natural vibration. When this is taken into account, something quite different occurs.Figure 5.26a shows the actual seismic-mass vibration peak amplitude versus table-vibration frequency compared with the simple frequency squared prediction.You can see that there is a resonance effect when the table frequency equals the natural frequency of the accelerometer, that is, the value of Dx goes through a peak. The amplitude of the resonant peak is determined by the amount of damping. The seismic-mass vibration is described by Equation (5.29) only up to about f N/2.5.Figure 5.26b shows two effects. The first is that the actual seismic-mass motion is limited by the physical size of the accelerometer. It will hit"stops" built into the assembly that limit its motion during resonance. The figure also shows that for frequencies well above the natural frequency, the motion of the mass is proportional to the table peak motion, , but not to the frequency. Thus, it has become a displacement sensor. xoTo summarize:1. f < f N- For an applied frequency less than the natural frequency, the natural frequency has little effect on the basic spring-mass response given by Equations (5.25) and (5.29). A rule of thumb states that a safe maximum applied frequency is f < 1/2.5f N.-For an applied frequency much larger than the natural frequency, 2. f > fNthe accelerometer output is independent of the applied frequency. As shown in Figure 5.26b, the accelerometer becomes a measure of vibration displacement xof Equation (5.20) under these circumstances. It isointeresting to note that the seismic mass is stationary in space in this case, and the housing, which is driven by the vibration, moves about the mass. A general rule sets f > 2.5 f N for this case.Generally, accelerometers are not used near the resonance at their natural frequency because of high nonlinearities in output.FIGURE 5.26 In (a) the actual response of a spring-mass system to vibration is compared to the simple w2prediction In (b) the effect of various table peak motion is shownEXAMPLE 5.14An accelerometer has a seismic mass of 0.05 kg and a spring constant of 3.0 X 103N/m Maximum mass displacement is ±0 02 m (before the mass hits the stops). Calculate (a) the maximum measurable acceleration in g, and (b) the natural frequency.SolutionWe find the maximum acceleration when the maximum displacement occurs, from Equation (5.26).a.or becauseb. The natural frequency is given by Equation (5.27).2、Measuring Pressure with Pressure Sensors79 ratings | 4.00 out of 5| Print DocumentOverviewThis tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series will teach you a specific topic of common measurement applications by explaining theoretical concepts and providing practical examples. This tutorial introduces and explains the concepts and techniques of measuring pressure with pressure sensors.For more information, return to the NI Measurement Fundamentals Main Page. Table of Contents1.What is Pressure?2.The Pressure Sensor3.Pressure Measurement4.Signal Conditioning for Pressure Sensors5.DAQ Systems for Pressure Measurements6.ReferencesWhat is Pressure?Pressure is defined as force per unit area that a fluid exerts on its surroundings.[1] For example, pressure, P, is a function of force, F, and area, A.P = F/AA container full of gas contains innumerable atoms and molecules that are constantly bouncing of its walls. The pressure would be the average force of these atoms and molecules on its walls per unit of area of the container. Moreover, pressure does not have to be measured along the wall of a container but rather can be measured as the force per unit area along any plane. Air pressure, for example, is a function of the weight of the air pushing down on Earth. Thus, as the altitude increases, pressure decreases. Similarly, as a scuba diver or submarine dives deeper into the ocean, the pressure increases.The SI unit for pressure is the Pascal (N/m2), but other common units of pressure include pounds per square inch (PSI), atmospheres (atm), bars, inches of mercury (in Hg), and millimeters of mercury (mm Hg).A pressure measurement can be described as either static or dynamic. The pressure in cases where no motion is occurring is referred to as static pressure. Examples of static pressure include the pressure of the air inside a balloon or water inside a basin. Often times, the motion of a fluid changes the force applied to its surroundings. Such a pressure measurement is known as dynamic pressure measurement. For example, the pressure inside a balloon or at the bottom of a water basin would change as air is let out of the balloon or as water is poured out of the basin.Head pressure(or pressure head) measures the static pressure of a liquid in a tank or a pipe. Head pressure, P, is a function solely on the height, h, of the liquid and weight density, w, of the liquid being measured as shown in Figure 1 below.Figure 1. Head Pressure MeasurementThe pressure on a scuba diver swimming in the ocean would be the diver's depth multiplied by weight of the ocean (64 pounds per cubic foot). A scuba diver diving 33 feet into the ocean would have 2112 pounds of water on every square foot of his body. The translates to 14.7 PSI. Interestingly enough, the atmospheric pressure of the air at sea level is also 14.7 PSI or 1 atm. Thus, 33 feet of water create as much pressure as 5 miles of air! The total pressure on a scuba diver 33 feet deep ocean would be the combined pressure caused by the weight of the air and the water and would be 29.4 PSI or 2 atm.A pressure measurement can further be described by the type of measurement being performed. There are three types of pressure measurements: absolute, gauge, and differential. Absolute pressure measurement is measured relative to a vacuum as showing in Figure 2 below. Often times, the abbreviations PAA (Pascals Absolute) or PSIA (Pounds per Square Inch Absolute) are use to describe absolute pressure.Figure 2. Absolute Pressure Sensor[3]Gauge pressure is measured relative to ambient atmospheric pressure asshown in Figure 3. Similar to absolute pressure, the abbreviations PAG (Pascals Gauge) or PSIA (Pounds per Square Inch Gauge) are use to describe gauge pressure.Figure 3.Gauge Pressure Sensor[3]Differential pressure is similar to gauge pressure, but instead of measuring relative to ambient atmospheric pressure, differential measurements are taken with respect to a specific reference pressure as shown in Figure 4. Also, the abbreviations PAD (Pascals Differential) or PSID (Pounds per Square Inch Differential) are use to describe differential pressure.Figure 4. Differential Pressure Sensor[3]The Pressure SensorBecause of the great variety of conditions, ranges, and materials for which pressure must be measured, there are many different types of pressure sensor designs. Often pressure can be converted to some intermediate form, such as displacement. The sensor then converts thisdisplacement into an electrical output such as voltage or current. The three most universal types of pressure transducers of this form are the strain gage, variable capacitance, and piezoelectric.Of all the pressure sensors, Wheatstone bridge (strain based) sensors are the most common, offering solutions that meet varying accuracy, size, ruggedness, and cost constraints. Bridge sensors are used for high and low pressure applications, and can measure absolute, gauge, or differential pressure. All bridge sensors make use of a strain gage and a diaphragm as seen in Figure 4.Figure 4. Cross Section of a Typical Strain Gage Pressure Sensor [3]When a change in pressure causes the diaphragm to deflect, a corresponding change in resistance is induced on the strain gauge, which can be measured by a Data Acquisition (DAQ) System. These strain gauge pressure transducers come in several different varieties: the bonded strain gauge, the sputtered strain gauge, and the semiconductor strain gauge.In the bonded strain gauge pressure sensor, a metal foil strain gauge is actually glued or bonded to the surface where strain is being measured. These bonded foil strain gauges (BFSG) have been the industry standard for years and are continually used because of their quick 1000 Hz responsetimes to changes in pressure as well as their large -452°F to -525°F operating temperature.Sputtered strain gauge manufacturers sputter deposit a layer of glass onto the diaphragm and then deposit a thing metal film strain gauge on to the transd ucer’s diaphragm. Sputtered strain gauge sensors actually from a molecular bond between the strain gauge element, the insulating later, and the sensing diaphragm. These gauges are most suitable for long-term use and harsh measurement conditions.Integrated circuit manufacturers have developed composite pressure sensors that are particularly easy to use. These devices commonly employ a semiconductor diaphragm onto which a semiconductor strain gauge and temperature-compensation sensor have been grown. Appropriate signal conditioning is included in integrated circuit form, providing a dc voltage or current linearly proportional to pressure over a specified range.The capacitance between two metals plates changes if the distance between these two plates changes. A variable capacitance pressure transducer, seen in Figure 5 below, measures the change in capacitance between a metal diaphragm and a fixed metal plate. These pressure transducers are generally very stable and linear, but are sensitive to high temperatures and are more complicated to setup than most pressure sensors.Figure 5. Capacitance Pressure Transducer [4]Piezoelectric pressure transducer, as shown in Figure 6, take advantage of the electrical properties of naturally occurring crystals such as quartz. These crystals generate an electrical charge when they are strained. Piezoelectric pressure sensors do not require an externalexcitation source and are very rugged. The sensors however, do require charge amplification circuitry and very susceptible to shock and vibration.Figure 6. Piezoelectric Pressure Transducer [4]A common cause of sensor failure in pressure measurement applications is dynamic impact, which results in sensor overload. A classic example of overloading a pressure sensor is known as the water hammer phenomenon. This occurs when a fast moving fluid is suddenly stopped by the closing of a valve. The fluid has momentum that is suddenly arrested, which causes a minute stretching of the vessel in which the fluid is constrained. This stretching generates a pressure spike that can damage a pressure sensor. To reduce the effects of “water hammer”, sensors are often mounted with a snubber between the sensor and the pressure line. A snubber is usually a mesh filter or sintered material that allows pressurized fluid through but does not allow large volumes of fluid through and therefore prevents pressure spikes in the event of water hammer. A snubber is a good choice to protect your sensor in certain applications, but in many tests the peak impact pressure is the region of interest. In such a case you would want to select a pressure sensor that does not include overprotection. [3]Pressure MeasurementAs described above, the natural output of a pressure transducer is a voltage. Most strain based pressure transducers will output a small mV voltage. This small signal requires several signal conditioning considerations that are discussed in the next section. Additionally, many pressure transducers will output a conditioned 0-5V signal or 4-20 mA current. Both of these outputs are linear across the working range of thetransducer. For example both 0 V and 4 mA correspond to a 0 pressure measurement. Similarly, 5 volts and 20 mA correspond to the Full Scale Capacity or the maximum pressure the transducer can measure. The 0-5V and 4-20 mA signals can easily be measured by National InstrumentsMulti-function Data Acquisition (DAQ) hardware.See Also:Data Acquistion (DAQ) HardwareSignal Conditioning for Pressure SensorsAs with any other bridge based sensor, there are several signal conditioning considerations. To ensure accurate bridge measurements, it is important to consider the following:∙Bridge completion∙Excitation∙Remote sensing∙Amplification∙Filtering∙Offset∙Shunt CalibrationEach of these considerations are addressed thoroughly in the Measuring Strain with Strain Gauges tutorial linked below.Once you have obtained a measurable voltage signal, that signal must be converted to actual units of pressure. Pressure sensors generally produce a linear response across their range of operation, so linearization is often unnecessary, but you will need some hardware or software to convert the voltage output of the sensor into a pressure measurement. The conversion formula you will use depends on the type of sensor you are using, and will be provided by the sensor manufacturer. A typical conversion formula will be a function of the excitation voltage, full scale capacity of the sensor, and a calibration factor.[+] Enlarge ImageFor example, a pressure trandsducer with a full scale capacity of 10,000 PSI and a calibration factor of 3mv/V and given an excitation voltage of 10V DC produces a measured voltage of 15 mV, the measured pressure would be 5000 PSI.After you have properly scaled your signal, it is necessary to obtain a proper rest position. Pressure sensors (whether absolute or gauge) have a certain level that is identified as the rest position, or reference position. The strain gauge should produce 0 volts at this position. Offset nulling circuitry adds or removes resistance from one of the legs of the strain gauge to achieve this "balanced" position. Offset nulling is critical to ensure the accuracy of your measurement and for best results should be performed in hardware rather than software.See Also:Measuring Strain with Strain GaugesDAQ Systems for Pressure MeasurementsUsing SCXI with Pressure MeasurementsNational Instruments SCXI is a signal conditioning system for PC-based data acquisition systems as shown in Figure 7. An SCXI system consists of a shielded chassis that houses a combination of signal conditioning input and output modules, which perform a variety of signal conditioning functions. You can connect many different types of sensors, including absolute and gauge pressure sensors, directly to SCXI modules. The SCXI system can operate as a front-end signal conditioning system for PC plug-in data acquisition (DAQ) devices (PCI and PCMCIA) or PXI DAQ modules.[+] Enlarge ImageFigure 7. A Typical National Instruments SCXI SystemSCXI offers an excellent solution for measuring pressure. The SCXI-1520 universal strain-gauge module is ideal for taking strain based pressure measurements. It provides 8 simultaneous sampled analog input channels each with bridge completion, programmable excitation (0-10 V), remote excitation sensing, programmable gain amplification (1-1000), a programmable 4-pole Butterworth filter (10 Hz, 100 Hz, 1 kHz, 10kHz), offset nulling, and shunt calibration. The SCXI-1314 terminal block provides screw terminals for easy connections to your sensors. Additionally, the SCXI-1314T includes a built-in TEDS reader for Class II bridge-based smart TEDS sensors.Recommended starter kit for Pressure SCXI DAQ System:1.SCXI-1600 DAQ module2.SCXI chassis3.SCXI-1520 modules and SCXI-1314/SCXI-1314T terminal blocks4.Refer to /sensors for recommended sensor vendorsFor a customized solution, see the SCXI Advisor linked below.Using SC Series DAQ with Strain Based Pressure SensorsFor high performance integrated DAQ and signal conditioning, the National Instruments PXI-4220 shown in Figure 8, part of the SC Series, provides an excellent measurement solution. SC Series DAQ offers up to 333 kS/s measurements with 16-bit resolution, and combines data acquisition and signal conditioning into one plug in board. The PXI-4220 is a 200 kS/s, 16 bit DAQ board with programmable excitation, gain, and 4-pole Butterworth filter. Each input channel of the PXI-4220 also includes a 9-pin D-Sub connector for easy connection to bridge sensors, and programmable shunt and null calibration circuitry. The PXI-4220 provides the perfect solution for dynamic pressure measurements with low channel counts.Figure 8. National Instruments PXI-4220Recommended starter kit for Pressure SC Series DAQ System:1.PXI chassis2.PXI embedded controller3.PXI-4220 modules4.Refer to /sensors for recommended sensor vendorsFor a customized solution, see the PXI advisor linked below.Using SCC with Strain Based Pressure SensorsNational Instruments SCC provides portable, modular signal conditioning for DAQ system as seen in Figure 9 below. The SCC series provides a great low channel count and low cost solution that directly interfaces to National Instruments M Series DAQ boards. SCC modules can condition a variety of analog I/O and digital I/O signals, including bridge sensors. SCC DAQ systems include an SC Series shielded carrier such as the SC-2345 or the SC-2350, SCC modules, a cable, and a DAQ device. The SC-2350 shielded carrier provides additional support for TEDS sensors.[+] Enlarge ImageFigure 9. National Instruments SCC Carrier and ModulesThe SCC-SG24 Load Cell Input module accepts up to two full-bridge inputs from load cells or pressure sensors. Each channel of the module includes an instrumentation amplifier, a 1.6 kHz lowpass filter, and a potentiometer for bridge offset nulling. Each SCC-SG24 module also includes a single 10 V excitation source.Recommended Starter Kit for Pressure SCC DAQ System:1.M Series DAQ board2.SC-2345/SC-2350 module carrier3.SCC-SG24 modules (1 per 2 pressure sensors)4.Refer to /sensors for recommended sensor vendorsSee Also:Sensors - Affiliated Product AdvisorsSCXI Product AdvisorPXI Product AdvisorReferences[1] Johnson, Curtis D, “Pressure Principles” Process Control Instrumentation Technology, Prentice Hall PTB.[2] , “Strain Gauge Pressure Transducers”,/products/trans/t-presstrans.htm (current November 2003).[3] , “Honeywell Sensotec Frequently Asked Questions”, /pdf/FAQ_092003.pdf (current November 2003). [4] , "Pressure Measurement: Principles and Practice", /articles/0103/19/main.shtm l (current January 2003).3、Measuring Strain with Strain Gauges896 ratings | 4.27 out of 5| Print DocumentOverviewThis tutorial is part of the National Instruments Measurement Fundamentals series. Each tutorial in this series will teach you a specific topic of common measurement applications by explaining theoretical concepts and providing practical examples.This tutorial introduces and explains the concepts and techniques of measuring strain with strain gauges.You can also view an on demand webcast on strain gauge measurements. For more information, return to the NI Measurement Fundamentals Main Page. Table of Contents1.What Is Strain?2.The Strain Gauge3.Strain Gauge Measurement4.Signal Conditioning for Strain Gauges5.DAQ Systems for Strain Gauge Measurements6.Relevant NI ProductsWhat Is Strain?Strain is the amount of deformation of a body due to an applied force. More specifically, strain (e) is defined as the fractional change in length, as shown in Figure 1 below.Figure 1. Definition of StrainStrain can be positive (tensile) or negative (compressive). Although dimensionless, strain is sometimes expressed in units such as in./in. or mm/mm. In practice, the magnitude of measured strain is very small. Therefore, strain is often expressed as microstrain (me), which is e x 10-6.When a bar is strained with a uniaxial force, as in Figure 1, a phenomenon known as Poisson Strain causes the girth of the bar, D, to contract in the transverse, or perpendicular, direction. The magnitude of this transverse contraction is a material property indicated by its Poisson's Ratio. The Poisson's Ratio n of a material is defined as the negative ratio of the strain in the transverse direction (perpendicular to the force)/e. to the strain in the axial direction (parallel to the force), or n = eT Poisson's Ratio for steel, for example, ranges from 0.25 to 0.3.The Strain GaugeWhile there are several methods of measuring strain, the most common is with a strain gauge, a device whose electrical resistance varies in proportion to the amount of strain in the device. The most widely used gauge is the bonded metallic strain gauge.The metallic strain gauge consists of a very fine wire or, more commonly, metallic foil arranged in a grid pattern. The grid pattern maximizes the amount of metallic wire or foil subject to strain in the parallel direction (Figure 2). The cross sectional area of the grid is minimized to reduce the effect of shear strain and Poisson Strain. The grid is bonded to a thin backing, called the carrier, which is attached directly to the test specimen. Therefore, the strain experienced by the test specimen is transferred directly to the strain gauge, which responds with a linear change in electrical resistance. Strain gauges are available commercially with nominal resistance values from 30 to 3000 Ω, with 120, 350, and 1000 Ω being the most common values.Figure 2. Bonded Metallic Strain GaugeIt is very important that the strain gauge be properly mounted onto the test specimen so that the strain is accurately transferred from the test specimen, through the adhesive and strain gauge backing, to the foil itself.A fundamental parameter of the strain gauge is its sensitivity to strain, expressed quantitatively as the gauge factor (GF). Gauge factor is defined as the ratio of fractional change in electrical resistance to the fractional change in length (strain):The Gauge Factor for metallic strain gauges is typically around 2. Strain Gauge MeasurementIn practice, the strain measurements rarely involve quantities larger than a few millistrain(e x 10-3). Therefore, to measure the strain requires accurate measurement of very small changes in resistance. For example, suppose a test specimen undergoes a strain of 500 me. A strain gauge witha gauge factor of 2 will exhibit a change in electrical resistance of only2 (500 x 10-6) = 0.1%. For a 120 W gauge, this is a change of only 0.12 W.To measure such small changes in resistance, strain gauges are almost always used in a bridge configuration with a voltage excitation source. The general Wheatstone bridge, illustrated below, consists of four resistive arms with an excitation voltage, VEX, that is applied across the bridge.Figure 3. Wheatstone BridgeThe output voltage of the bridge, VO, will be equal to:From this equation, it is apparent that when R1/R2= R4/R3, the voltageoutput VOwill be zero. Under these conditions, the bridge is said to be balanced. Any change in resistance in any arm of the bridge will result in a nonzero output voltage.Therefore, if we replace R4in Figure 3 with an active strain gauge, any changes in the strain gauge resistance will unbalance the bridge and produce a nonzero output voltage. If the nominal resistance of the strain。