函数的定义域与区间

合集下载

函数定义域、值域求法总结

函数定义域、值域求法总结

函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。

2、在同一对应法则作用下,括号整体的取值围相同。

一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而围相同。

因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值围。

一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x ≤b 时,g(x)的取值围。

定义域是X 的取值围,g(x)和h(x)受同一个对应法则的影响,所以它们的围相同。

():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f一、定义域是函数y=f(x)中的自变量x 的围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。

三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⇒ ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<--<⇒x x x 或或∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒ 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37-或 x>37- ∴定义域为:}37|{-≠x x 例3 若函数aax ax y 12+-=的定义域是R ,数a 的取值围 解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例4 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知f(x)的定义域为[-1,1],求f(2x -1)的定义域。

高中常见函数定义域

高中常见函数定义域

高中常见函数定义域
1、平面函数的定义域:
平面函数的定义域是整个实数集合R。

通过任意给定的实数值,可以计算出函数取值。

2、抛物线函数的定义域:
抛物线函数的定义域也是整个实数集合R。

通常情况下,函数取值定义域一般不超过一个实数区间,即[l,u],l与u为两个实数值。

3、二元函数的定义域:
二元函数的定义域是一个二元空间,即:{(x,y)|x∈R , y∈R },即以实数x,实数y组成的坐标点所组成的定义域。

4、对数函数的定义域:
对数函数的定义域为正实数集合R+; 即只有正的实数才存在对数函数的取值,若x<0,则没有y与之对应,故此时函数定义域为空。

5、三角函数的定义域:
三角函数的定义域是整个实数集合R。

实数x可以通过θ求出θ对应的
函数取值,例如π 的整数倍角度,都有其对应的函数取值。

6、几何函数的定义域:
几何函数的定义域是一个多元几何空间,即:{(x1,x2,...,xn)|x1∈R ,
x2∈R,x3∈R,...;xn∈R}。

其中,n是维度数,即函数中涉及变量的个数,如果是二元函数,则n=2;如果是三元函数,则n=3,以此类推。

只有
函数中涉及的变量,满足定义域规定的各个x项的要求,函数的取值
才可存在。

函数的定义域和值域

函数的定义域和值域

函数的定义域和值域函数的定义域、值域⼀、知识回顾第⼀部分:函数的定义域1.函数的概念:设集合A 是⼀个⾮空的数集,对于A 中的任意⼀个数x ,按照确定的法则f ,都有唯⼀的确定的数y 与它对应,则这种关系叫做集合A 上的⼀个函数,记作()x f y =,(A x ∈)其中x 叫做⾃变量,⾃变量的取值范围(数集A )叫做这个函数的定义域.如果⾃变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或ax y=,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的⾃变量取值范围,实际问题还需要结合实际意义在确定⾃变量的范围,注意:定义域是个集合,所以在解答时要⽤集合来表⽰. 3.区间表⽰法:设a ,R b ∈,且b a <.满⾜b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满⾜b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满⾜b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表⽰时,包括端点时,⽤实⼼的点,不包括时⽤空⼼点表⽰.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定⽅法:保证函数有意义,或者符合规定,或满⾜实际意义. (1)分式的分母不为零. (2)偶次⽅根式的⼤于等于零. (3)对数数函数的真数⼤于零.(4)指数函数与对数函数的底⼤于零且不等于1. (5)正切函数的⾓的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是⼀个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ?=的定义域的⽅法为解不等式:A x ∈)(?,求出x 的取值范围.②已知()[]x f y ?=的定义域为A ,求)(x f y =的定义域的⽅法:A x ∈,求)(x ?的取值范围即可.第⼆部分:函数的值域函数值域的确定⽅法:(1)直接观察法对于⼀些⽐较简单的函数,其值域可通过观察得到. (2)分离常数法:分⼦、分母是⼀次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可⽤分离常数法,此类问题⼀般也可以利⽤反函数法.(3)换元法:运⽤代数代换,将所给函数化成值域容易确定的另⼀函数,从⽽求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常⽤此法求解. (4)配⽅法:适⽤于⼆次函数值域的求值域. (5)判别式法:适⽤于⼆次函数型值域判定.(6)单调性法:利⽤单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利⽤已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利⽤不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种⼏何意义,如两点间的距离公式直线斜率等等,这类题⽬若运⽤数形结合法,往往会更加简单,⼀⽬了然,赏⼼悦⽬.⼆、精选例题第⼀部分:函数的定义域例1.函数x x y +-=1的定义域为()A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意??≥≤≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是()A .()0,+∞B .(),0-∞C.()(),11,0-∞--UD.()()(),11,00,-∞--+∞U U【解析】由?≠-≠+001x x x 得,01<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是()5.0,2A ??[]4,1.-B []5,5.-C []7,3.-D 【解析】Θ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.⼜由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是??25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么?【解析】Θ函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是() {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠?≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠?≠++x x x x 且故选.C 例6.已知()x f21-求函数??-xx f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-x x ()2100312≤≤?≤-?x x x故函数-x x f 213的定义域是??∈21,0x例7.若函数y =的定义域是R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,⽆意义,∴0≠k ;当068y kx x k =-++为开⼝向下的⼆次函数,图像向下延伸,函数值总会出现⼩于零的情况,进⽽,0k 时,同时要求0≤?,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以??≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---Y⼜121<<-x,解得22<<-x ,即)2(x f 的定义域为)2,2(-)2(12)1()(xf x x f x F +++=的定义域即为)(x m 和)2(x f 的定义域的交集,即)0,21()21,2(---Y )2,2(-I =)0,21()21,2(---Y故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(---Y .例9.已知函数()23x x f x a b =?+?,其中常数,a b 满⾜0ab ≠. (1)若0ab >,判断函数()f x 的单调性;(2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x xf x f x a b -=-+-∵121222,0(22)0x x x x a a <>?-<,121233,0(33)0x x x xb b <>?-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=? +?>当0,0a b <>时,3()22x a b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第⼆部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x Θ01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,Y2.分离常数法:分⼦、分母是⼀次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可⽤分离常数法,此类问题⼀般也可以利⽤反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++=故值域为?≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++,所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运⽤代数代换,将所给函数化成值域容易确定的另⼀函数,从⽽求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常⽤此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,⽆最⼩值所以函数2y x =5(,]4-∞.4.三⾓换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x Θ1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤Θ4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配⽅法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+,因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤,所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的⼀元⼆次⽅程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=?y .解得2321≤≤y ,当1=y 时,0=x ,⽽??∈23,211,故函数的值域为??23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x ,令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数,所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e Θ011>-+∴y y ,解得11<<-y ,所以函数的值域为()1,1-.9.不等式法:例9.求函数xx y 4+=的值域;【解析】当0>x 时,4424=?≥+=xx x x y (当x =2时取等号);所以当0>x 时,函数值域为),4[+∞. 当02)4(-=?-≤+-=xx x x y (当2-=x 时取等号);所以当010.数形结合法函数解析式具有明显的某种⼏何意义,如两点间的距离公式直线斜率等等,这类题⽬若运⽤数形结合法,往往会更加简单,⼀⽬了然,赏⼼悦⽬. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和,由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ?,()23()1,2--ABPxyBPA根据三⾓形两边之差⼩于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、课堂训练第⼀部分:函数定义域1.函数()x x x y +-=1的定义域为(){}0.≥x x A{}1.≥x x B{}{}01.Y ≥x x C{}10.≤≤x x D解析:由题意得()≥≥-001x x x ≥≤≥?001x x x 或即[){}0,1Y +∞∈x ,故选.C 2.()xx f 11211++=的定义域为 .【解析】由分式函数分母不为0得:≠≠+≠++001101121x x x解得≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈?x ??? ??-31,1Y ??? ??0,31Y ()+∞,0Y3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数??-141x f 的定义域. 【解析】①Θ函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x 故函数()x f 2的定义域为[]1,1-∈x . ②Θ函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数??-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】Θ函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上⽅,则()x f 的定义域为().{}1.x x B {}11.-≠x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-?x 得;10<≤x当0>+x 1-≠?x 得.10-≠6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==⽤x a ,表⽰z .(2)设ABC ?的三边分别为c b a ,,,且⽅程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ?的形状. 【解析】(1),,log 11log 11 zya a ay ax --==则,log 11log log ,log log log 11log 11zay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原⽅程可以转化为0)(10lg22222=-+-a b c x x ⼜因为⽅程有等根,则0)(10lg 4)2(2222=---=?ab c ,必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ?为直⾓三⾓形.第⼆部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x Θ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域. 【解析】将函数配⽅得:()412 +-=x y []2,1-∈x Θ由⼆次函数的性质可知:当1=x 时,,4min =y 当1-=x 时,8max =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+??? ??+=++=t t t y⼜,0≥t 由⼆次函数性质知,当0=t 时,;1min =y 当t 不断增⼤时,y 值趋于∞+,故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域.【解析】定义域满⾜?≥+-≥-023032x x x 3≥?x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开⼝向上,知2y 在[)+∞,3上也单调递增. 从⽽知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y例6.求13+--=x x y 的值域【解析】可化为 ??>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域. 【解析】0≥x Θ33,0≤-≤-∴x x 故函数的值域是:[]3,∞-例8.求函数51042+++=x x y 的值域.【解析】配⽅,得().5622+++=x y ().65,6622+≥∴≥++y x Θ∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】Θ1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1;①当1≠y 时,⽅程①在R 内有解,则()()(),011412≥---+=?y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31??例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为⽆上界的增函数所以21,y y y =在[)+∞,1上也为⽆上界的增函数所以当1=x 时,21y y y +=有最⼩值2,原函数有最⼤值22 2= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt Θ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ??≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是()525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有().A 最⼤值2,最⼩值2- .B 最⼤值3,最⼩值1- .C 最⼤值4,最⼩值0 .D 最⼤值1,最⼩值3-4.已知函数31++-=x x y 的最⼤值为M ,最⼩值为m ,则Mm的值为() 41.A 21.B 22.C 23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()43 13512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83??试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤?≥-x x 故选.C 2.【答案】A【解析】425425216022≤+??+-=--≤x x x Θ, 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()??>≤<-≤-=3,231,421,2x x x x y []2,2-∈?y ,故选A4.【答案】C【解析】两边平⽅,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,284max min ==y y 故选C . 5.【答案】B 【解析】∴≥+392x Θ3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥?≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最⼤值.即().1≤x f8.【解析】1212210431012>>≥>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ?中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最⼤. PB PA y +==AB 故()()3742212=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的所以在21=x 时,取得最⼩值.即??+∞∈,21y .11.【解析】()(),412191,9483≤-≤∴≤≤x f x f Θ即有(),212131≤-≤x f令(),21,31,21∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t21,311Θ,∴函数()t g y =在区间21,31上单调递增,,9731min =??? ??=∴g y ∴=??? ??=.8721max g y 函数的值域为87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最⼩者,则()x f 的最⼤值是什么?7.已知??-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域:(1)[);5,1,642∈+-=x x x y(1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为??+∞-? -∞-,3232,Y ,求k 的值.11.(1)已知函数?≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最⼩值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425??--求m 的取值范围.【参考答案】1.【解析】25052-≥?≥+x x ,即??+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10,Y y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+??-=+-=∴t t t y ,⼜o t ≥,∴结合⼆次函数的图像知()815≥t y .故原函数的值域为?≥815y y . 4.【解析】Θ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=?y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=?y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,⽽2≠y .∴原函数的值域为[]2,5-.6.【解析】在同⼀直⾓坐标系中作出三个函数的图像,由图像可知,()x f 的最⼤值是2+=x y 和42+-=x y 交点的纵坐标,易得()3 8max =x f . 7.【解析】Θ??-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x 4145-≤≤-∴x 故函数()32+x f 的定义域是??--∈41,45x 8.【解析】(1)配⽅,得().222+-=x y [),5,1∈x Θ∴函数的值域为{}.112<≤y y(2)对根号⾥配⽅得:()30922≤≤?+--=y x y 即[]3,0∈∴y .。

高中数学必修一-第三章-3.1 函数的概念及其表示

高中数学必修一-第三章-3.1 函数的概念及其表示

第三章函数3.1 函数的概念及其表示知识点一:函数的概念1.函数的有关概念2.函数的三要素一个函数的构成要素:定义域、对应关系和值域.因为值域是由定义域和对应关系决定的,所以两个函数的定义域和对应关系相同时,它们是同一个函数.3.区间的概念:设a,b∈R,a<b.实数集R可以用区间表示为(-∞,+∞).知识点二:函数的表示法1.函数的三种表示法2.分段函数已知函数y=f(x),x∈A,如果自变量x在不同的取值范围内,函数有着不同的对应关系,那么我们称这样的函数为分段函数.【思考】1.函数的定义域和值域是否一定是无限集?2.区间是数集的另一种表示方法,是否任何数集都能用区间表示?3.根据函数的定义,任何一个自变量x是否都有唯一的函数值y与之对应?任何一个函数值y 是否都有唯一的自变量x与之对应?4.如何确定分段函数的定义域和值域?【解析】1.不一定.函数的定义域和值域也可能是有限集,如f(x)=1,x∈{1,2,3}.2.不是.如集合{0,1}就不能用区间表示.3.任何一个自变量x都有唯一的函数值y与之对应,但是函数值y不一定有唯一的自变量x 与之对应。

如f(x)=x2中,函数值4有两个自变量2、-2与之对应。

函数中x,y的对应关系是“一对一”或“多对一”,不能“一对多”.4.分段函数的定义域是每一段自变量取值范围的并集,值域也是每一段函数值取值范围的并集.3.1.1 函数的概念基础练一函数的概念1.(多选题)下面选项中,变量y是变量x的函数的是()A.x表示某一天中的时刻,y表示对应的某地区的气温B.x表示年份,y表示对应的某地区的GDP(国内生产总值)C.x表示某地区学生的某次数学考试成绩,y表示该地区学生对应的考试号D.x表示某人的月收入,y表示对应的个税2.下列四组函数中,表示同一个函数的是()3A.y=|x|与y=√x3B.y=√x2与s=(√t)2C.y=2t+1与y=2u+1D.y=1与y=x03.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示以集合M为定义域,集合N为值域的函数关系的有()A.①②③④B.①②③C.②③D.②④二函数的定义域4.函数f(x)=√x−1的定义域为() x−2A.[1,+∞)B.[1,2)C.[1,2)∪(2,+∞)D.(1,2)∪(2,+∞)5.已知某矩形的周长为定值a,若该矩形的面积S是这个矩形的一边长x的函数,则这个函数的定义域是.6.已知函数y=f(x)的定义域为[-2,3],则函数y=f(2x+1)的定义域为.x+1三函数值及函数的值域7.已知集合P={x|y=√x−1},集合Q={y|y=√x−1},则()A.P=QB.P⫋QC.Q⫋PD.P∩Q=⌀8.函数y=√x2−2x+3的值域为.,则f(x)的值域为.9.已知函数f(x)=1x2−2x10.已知函数f(x)的定义域是[0,1],值域是[1,2],则这样的函数可以是f(x)=.11.已知函数f(x)=x2+x-1.);(1)求f(2), f(1x(2)若f(x)=5,求x的值.3.1.2 函数的表示法基础练一 函数的表示法及其应用 1.函数y =x x+1的图象大致是 ( )A B C D2.某同学从家里到学校,为了不迟到,先匀速跑一段时间,跑累了再匀速走余下的路,设在途中花费的时间为t ,离开家的距离为d ,则下面图象中,能正确表示d 与t 的关系的是( )A B C D3.已知函数y =f (x )的对应关系如表,函数y =g (x )的图象为如图所示的曲线ABC ,则g (f (3))的值为 .二 函数解析式的求法5.已知函数f (x +2)=x 2+6x +8,则函数f (x )的解析式为( ) A.f (x )=x 2+2x B.f (x )=x 2+6x +8 C.f (x )=x 2+4x D.f (x )=x 2+8x +66.函数f (x )满足f (1-2x )=-1x ,则f (2)=( )A.2B.-2C.12 D.-12 7.已知函数f (2x -1)=3x -5,若f (x 0)=4,则x 0= .8.已知f (x )是一次函数,2f (2)-3f (1)=5,2f (0)-f (-1)=1,则f (x )= .9.(1)已知函数g (√x +1)=2x +1,求g (x )的解析式;(2)已知f (x )为二次函数,且f (0)=2, f (2)=f (-1)=0,求f (x )的解析式.三 分段函数问题10.已知函数f (x )={√x,x >0,|x +1|,x ≤0,则f (f (-3))=( )A.√3B.1C.2D.√2 11.已知f (x )={x +2,x ≤−1,x 2,−1<x <2,2x,x ≥2,若f (x )=3,则x 的值是( )A.1B.1或32C.1,32或±√3 D.√312.函数f (x )=x +|x |x 的图象是( )A B C D13.(2022山西大同期中)已知函数f (x )={x 2,x ≤0,4−2x,x >0.(1)画出函数f (x )的图象;(2)当f (x )≥2时,求实数x 的取值范围.。

积分区间与积分函数的定义域的关系

积分区间与积分函数的定义域的关系

积分区间与积分函数的定义域的关系一、引言积分作为微积分的重要概念,是在数学、物理、工程等领域都有着广泛的应用。

在进行积分运算时,我们经常会遇到积分函数的定义域的问题,即积分区间与积分函数的定义域的关系。

本文将从积分的基本概念和定义开始,深入探讨积分区间与积分函数的定义域的关系,分析其相互约束的关系,并给出相关的数学证明和实际应用。

二、积分的基本概念和定义1. 积分的概念积分是微积分中的重要内容,是求曲线下面的面积、求曲线的长度、求曲线的弧长等的数学方法。

在数学上,我们通常将积分表示为定积分,其基本形式为:∫f(x)dx其中f(x)是被积函数,x是自变量,∫表示积分符号,dx表示积分变量。

2. 积分函数的定义域积分函数的定义域是指函数在实数轴上的取值范围。

在积分运算中,积分函数的定义域的确定对积分运算的正确性和有效性具有重要意义。

通常情况下,积分函数的定义域由被积函数f(x)决定。

三、积分区间与积分函数的定义域的关系1. 积分区间的确定在进行积分运算时,需要确定积分区间。

积分区间由积分上下限确定,通常表示为[a, b],其中a和b分别是积分区间的下限和上限。

在确定积分区间时,需要考虑被积函数f(x)的定义域,以确保积分运算的有效性。

2. 被积函数的定义域对积分区间的影响被积函数f(x)的定义域对积分区间有着重要的影响。

如果被积函数f(x)在积分区间[a, b]内有定义并且在该区间上连续,则称f(x)在区间[a, b]上可积。

如果f(x)在积分区间[a, b]内无定义或不连续,则需要对积分区间进行修正或分段处理,以确保积分运算的有效性。

3. 积分区间与积分函数的定义域的约束关系积分区间与积分函数的定义域之间存在着相互约束的关系。

在确定积分区间时,需要考虑被积函数f(x)的定义域,以确保积分运算的可行性和有效性。

在确定被积函数f(x)的定义域时,也需要考虑积分区间的规定,以确保积分运算的合法性和准确性。

高考总复习函数的定义域和值域

高考总复习函数的定义域和值域

第二节函数的定义域和值域[知识能否忆起]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R. (4)y =a x,y =sin x ,y =cos x ,定义域均为R.(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫xx ≠k π+π2,k ∈Z .(6)函数f (x )=x 0的定义域为{x |x ≠0}.(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R.(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫yy ≥4ac -b 24a ;当a <0时,值域为⎩⎨⎧⎭⎬⎫yy ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R. (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R.[小题能否全取]1.(教材习题改编)若f (x )=x 2-2x ,x ∈[-2,4],则f (x )的值域为( ) A .[-1,8] B .[-1,16] C .[-2,8]D .[-2,4]答案:A 2.函数y =1x 2+2的值域为( ) A .R解析:选D ∵x 2+2≥2,∴0<1x 2+2≤12.∴0<y ≤12. 3.(2012·山东高考)函数f (x )=1ln?x +1?+ 4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]解析:选B x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2.4.(教材习题改编)函数f (x )=x -4|x |-5的定义域为________.解析:由⎩⎪⎨⎪⎧x -4≥0,|x |-5≠0,得x ≥4且x ≠5.答案:{x |x ≥4,且x ≠5}5.(教材习题改编)若x 有意义,则函数y =x 2+3x -5的值域是________. 解析:∵x 有意义,∴x ≥0.又y =x 2+3x -5=⎝ ⎛⎭⎪⎫x +322-94-5,∴当x =0时,y min =-5. 答案:[-5,+∞)函数的最值与值域的关系函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.[注意] 求函数的值域,不但要重视对应关系的作用,而且还要特别注意函数定义域.求函数的定义域典题导入[例1] (1)(2012·大连模拟)求函数f (x )=lg?x 2-2x ?9-x 2的定义域; (2)已知函数f (2x)的定义域是[-1,1],求f (x )的定义域.[自主解答] (1)要使该函数有意义,需要⎩⎪⎨⎪⎧x 2-2x >0,9-x 2>0,则有⎩⎪⎨⎪⎧x <0或x >2,-3<x <3,解得-3<x <0或2<x <3,所以所求函数的定义域为(-3,0)∪(2,3). (2)∵f (2x)的定义域为[-1,1], 即-1≤x ≤1,∴12≤2x≤2,故f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.若本例(2)条件变为:函数f (x )的定义域是[-1,1],求f (log 2x )的定义域. 解:∵函数f (x )的定义域是[-1,1], ∴-1≤x ≤1,∴-1≤log 2x ≤1,∴12≤x ≤2.故f (log 2x )的定义域为⎣⎢⎡⎦⎥⎤12,2. 由题悟法简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.以题试法1.(1)函数y =2x -x2ln?2x -1?的定义域是________.(2)(2013·沈阳质检)若函数y =f (x )的定义域为[-3,5],则函数g (x )=f (x +1)+f (x -2)的定义域是( )A .[-2,3]B .[-1,3]C .[-1,4]D .[-3,5]解析:(1)由⎩⎪⎨⎪⎧2x -x 2≥0,ln?2x -1?≠0,2x -1>0,得⎩⎪⎨⎪⎧0≤x ≤2,x ≠1,x >12.所以函数的定义域为⎝ ⎛⎭⎪⎫12,1∪(1,2].(2)由题意可得⎩⎪⎨⎪⎧-3≤x +1≤5,-3≤x -2≤5,解不等式组可得-1≤x ≤4. 所以函数g (x )的定义域为[-1,4].答案:(1)⎝ ⎛⎭⎪⎫12,1∪(1,2] (2)C 求已知函数的值域典题导入[例2] 求下列函数的值域. (1)y =x 2+2x (x ∈[0,3]); (2)y =1-x 21+x 2;(3)y =x +4x(x <0);(4)f (x )=x -1-2x . [自主解答] (1)(配方法)y =x 2+2x =(x +1)2-1,∵y =(x +1)2-1在[0,3]上为增函数, ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15]. (2)y =1-x 21+x 2=21+x 2-1,∵1+x 2≥1,∴0<21+x2≤2.∴-1<21+x 2-1≤1.即y ∈(-1,1].∴函数的值域为(-1,1].(3)∵x <0,∴x +4x=-⎝ ⎛⎭⎪⎫-x -4x ≤-4,当且仅当x =-2时等号成立. ∴y ∈(-∞,-4].∴函数的值域为(-∞,-4].(4)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎝⎛⎦⎥⎤-∞,12.法二:(单调性法)f (x )的定义域为⎝ ⎛⎦⎥⎤-∞,12容易判断f (x )为增函数,所以f (x )≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎝⎛⎦⎥⎤-∞,12.由题悟法求函数值域常用的方法(1)配方法,多适用于二次型或可转化为二次型的函数(例(1)). (2)换元法(例(4)). (3)基本不等式法(例(3)). (4)单调性法(例(4)). (5)分离常数法(例(2)).[注意] 求值域时一定要注意定义域的使用,同时求值域的方法多种多样,要适当选择.以题试法2.(1)函数y =x -3x +1的值域为________. (2)(2012·海口模拟)在实数的原有运算中,我们定义新运算“⊕”如下:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:(1)y =x -3x +1=x +1-4x +1=1-4x +1, 因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}.(2)由题意知f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈?1,2],当x ∈[-2,1]时,f (x )∈[-4,-1]; 当x ∈(1,2]时,f (x )∈(-1,6], 即当x ∈[-2,2]时,f (x )∈[-4,6].答案:(1){y |y ∈R ,y ≠1} (2)[-4,6]与函数定义域、值域有关的参数问题典题导入[例3] (2012·合肥模拟)若函数f (x )= 2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________.[自主解答] 函数f (x )的定义域为R ,所以2x 2+2ax -a -1≥0对x ∈R 恒成立,即2x 2+2ax -a ≥1,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0,解得-1≤a ≤0. [答案] [-1,0]由题悟法求解定义域为R 或值域为R 的函数问题时,都是依据题意,对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.以题试法3.(2012·烟台模拟)已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z),值域是[0,1],则满足条件的整数数对(a ,b )共有________个.解析:由0≤4|x |+2-1≤1,即1≤4|x |+2≤2,得0≤|x |≤2,满足整数数对的有(-2,0),(-2,1),(-2,2),(0,2),(-1,2)共5个.答案:5函数的值域由函数的定义域和对应关系完全 确定,但因函数千变万化,形式各异,值域的求 法也各式各样,因此求函数的值域就存在一定的 困难,解题时,若方法适当,能起到事半功倍的 作用.求函数值域的常用方法有配方法、换元法、 分离常数法、基本不等式法、单调性法(以上例2 都已讲解)、判别式法、数形结合法等.1.数形结合法利用函数所表示的几何意义,借助于图象的直观性来求函数的值域,是一种常见的方法,如何将给定函数转化为我们熟悉的模型是解答此类问题的关键.[典例1] 对a ,b ∈R ,记max|a ,b |=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b .函数f (x )=max||x +1|,|x -2||(x ∈R)的值域是________.[解析] f (x )=⎩⎪⎨⎪⎧|x +1|,x ≥12,|x -2|,x <12,由图象知函数的值域为⎣⎢⎡⎭⎪⎫32,+∞.[答案] ⎣⎢⎡⎭⎪⎫32,+∞[题后悟道] 利用函数所表示的几何意义求值域(最值),通常转化为以下两种类型: (1)直线的斜率:yx 可看作点(x ,y )与(0,0)连线的斜率;y -bx -a可看作点(x ,y )与点(a ,b )连线的斜率. (2)两点间的距离: ?x -x 1?2+?y -y 1?2可看作点(x ,y )与点(x 1,y 1)之间的距离. 针对训练1.函数y =?x +3?2+16+?x -5?2+4的值域为________. 解析:函数y =f (x )的几何意义为:平面内一点P (x,0)到两点A (-3,4)和B (5,2)距离之和.由平面几何知识,找出B 关于x 轴的对称点B ′(5,-2).连接AB ′交x 轴于一点P 即为所求的点,最小值y =|AB ′|=82+62=10.即函数的值域为[10,+∞). 答案:[10,+∞) 2.判别式法对于形如y =a 1x 2+b 1x +c 1a 2x 2+b 2x +c 2(a 1,a 2不同时为零)的函数求值域,通常把其转化成关于x 的一元二次方程,由判别式Δ≥0,求得y 的取值范围,即为原函数的值域.[典例2] 函数y =x 2-xx 2-x +1的值域为________.[解析] 法一:(配方法) ∵y =1-1x 2-x +1,又x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1.∴函数的值域为⎣⎢⎡⎭⎪⎫-13,1.法二:(判别式法)由y =x 2-xx 2-x +1,x ∈R ,得(y -1)x 2+(1-y )x +y =0. ∵y =1时,x ∈?,∴y ≠1.又∵x ∈R ,∴Δ=(1-y )2-4y (y -1)≥0, ∴-13≤y <1.∴函数的值域为⎣⎢⎡⎭⎪⎫-13,1. [答案] ⎣⎢⎡⎭⎪⎫-13,1 [题后悟道] 本题解法二利用了判别式法,利用判别式法首先把函数转化为一个系数含有y 的二次方程a (y )x 2+b (y )x +c (y )=0,则在a (y )≠0时,若x ∈R ,则Δ≥0,从而确定函数的最值;再检验a (y )=0时对应的x 的值是否在函数定义域内,以决定a (y )=0时y 的值的取舍.针对训练2.已知函数y =mx 2+43x +nx 2+1的最大值为7,最小值为-1,则m +n 的值为( )A .-1B .4C .6D .7解析:选C 函数式可变形为(y -m )x 2-43x +(y -n )=0,x ∈R ,由已知得y -m ≠0,所以Δ=(-43)2-4(y -m )·(y -n )≥0,即y 2-(m +n )y +(mn -12)≤0,①由题意,知不等式①的解集为[-1,7],则-1、7是方程y 2-(m +n )y +(mn -12)=0的两根,代入得⎩⎪⎨⎪⎧1+?m +n ?+mn -12=0,49-7?m +n ?+mn -12=0,解得⎩⎪⎨⎪⎧m =5,n =1或⎩⎪⎨⎪⎧m =1,n =5.所以m +n =6.求解函数的值域要根据函数解析式的特点选择恰当的方法,准确记忆常见函数的值域,熟练掌握各种类型函数值域的求法,除前面介绍的几种方法外,还有单调性法、导数法(以后还要讲解).1.函数y =13x -2+lg(2x -1)的定义域是( )解析:选C 由⎩⎪⎨⎪⎧3x -2>0,2x -1>0得x >23.2.(2012·汕头一测)已知集合A 是函数f (x )=1-x 2+x 2-1x的定义域,集合B 是其值域,则A ∪B的子集的个数为( )A .4B .6C .8D .16解析:选C 要使函数f (x )的解析式有意义,则需⎩⎪⎨⎪⎧1-x 2≥0,x 2-1≥0,x ≠0,解得x =1或x =-1,所以函数的定义域A ={-1,1}.而f (1)=f (-1)=0,故函数的值域B ={0},所以A ∪B ={1,-1,0},其子集的个数为23=8.3.下列图形中可以表示以M ={x |0≤x ≤1}为定义域,以N ={y |0≤y ≤1}为值域的函数的图象是( )解析:选C 由题意知,自变量的取值范围是[0,1],函数值的取值范围也是[0,1],故可排除A 、B ;再结合函数的定义,可知对于集合M 中的任意x ,N 中都有唯一的元素与之对应,故排除D.4.(2013·长沙模拟)下列函数中,值域是(0,+∞)的是( ) A .y =x 2-2x +1 B .y =x +2x +1(x ∈(0,+∞)) C .y =1x 2+2x +1(x ∈N)D .y =1|x +1|解析:选D 选项A 中y 可等于零;选项B 中y 显然大于1;选项C 中x ∈N ,值域不是(0,+∞);选项D 中|x +1|>0,故y >0.5.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( ) A .RB .{x |x >0}C .{x |0<x <5}解析:选C 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,即0<x <5.6.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪⎝ ⎛⎦⎥⎤12,2B .(-∞,2]∪[2,+∞)D .(0,+∞)解析:选A ∵x ∈(-∞,1)∪[2,5), 故x -1∈(-∞,0)∪[1,4), ∴2x -1∈(-∞,0)∪⎝ ⎛⎦⎥⎤12,2. 7.(2013·安阳4月模拟)函数y =x +1+x -1?0lg?2-x ?的定义域是________.解析:由⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1得⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,则⎩⎪⎨⎪⎧-1≤x <2,x ≠1,所以定义域是{x |-1≤x <1,或1<x <2}.答案:{x |-1≤x <1,或1<x <2}8.函数y =x -x (x ≥0)的最大值为________. 解析:y =x -x =-(x )2+x =-⎝ ⎛⎭⎪⎫x -122+14,即y max =14.答案:149.(2012·太原模考)已知函数f (x )的定义域为[0,1],值域为[1,2],则函数f (x +2)的定义域为____________,值域为__________.解析:由已知可得x +2∈[0,1],故x ∈[-2,-1],所以函数f (x +2)的定义域为[-2,-1].函数f (x )的图象向左平移2个单位得到函数f (x +2)的图象,所以值域不发生变化,所以函数f (x +2)的值域仍为[1,2].答案:[-2,-1] [1,2] 10.求下列函数的值域.(1)y =1-x2x +5;(2)y =2x -1-13-4x .解:(1)y =1-x2x +5=-12?2x +5?+722x +5=-12+722x +5, 因为722x +5≠0,所以y ≠-12, 所以函数y =1-x 2x +5的值域为⎩⎨⎧⎭⎬⎫y |y ≠-12. (2)法一:(换元法)设13-4x =t ,则t ≥0,x =13-t 24, 于是y =g (t )=2·13-t 24-1-t =-12t 2-t +112=-12(t +1)2+6, 显然函数g (t )在[0,+∞)上是单调递减函数,所以g (t )≤g (0)=112, 因此函数的值域是⎝⎛⎦⎥⎤-∞,112. 法二:(单调性法)函数定义域是⎩⎨⎧⎭⎬⎫x |x ≤134, 当自变量x 增大时,2x -1增大,13-4x 减小,所以2x -1-13-4x 增大,因此函数f (x )=2x -1-13-4x 在其定义域上是单调递增函数,所以当x =134时,函数取得最大值f ⎝ ⎛⎭⎪⎫134=112, 故函数的值域是⎝⎛⎦⎥⎤-∞,112. 11.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值. 解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1. 即[1,b ]为f (x )的单调递增区间.∴f (x )min =f (1)=a -12=1① f (x )max =f (b )=12b 2-b +a =b ②由①②解得⎩⎪⎨⎪⎧ a =32,b =3. 12.(2013·宝鸡模拟)已知函数g (x )=x +1, h (x )=1x +3,x ∈(-3,a ],其中a 为常数且a >0,令函数f (x )=g (x )·h (x ).(1)求函数f (x )的表达式,并求其定义域;(2)当a =14时,求函数f (x )的值域. 解:(1)f (x )=x +1x +3,x ∈[0,a ](a >0). (2)函数f (x )的定义域为⎣⎢⎡⎦⎥⎤0,14, 令x +1=t ,则x =(t -1)2,t ∈⎣⎢⎡⎦⎥⎤1,32, f (x )=F (t )=t t 2-2t +4=1t +4t-2, 当t =4t 时,t =±2?⎣⎢⎡⎦⎥⎤1,32,又t ∈⎣⎢⎡⎦⎥⎤1,32时,t +4t 单调递减,F (t )单调递增,F (t )∈⎣⎢⎡⎦⎥⎤13,613. 即函数f (x )的值域为⎣⎢⎡⎦⎥⎤13,613.1.函数y =2--x 2+4x 的值域是( )A .[-2,2]B .[1,2]C .[0,2]D .[-2,2] 解析:选C -x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0,0≤2--x 2+4x ≤2,所以0≤y ≤2.2.定义区间[x 1,x 2](x 1<x 2)的长度为x 2-x 1,已知函数f (x )=|log 12x |的定义域为[a ,b ],值域为[0,2],则区间[a ,b ]的长度的最大值与最小值的差为________.解析:由函数f (x )=|log 12x |的图象和值域为[0,2]知,当a =14时,b ∈[1,4];当b =4时,a ∈⎣⎢⎡⎦⎥⎤14,1,所以区间[a ,b ]的长度的最大值为4-14=154,最小值为1-14=34.所以区间长度的最大值与最小值的差为154-34=3. 答案:3 3.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝ ⎛⎭⎪⎫2+x 2360升,司机的工资是每小时14元. (1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解:(1)行车所用时间为t =130x (h), y =130x ×2×⎝ ⎛⎭⎪⎫2+x 2360+14×130x ,x ∈[50,100]. 所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100]. (2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x , 即x =1810时,上述不等式中等号成立.当x =1810时,这次行车的总费用最低,最低费用为2610元.1.已知函数f (x )=2x +4-x ,则函数f (x )的值域为( )A .[2,4]B .[0,2 5 ]C .[4,2 5 ]D .[2,2 5 ] 解析:选D ∵x ∈[0,4],∴可令x =4cos 2θ,θ∈⎣⎢⎡⎦⎥⎤0,π2, 则y =2·2cos θ+2sin θ=25sin(θ+φ),tan φ=2.又0≤θ≤π2,φ≤θ+φ≤π2+φ, 故cos φ≤sin(θ+φ)≤1,而cos φ=15, ∴2≤y ≤2 5.2.若函数f (x )= ?a 2-1?x 2+?a -1?x +2a +1的定义域为R ,求实数a 的取值范围. 解:由函数的定义域为R ,可知对x ∈R ,f (x )恒有意义,即对x ∈R ,(a 2-1)x 2+(a -1)x +2a +1≥0恒成立.①当a 2-1=0,即a =1(a =-1舍去)时,有1≥0,对x ∈R 恒成立,故a =1符合题意; ②当a 2-1≠0,即a ≠±1时,则有 ⎩⎪⎨⎪⎧ a 2-1>0,Δ=?a -1?2-4?a 2-1?×2a +1≤0,解得1<a ≤9.综上,可得实数a 的取值范围是[1,9].。

1、函数定义域、值域求法总结

1、函数定义域、值域求法总结

1、函数定义域、值域求法总结函数定义域、值域求法总结1、函数的定义域是指自变量“x ”的取值集合。

2、在同一对应法则作用下,括号内整体的取值范围相同。

一般地,若已知 f(x)的定义域为[a,b],求函数f[g(x)]的定义域时,由于分别在两个函数中的x 和g(x)受同一个对应法则的作用,从而范围相同。

因此f[g(x)]的定义域即为满足条件a ≤g(x)≤b 的x 的取值范围。

一般地,若已知 f[g(x)]的定义域为[a,b],求函数 f(x)的定义域时,由于x和g(x) 受同一个对应法则的作用, 所以f(x)的定义域即为当a ≤x≤b 时,g(x)的取值范围。

定义域是X 的取值范围,g(x)和h(x)受同一个对应法则的影响,所以它们的范围相同。

()的定义域求的定义域已知练习)2(],9,3[log :313-x f x f():f (x),f[g(x)]题型一已知的定义域求的定义域()():f g x ,f (x)⎡⎤⎣⎦题型二已知的定义域求的定义域()[]():f g x ,f h(x)⎡⎤⎣⎦题型三已知的定义域求的定义域()[]()[])x (h f x f x g f →→一、定义域是函数y=f(x)中的自变量x 的范围。

求函数的定义域需要从这几个方面入手: (1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、值域是函数y=f(x)中y 的取值范围。

常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法(4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等这些解题思想与方法贯穿了高中数学的始终。

函数定义域值域及表示

函数定义域值域及表示

函数定义域值域及表示 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT函数定义域值域及表示(1)函数的概念设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式.构成函数的三要素:定义域、对应关系和值域再注意:1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)(2)区间的概念及表示法设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a xb <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()=可以化成一个系数含有y的关于x的二次方程y f x2++=,则在()0a y xb y xc y()()()0a y≠时,由于,x y为实数,故必须有2()4()()0∆=-⋅≥,从而确定函数的值域或最值.b y a yc y④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.⑧函数的单调性法.例题讲解[例1] 求下列函数的定义域:⑴y=⑵y=(3)x x x x f -+=0)1()( (4)g(x)=211+-++x x[例2] 求抽象函数求定义域记住两句话:地位相同范围相同,定义域是关于x 的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:2.1.2函数-区间的概念及求定义域的方法教学目的:1.能够正确理解和使用“区间”、“无穷大”等记号;掌握分式函数、根式函数定义域的求法,掌握求函数解析式的思想方法;2.培养抽象概括能力和分析解决问题的能力;教学重点:“区间”、“无穷大”的概念,定义域的求法教学难点:正确求分式函数、根式函数定义域授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;对应法则是函数的核心(它规定了x和y之间的某种关系),定义域是函数的重要组成部分(对应法则相同而定义域不同的映射就是两个不同的函数);定义域和对应法则一经确定,值域就随之确定前面我们已经学习了函数的概念,,今天我们来学习区间的概念和记号二、讲解新课:1.区间的概念和记号在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b∈R ,且a<b.我们规定:①满足不等式a≤x≤b的实数x的集合叫做闭区间,表示为[a,b];②满足不等式a<x<b的实数x的集合叫做开区间,表示为(a,b);③满足不等式a≤x<b 或a<x≤b的实数x的集合叫做半开半闭区间,分别表示为[a,b) ,(a,b].这里的实数a和b叫做相应区间的端点.在数轴上,这些区间都可以用一条以a和b为端点的线段来表示,在图中,用{x|a<x ≤b }左开右闭区间 (a ,b)这样实数集R 也可用区间表示为(-,+),“”读作“无穷大”,“-”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x<b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(- ∞,b ],(- ∞,b).注意:书写区间记号时:①有完整的区间外围记号(上述四者之一); ②有两个区间端点,且左端点小于右端点; ③两个端点之间用“,”隔开. 2.求函数定义域的基本方法我们知道,根据函数的定义,所谓“给定一个函数”,就应该指明这个函数的定义域和对应法则(此时值域也往往随着确定),不指明这两点是不能算给定了一个函数的,那么为什么又在给定函数之后来求它的定义域呢?这是由于用解析式表示函数时,我们约定:如果不单独指出函数的定义域是什么集合,那么函数的定义域就是能使这个式子有意义的所有实数x 的集合.有这个约定,我们在用解析式给出函数的对应法则的同时也就给定了定义域,而求函数的定义域就是在这个意义之下写出使式子有意义的所有实数组成的集合.3.分段函数:有些函数在它的定义域中,对于自变量x 的不同取值范围,对应法则不同,这样的函数通常称为分段函数.分段函数是一个函数,而不是几个函数.4.复合函数:设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数三、讲解范例:下面举例说明函数定义域的求法.例1已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ⇒1)]}1([{)0(;0)1(;2)1(+=-==-=ππf f f f f f 例2已知f (x )=x 2-1 g (x )=1+x 求f [g (x )]解:f [g (x )]=(1+x )2-1=x +2x例3 求下列函数的定义域: ①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x∴函数14)(2--=x x f 的定义域为: [3,3-]②要使函数有意义,必须:⎩⎨⎧≠-≠-≤-≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 4133≥-≤<-->⇒x x x 或或∴定义域为:{ x|4133≥-≤<-->x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x ⇒2110-≠-≠≠⎪⎩⎪⎨⎧x x x ∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x R x 即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例4 若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围解:∵定义域是R,∴恒成立,012≥+-aax ax ∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于 例5 若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:43434543434514111411≤≤-⇒⎪⎩⎪⎨⎧≤≤-≤≤-⇒⎪⎩⎪⎨⎧≤-≤-≤+≤-x x x x x ∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 求用解析式y=f(x)表示的函数的定义域时,常有以下几种情况: ①若f(x)是整式,则函数的定义域是实数集R ;②若f(x)是分式,则函数的定义域是使分母不等于0的实数集;③若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;④若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;⑤若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.例6 已知f(x)满足x x f x f 3)1()(2=+,求)(x f ;∵已知x x f x f 3)1()(2=+ ①,将①中x 换成x 1得xx f x f 3)()1(2=+ ②, ①×2-②得x x x f 36)(3-= ∴xx x f 12)(-=.例7 设二次函数)(x f 满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,图象过点(0,3),求)(x f 的解析式.解:设)0()(2≠++=a c bx ax x f ,∵图象过点(0,3),∴有f(0)=c=3,故c=3;又∵f(x)满足)2()2(x f x f -=+且)(x f =0的两实根平方和为10,∴得对称轴x=2且2122122212)(x x x x x x -+=+=10,即22=-ab且10622=-a a b ,∴a=1,b=-4,∴34)(2+-=x x x f四、练习:1.设)(x f 的定义域是[-3,2],求函数)2(-x f 的定义域解:要使函数有意义,必须:223≤-≤-x 得: 221+≤≤-x∵x ≥0 ∴ 220+≤≤x 2460+≤≤x∴ 函数)2(-x f 的定域义为:{}2460|+≤≤x x2.已知f(x)是一次函数, 且f[f(x)]=4x -1, 求f(x)的解析式解:设f(x)=kx+b 则 k(kx+b)+b=4x -1则⎪⎩⎪⎨⎧-==⇒⎩⎨⎧-=+=3121)1(42b k b k k 或 ⎩⎨⎧=-=12b k ∴312)(-=x x f 或12)(+-=x x f 3.若x x x f 21(+=+),求f(x) 解法一(换元法):令t=1+x 则x=t 2-1, t ≥1代入原式有1)1(2)1()(22-=-+-=t t t t f∴1)(2-=x x f (x ≥1)解法二(定义法):1)1(22-+=+x x x∴1)1()1(2-+=+x x f 1+x ≥1∴1)(2-=x x f (x ≥1)五、小结 本节课学习了以下内容:区间的概念和记号,求函数定义域的基本方法,求解析式的方法,分段函数;复合函数六、课后作业:课本第52页习题2.1:6补充:1 已知:)(x f =x 2-x+3 求: f(x+1), f(x1) 解:f(x 1)=(x 1)2-x1+3; f(x+1)=(x+1)2-(x+1)+3=x 2+x+32 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)]. 解:f[f(x)]=4f(x)+3=4(4x+3)+3=16x+15;f[g(x)]=4g(x)+3=4x 2+3;g[f(x)]=[f(x)]2=(4x+3)2=16x 2+24x+9; g[g(x)]=[g(x)]2=(x 2)2=x 4. 3 若xxx f -=1)1( 求f(x) 解: 令x t 1= 则tx 1= (t ≠0) 则11111)(-=-=t tt t f∴f(x)=11-x (x ≠0且x ≠1)七、板书设计(略) 八、课后记:课 题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法 教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合 (2)元素:集合中每个对象叫做这个集合的元素 2、常用数集及记法(1)自然数集:全体非负整数的集合N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集记作N *或N + ,{} ,3,2,1*=N (3)整数集:全体整数的集合记作Z , {} ,,,210±±=Z(4)有理数集:全体有理数的集合记作Q , {}所有整数与分数=Q(5)实数集:全体实数的集合记作R ,{}数数轴上所有点所对应的=R3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉ 4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可(2)互异性:集合中的元素没有重复(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、(1)集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q …… (2)“∈”的开口方向,不能把a ∈A 颠倒过来写二、讲解新课: (二)集合的表示方法1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合例如,由方程012=-x 的所有解组成的集合,可以表示为{-1,1} 注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100} 所有正奇数组成的集合:{1,3,5,7,…}(2)a 与{a}不同:a 表示一个元素,{a}表示一个集合,该集合只有一个元素2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法格式:{x ∈A| P (x )}含义:在集合A 中满足条件P (x )的x 的集合例如,不等式23>-x 的解集可以表示为:}23|{>-∈x R x 或}23|{>-x x 所有直角三角形的集合可以表示为:}|{是直角三角形x x注:(1)在不致混淆的情况下,可以省去竖线及左边部分 如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数}3、文氏图:用一条封闭的曲线的内部来表示一个集合的方法4、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法如:集合},5,23,{2232y x x y x x +-+⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法如:集合}1|),{(2+=x y y x ;集合{1000以内的质数}例 集合}1|),{(2+=x y y x 与集合}1|{2+=x y y 是同一个集合吗?答:不是因为集合}1|),{(2+=x y y x 是抛物线12+=x y 上所有的点构成的集合,集合}1|{2+=x y y =}1|{≥y y 是函数12+=x y 的所有函数值构成的数集(三) 有限集与无限集1、 有限集:含有有限个元素的集合2、 无限集:含有无限个元素的集合3、 空集:不含任何元素的集合记作Φ,如:}01|{2=+∈x R x三、练习题:1、用描述法表示下列集合①{1,4,7,10,13} }5,23|{≤∈-=n N n n x x 且②{-2,-4,-6,-8,-10} }5,2|{≤∈-=n N n n x x 且 2、用列举法表示下列集合①{x ∈N|x 是15的约数} {1,3,5,15} ②{(x ,y )|x ∈{1,2},y ∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{x=1,y=2} ③⎩⎨⎧=-=+}422|),{(y x y x y x )}32,38{(-④},)1(|{N n x x n∈-= {-1,1}⑤},,1623|),{(N y N x y x y x ∈∈=+ {(0,8)(2,5),(4,2)} ⑥}4,|),{(的正整数约数分别是y x y x{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于x 的方程ax +b=0,当a,b 满足条件____时,解集是有限集;当a,b 满足条件_____时,解集是无限集4、用描述法表示下列集合:(1) { 1, 5, 25, 125, 625 }= ;(2) { 0,±21, ±52, ±103, ±174, ……}= 四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集2.集合的表示方法:列举法、描述法、文氏图 五、课后作业:六、板书设计(略) 七、课后记:。

相关文档
最新文档