Leslie模型(数学建模)

合集下载

leslie人口增长模型

leslie人口增长模型

人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。

最后提出了有关人口控制与管理的措施。

模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1963年、1980年、2005年到2012年四组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。

得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。

运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。

模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的 Leslie模型。

首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。

其次,对人口老龄化问题、人口抚养比进行分析。

得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。

再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。

第2讲 Leslie矩阵模型

第2讲  Leslie矩阵模型

3.4 Leslie 矩阵模型本节将以种群为例,考虑种群的年龄结构,种群的数量主要由总量的固有增长率决定,但是不同年龄结构动物的繁殖率和死亡率有着明显的不同,为了更精确地预测种群的增长,在此讨论按年龄分组的种群增长预测模型,这个向量形式的差分方程是Leslie 在20世纪40年代用来描述女性人口变化规律的,虽然这个模型仅考虑女性人口的发展变化,但是一般男女人口的比例变化不大。

假设女性最大年龄为s 岁,分s 岁为n 个年龄区间:n i n is n s i t i ,,2,1,,)1( =⎥⎦⎤⎢⎣⎡-=∆年龄属于i t ∆的女性称为第i 组,设第i 组女性人口数目为),,2,1(n i x i =,称T n x x x x ),,,(21 =为女性人口年龄分布向量,考虑x 随k t 的变化情况,每隔ns年观察一次,不考虑同一时间间隔内的变化(即将时间离散化)。

设初始时间为0t ,nkst t k +=0时间的年龄分布向量为T k n k k k x x x x ),,,()()(2)(1)( =,这里只考虑由生育、老化和死亡引起的人口演变,而不考虑迁移、战争、意外灾难等社会因素的影响。

设第i 组女性的生殖率(已扣除女婴的死亡率)为i a (第i 组每位女性在ns年中平均生育的女婴数,0≥i a ),存活率i b (第i 组女性在ns 年仍活着的人数与原来人数之比,10≤<i b ),死亡率i b -=1,假设i a ,i b 在同一时间间隔内保持不变,这个数据可由人口统计资料获得。

k t 时第一组女性的总数)(1k x 是1-k t 时各组女性(人数为n i x k i ,,2,1,)1( =-)所生育的女婴的总数,可以由下式表示:)1()1(22)1(11)(1---+++=k n n k k k x a x a x a xk t 时第1+i 组(1≥i )女性人数)(1k i x +是1-k t 时第i 组女性经ns年存活下来的人数,可以由下式表示:1,,2,1,1)(1-==-+n i x b x k ii k i 用矩阵将上两式表示为:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------1131211121121321000000000k n k k k n n n k n k k k x x x x b b b a a a a x x x x记:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--000000000121121n n n b b b a a a a L,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=k n k k k k x x x x x 321)(, 则有 )0()(x L x k k =称L 为Leslie 矩阵,由上式可算出k t 时间各年龄组人口总数、人口增长率以及各年龄组人口占总人口的百分比。

数学建模之中国人口增长的预测和人口结构的简析

数学建模之中国人口增长的预测和人口结构的简析

中国人口增长的预测和人口结构的简析摘要本文根据过去数十年的人口数据,通过建立不同的数学模型,对中国人口的增长进行了短期和中长期的预测。

模型一:从中国统计年鉴—2008,查找得到2000-2007年的人口数据,然后用灰色模型进行人口的短期(2008-2017)预测。

这里,我们采用两种算法进行人口总数的预测。

一种是用灰色模型分别对城镇人口和乡村人口进行人口预测,然后求加和得到总的人口数;另一种是用灰色模型对实际的总人口数进行预测,预测未来10年的总人口数。

通过比较相对误差率知道第二种方法预测得到的数据误差较小,故采用第二种方法预测的未来10年的人口数为:模型二:对于中长期的预测我们采用Leslie模型进行预测。

我们利用题中所提供的人口数据的比例,将人分为6种类型,在考虑年龄结构的基础上,对各类人中的女性人数分别进行预测,然后根据男女的性别比例,求出男性的人口数,再将预测得到的各类人数进行汇总加和,最终得到总的人口数。

由于我们是根据年龄结构进行的预测,所以可以对人口进行简单的分析,得到老龄化变化趋势,乡镇市的人口所占比例的变化等。

关键词:人口预测;灰色模型;分类计算;Leslie模型一、模型假设模型一的假设:1、不考虑国际迁移,认为国家内部迁移不改变人口总量;2、不考虑自然灾害、疾病等因素对人口数量的影响;3、文中短期预测到2017年4、大面积自然灾害、疾病的发生以及人们的生育观念等因素会对当年的生育率和人口数量产生影响,认为这些因素在预测误差允许的范围内.模型二的假设:1、每一年龄组的女性在每一个时间段内有相同的生育率和死亡率;2、在预测的时间段内男女的性别比例保持现状不变;3、不考虑人口的迁入和迁出;4、不考虑空间等自然因素的影响,不考虑自然灾害对人口数量的影响。

二、问题分析中国是一个人口大国,随着经济的不断发展,生产力达到较高的水平,现在的问题已不是仅仅满足个人的需要,而是要考虑社会的需要。

中国未富先老,对经济的发展产生很大的影响。

Leslie人口模型

Leslie人口模型

Leslie人口模型模型三、Leslie人口模型在短时期内男女性别比通常是不会发生变化的,因此讨论总人口的发展变化趋势与只讨论女性人口数量的变化情况意义是相同的。

在该模型中,我们将人口年龄离散化,大小等间隔地分成h个年龄组,相应地,将时间离散化为时段,每十年为一个时段。

k,0,1,2xk()记时段k第i个年龄组的女性人口总数为, ih,且该年龄组的女性生育率(该年龄组的女性在1个时段内xkbxk(1)(),,,ii1i,1bsd,,1的平均生育数量)为,该年龄组的死亡率为d,则相应的存活率为,iiiisd,,1在稳定的环境下存活率与生育率基本上是不随时间的变化而改变biii sd,,1b的,,因此我们将存活率与生育率看作是常数。

则人口的变化情况满iii足以下条件:第k+1时段,第一个年龄组的女性人口数量是时段k各个年龄段生育的人口数之和,即h (6) xkbxk(1)(),,,ii1i,1时段k+1第i+1个年龄段的女性人口数量是k时段第i个年龄组存活下来的女性人口数量,即xksxkih(1)(),1,2,,,, (7) iii,1记时段k女性人口数量按年龄组的分布向量为T (8) Xkxkxkxk()((),(),,()),129XkLXk(1)(),, 综合上述(6)(7)(8)得:其中由出生率和存活率构成的Leslie矩阵为bbbb,,1289,,s000,,1,, L,000s,,2,,0,,,,000s8,,X(0)当矩阵L和按照年龄组的初始分布向量已知时,可以预测任意时段k的女性人口按年龄组的分布情况:kXkLXk()(0),0,1,2,,, (9) 稳定状况分析:01,1,2,9,,,si根据和的定义,矩阵L中的元素满足: sbiiib,0,且至少有一个 xksxkih(1)(),1,2,,,,iiii,1定理1:L矩阵有唯一的正特根值,且它是单根,对应的特征向量为 ,,11ssssssn*T11212 ,X(1,,,,)n2,,,111k,2,3,,9且L矩阵的其他n-1个特征值满足, ,,,,1kk定理2:若L矩阵第一行有两项顺次的元素都大于0,则,bb,,,,ii,11kXk()且由(8)式确定的满足xk()*bs ,其中c是由,及X(0)决定的常数。

莱斯利Leslie种群模型

莱斯利Leslie种群模型

10
§4.5 应 用(一) ———————————————————— 4.5.2莱斯利(— Leslie)种群模型
莱斯利种群模型研究动物种群中雌性动物的年龄分 布与数量增长之间的关系.
设某动物种群中雌性动物的最大生存年龄为L(单位: 年),将区间[0,L]作n等分得n个年龄组
i 1 i [ L, L], i 1,2,, n, n n
t y 3 4 4 xt 3 4 2, t
t
由此可预测该地区年后的环境污染水平和经济发展 水平.
9
§4.5 应 用(一) ———————————————————— —
2 因无实际意义而在Case 2中未作讨论,但在Case
3的讨论中仍起到了重要作用. 由经济发展与环境污染的增长模型易见,特征值 和特征向量理论在模型的分析和研究中获得了成功的 应用.
1
§4.5 应 用(一) ———————————————————— 设x0 , y0分别为改地区目前的环 水 — 境污染水平与经济发展
平, x1 , y1分别为改地区若干年后 的环境污染水平与经济 发展水平, 且有如下关系: x1 3 x0 y 0 y1 2 x0 2 y 0
16
(2.5)
§4.5 应 用(一) ———————————————————— X (1) LX ( 0) , — X ( 2) LX (1) L2 X ( 0) ,
X (3) LX ( 2 ) L3 X ( 0) , , X ( k ) LX ( k 1) Lk X ( 0) .
0 31 22
由(*)及特征值与特征向量的性质
8
§4.5 应 用(一) ———————————————————— t t t At 0 At (31 2— ) 3 A 2 A 2 2 1

数学建模论文-人口预测模型

数学建模论文-人口预测模型

中国人口预测模型摘要本文对人口预测的数学模型进行了研究。

首先,建立一次线性回归模型,灰色序列预测模型和逻辑斯蒂模型。

考虑到三种模型均具有各自的局限性,又用加权法建立了熵权组合模型,并给出了使预测误差最小的三个预测模型的加权系数,用该模型对人口数量进行预测,得到的结果如下:其次,建立Leslie人口模型,充分反映了生育率、死亡率、年龄结构、男女比例等影响人口增长的因素,并利用以1年为分组长度方式和以5年为负指数函数,并给出了反映城乡人口迁移的人口转移向量。

最后我们BP神经网络模型检验以上模型的正确性关键字:一次线性回归灰色序列预测逻辑斯蒂模型Leslie人口模型BP神经网络一、问题重述1. 背景人口增长预测是随着社会经济发展而提出来的。

在过去的几千年里,由于人类社会生产力水平低,生产发展缓慢,人口变动和增长也不明显,生产自给自足或进行简单的以货易货,因而对未来人口发展变化的研究并不重要,根本不用进行人口增长预测。

而当今社会,经济发展迅速,生产力达到空前水平,这时的生产不仅为了满足个人需求,还要面向社会的需求,所以必须了解供求关系的未来趋势。

而人口增长预测是对未来进行预测的各环节中的一个重要方面。

准确地预测未来人口的发展趋势,制定合理的人口规划和人口布局方案具有重大的理论意义和实用意义。

2. 问题人口增长预测有短期、中期、长期预测之分,而各个国家和地区要根据实际情况进行短期、中期、长期的人口预测。

例如,中国人口预期寿命约为70岁左右,因此,长期人口预测最好预测到70年以后,中期40—50年,短期可以是5年、10年或20年。

根据2007年初发布的《国家人口发展战略研究报告》(附录一)及《中国人口年鉴》收集的数据(附录二),再结合中国的国情特点,如老龄化进程加速,人口性别比升高,乡村人口城镇化等因素,建立合理的关于中国人口增长的数学模型,并利用此模型对中国人口增长的中短期和长期趋势做出预测,同时指出此模型的合理性和局限性。

【数学建模】人口增长Leslie模型

【数学建模】人口增长Leslie模型

【数学建模】⼈⼝增长Leslie模型问题分析· ⽤数学建模预测⼈⼝增长的⽅法:差分⽅程、微分⽅程、回归分析、时间序列等.· 结合所给数据以差分⽅程组的Leslie模型为基础.· 考虑不同地区、不同性别⼈⼝参数的差别及农村⼈⼝向城市迁移等因素.· 按照地区和性别建⽴以时间和年龄为基本变量的中国⼈⼝增长模型.· 利⽤历史数据估计⽣育率、死亡率及⼈⼝迁移等参数,代⼊模型求解并作预测.模型假设·中国⼈⼝是封闭系统, 将数据中的市、镇合并为城市, 与农村(乡)作为两个地区; 只考虑农村向城市⼈⼝的单向迁移, 不考虑与境外的相互移民.· 对中短期⼈⼝预测, ⽣育率、死亡率及⼈⼝迁移等参数⽤历史数据估计; 长期预测考虑总和⽣育率的控制、城镇化指数的变化趋势等因素.· ⼥性每胎⽣育⼀个⼦⼥.模型建⽴按地区和性别划分、以年龄为离散变量、随时段演变的⼈⼝发展模型,为4n阶差分⽅程组.参数估计存活率的估计死亡率与年龄关系⼤, 与地区、性别和时间的关系⼩.中国⼏⼗年来死亡率降低较快, 未来趋势仍持续下降.中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的死亡率简单地取平均值.长期预测:⽤统计⽅法对历史数据加以处理,并参考发达国家⼈⼝死亡率的演变过程给出估计值.⽣育率的估计中短期预测:将过去若⼲年不同地区、性别和各年龄⼈⼝的⽣育率简单地取平均值.长期预测:设定⼏个不同⽔平的总和⽣育率.⼈⼝迁移的估计模型求解选定初始年份⽤⼈⼝发展模型递推计算MATLAB实现clc;%初始化,设置各种参数和初始⼈数矩阵x = [206.46422.50478.72229.9253.44]';%x0⼥性各阶段⼈数%x0 = x .*0.4988x0 = [102.9822210.7430238.7855114.684126.6559]';%H为状态转移矩阵,其实是存活矩阵H = zeros(5,5);H(2)=0.88; H(8)=0.97; H(14)=0.86; H(20)=0.22;%B是⽣育矩阵,即各个年龄段妇⼥的⽣育率B = [020.300];for n =1:1:5%y是x之下⼀年的⼈⼝数⽬,尚不包括迁移⼈数和1岁的⼈数y = H*x;%y(1)是下⼀年1岁的⼈⼝数⽬,即今年刚出⽣的⼈y(1)= B*x0;%g是迁移⼈数,也得按照年龄⽐例来存储数据g = [301201202010]';%迁移⼈数加到y上y = y + g;%求与y对应的年份的各个年龄段妇⼥⼈数%包括x0中存活下来的,迁移的⼀部分,第⼀时间段为刚出⽣的⼥性⼈数 y0 = zeros(5,1);y0(1)= y(1)/2;%或y(1)乘以⼥婴占总男⼥婴的⽐例for i=1:1:4y0(i+1)= x0(i)*H(i+1+5*(i-1));endg0 = g ./2;y0 = y0 + g0;%g0为迁移过来的各个年龄段的⼥性⼈数disp(2008+n*20)zong = y'nv = y0'x = y;x0 = y0;end%⾃此,则完成了⼀轮的计算%要预测更多,只需要循环计算以上步骤即可。

中国人口预测模型

中国人口预测模型

我国人口发展模型预测摘要:本模型以离散形式死亡Leslie模型为基础,然后分性别计算男女人口分布发展,又考虑到市镇乡的生育率、死亡率不同,对市、镇、乡分别运用改进后的的模型计算,加和求得女性总人口。

对人口预测分短期和中长期由模型得到的全国总人口与查出的各年人口进行比较,检验模型的准确性。

线性拟合得到短期男女比例,求得到短期人口发展以及老龄化进程;带入不同的β值,利用改进的Leslie模型或者利用Logestic模型拟合出我国中长期人口预测。

最后再利用短期总人口运用模型计算每年农村人口的理论值,与实际人口的差值即为迁移人口,进而得到我国的城镇化变化趋势。

关键字:Leslie模型;Logestic模型;女性人口发展;线性拟合;男女比例;农村人口迁出;城镇化;老龄化问题的提出与分析人口预测是国家工作中的重点,关系着国家的发展方向和命运。

我国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。

根据已有数据,运用数学建模的方法,对我国人口做出分析和预测是一个重要问题。

我国的人口发展在近年来出现了一些例如老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等新的因素,影响着我国社会人口的发展。

从我国的实际情况和人口增长的上述特点出发,参考相关数据,建立人口增长的数学模型,并由此对我国人口中短期和长期的发展趋势做出相应的预测;并指出指出模型中存在的优点与缺点。

一个社会(国家、省市、地区)人口的变化和随时间的发展过程,是由很多因素决定的,社会制度、自然环境、生活水平、科学文化水平、战争、自然灾害和移民等等,都能严重地影响社会人口的发展过程。

例如2003年,我国人口的发展就遭受了非典的严重影响。

然而,婴儿的出生、人口的死亡、居民的迁移却是决定该社会人口变化的相对最直接的原因,近年来我国人口发展出现了一些新现象,如老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等,诸多影响人口发展的因素都直接或间接地通过这三个现象表现出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
10
两个重要模型: Keyfitz Leslie
A
11
一些定义:
n为人类的年龄上限 F(x)=x岁的妇女所生的婴儿数/x岁的总人口数 S(x)=x岁人的存活率 P(x)=初始时x岁的总人口数 Nt(x)=距离初始t年时x岁的总人口数
P(0)
P(1)
K=
Nt(0)
Nt(1)
I(t)=
… …
… …
H(t)=
h(0) h(1) …..
Nt(n)
A
h(n)
16
数学表达:
第一年新生女婴的总数: a(0)•Nt(0)+ a(1)•Nt(1)+ ••• +a(n)• Nt(n)
第一年x岁女性人口总数: N1(x)=b(x-1)•Nt(x-1)- h(x-1)•b(x1)•Nt(x-1)=(1- h(x-1) )•b(x-1)•Nt(x-1)
第一年末女性人口总数: a(0)•Nt(0)+ a(1)•Nt(1)+ ••• +a(n)• Nt(n)+ (1- h(0) )•b(0)•Nt(0)+ ••• + (1- h(n-1) )• b(n-1)•Nt(n-1)
A
17
建立模型:
a(0) a(1) a(2) • • • a(n)
b(0)
构造n+1阶方阵 L=
r(x)=r0(1-x/k)
r0为特定的常数
解得:
x(t)=k/[1+(k/x0-1)e-r(t-t0)]
A
5
分析以上两个模型:
每个个体的出生率与死亡率是相同的。但实 际上不同年龄的年的生育率与死亡率有很大 的不同。
基于这种考虑,下面将建立一个人口按 年龄分布的模型
A
6
定义
r表示年龄,函数F(r,t)为t时刻年龄小于r的人口总数,称 其为人口分布函数
A
22
记R=f1(1)=b0+P0b1+…+(P0…P k-1)b k 易见R即为女性一生所生女孩的平均值。
有 定理: 1 =1的充要条件为R=1
但并非每一个均能活到足够的年龄并生下R个女孩, 每一妇女可生子女数可定为某一略大于2的数, 称为临界生育率。据统计,中国妇女的临界生育 率为2.2左右。
A
13
建立模型:
F(0) F(1) F(2) • • • F(n)
S(0)
构造n+1阶方阵 M=
S(1) S(2)
•••
那么I t)=MtK
A
14
考虑到在一段稳定的时间段内:总的女性人口数比上总 的男性人口数为一个近似为1的定值.为了更为确切地分 析女性个体数量的分布对总人口数的影响,我们单独把 女性人口数作为研究对象.
另外在这个模型中我们还加上了人口迁移对起其总数 的影响.
A
15
一些定义:
n为人类的年龄上限 a(x)=x岁的妇女所生的婴数/x岁的妇女总数 b(x)=x岁人的存活率 h(x)= x岁的妇女迁移数/x岁的妇女总数 Nt(x)=距离初始t年时x岁的总人口数
Nt(0)
Nt(1)
K= I(0) I(t)=
A
21
定理:若Leslie矩阵A的第一行中至少有两个相
邻的bi>0则
|i|< |1|且N j/ 1j CN其中C为某一常数,由值bi, Pi及N0决定
本定理的条件通常能够得到满足,故在j充分大 时有N j=C 1j N,即各年龄组的人口比例总会趋 于稳定,且N j+1= 1N j。若1 >1,种群增大, 1 <1时,种群减小。
令p(r,t)= F/ r
p(r,t)为年龄密度函数
则t时刻年龄处在[r,r+dr)的人口总数为p(r,t)dr
设µ(r,t)为t时刻年龄为r的人的死亡率,t时刻年龄在[r,r+dr) 单位时间死亡的人数为µ(r,t)p(r,t)dr
A
7
分析:
下面考虑从t到t+dt这一过程的人口变化: 年龄处在[r,r+dr)到t+dt时刻活着的人的年龄变为 [r+dt,r+dr+dt)而这一时刻死亡的人数为µ(r,t)p(r,t)drdt 则p(r,t)dr-p(r+dt,t+dt)dr= µ(r,t)p(r,t)drdt
A
19
n0
A属于1的特征向量N= .
. nk
解线性方程组 AN= 1N
1k/(P0P1…P k-1) N= 1k-1(P1…P k-1)
1/P k-1 1
A
20
当且仅当1=1时,N j N,人口总量将趋于稳定 且各年龄人数在总人口数中所占的比例也将趋于 一个定值。
在1固定的情况下,N只和Pi有关。Pi为i组人的 存活率。在一定时期内,它们基本上是一些常数, 事实上人们只能通过控制b j的值来保证1=1。
p/ r + p/ t=- µ(r,t)p(r,t) p(r,0)=p0(r) p(0,t)=f(t)
A
8
在社会比较安定的情况下,死亡 率大致与时间无关.
μ(r,t)=μ(r)
p(r,t)=
p (r-t)e r
0
(s)ds rt
0≤t≤r
f(t-r)e r 0 (s)ds
t>r
A
9
分析:
1.当t<r时,p(r,t)完全由年龄为r-t的人口的初始密度及 这些人的死亡率决定。 2.t>r 时,p(r,t)完全由未来的生育状况f(t-r)及死亡率决 定。
… …
P(n)
Nt(n)
A
12
数学表达:
第一年新生儿的总数: F(0)•P(0)+ F(1)•P(1)+ ••• +F(n)•P(n) 第一年x岁人口总数: N1(x)=S(x-1)•P(x-1)
第一年末人口总数:F(0)•P(0)+ F(1)•P(1)+ ••• +F(n)•P(n)+ S(0)•P(0)+ S(1)•P(1)+ ••• +S(n-1)•P(n-1)
b(1) b(2)
•••
那么I (1)=(L-H)K ; I (t)=(L-H) I (t-1)
b(n-1)
I (t)= (L-H) tK
A
18
定理:Leslie矩阵具有唯一的正特征根1,
与之对应的特征向量为
N=( 1k/(P0P1…P k-1), 1k-1(P1…P k-1),…, 1/P k-1,1)T
A
1
A
2
关于建立人口增长模型,我们考虑了两条 主要思路:
一.以微分方程为主要手段:
二.以高等代数为主要手段:
A
3
提出问题:
我们首先考虑Malthus 模型: x(t)为人口总数,r为自然增长率; 于是可以得出:
x(t)=x0er(t-t0)
A
4
改进的模型
设地球能容纳的总人数为k,随着人口的增 长,出生率必然会下降,于是r与x存在 着一定的关系。基于上述假设,我们选 择一种简单的函数。
相关文档
最新文档