高考数学新题型专题训练
2024年新高考新题型数学选填压轴好题汇编

2024年新高考新题型数学选填压轴好题汇编09一、单选题1(2024·广东梅州·二模)已知点F 为双曲线C :x 23-y 2=1的右焦点,点N 在x 轴上(非双曲线顶点),若对于在双曲线C 上(除顶点外)任一点P ,∠FPN 恒是锐角,则点N 的横坐标的取值范围为()A.2,143B.2,173C.3,143D.3,173【答案】C【解析】由题意可得c =a 2+b 2=2,所以F (2,0),设N (x 0,0),P (x ,y ),则PF =(2-x ,-y ),PN =(x 0-x ,-y ),由∠FPN 恒是锐角,得PF ⋅PN=(2-x )(x 0-x )+y 2>0,又x 23-y 2=1,∴y 2=x 23-1,∴不等式可化为:(2-x )(x 0-x )+x 23-1>0,整理得:4x 23-(x 0+2)x +(2x 0-1)>0,∴只需Δ=(x 0+2)2-163(2x 0-1)<0,解得2<x 0<143.故选:C .2(2024·广东·二模)已知球O 与圆台O 1O 2的上、下底面和侧面均相切,且球O 与圆台O 1O 2的体积之比为12,则球O 与圆台O 1O 2的表面积之比为()A.16B.14C.13D.12【答案】D【解析】由题意,作出圆台的轴截面ABCD ,设圆台的上、下底面半径分别为r 1、r 2,球的半径OO 1=r ,则AE =r 1,BE =r 2,过A 作AD ⊥BC 于点H ,由AH 2+BH 2=AB 2,得2r 2+r 2-r 1 2=r 1+r 2 2,化简得r 2=r 1r 2,由球的体积公式V 球=43πr 3,圆台的体积公式V 圆台=132r ⋅πr 21+πr 22+πr 21⋅πr 22 =23πr r 21+r 22+r 1r 2 ,已知球O 与圆台O 1O 2的体积之比为12,则2r 2r 21+r 22+r 1r 2=12,化简得4r 2=r 21+r 22+r 1r 2,则4r 1r 2=r 21+r 22+r 1r 2,得3r 1r 2=r 21+r 22,又球的表面积S 球=4πr 2,圆台的表面积S 圆台=πr 1+r 2 2+r 21+r 22 ,所以S 球S 圆台=4r 22r 21+r 22+r 1r 2 =2r 2r 21+r 22+r 1r 2=2×14=12,故选:D .3(2024·广东·二模)在平面直角坐标系xOy 中,已知圆O :x 2+y 2=1,若等腰直角△ABC 的直角边AC 为圆O 的一条弦,且圆心O 在△ABC 外,点B 在圆O 外,则四边形OABC 的面积的最大值为()A.52+1 B.2+1C.62+1 D.3+1【答案】A【解析】如图所示,设∠OAC =∠OCA =α,则∠AOC =π-2α,故S AOC =12OA ⋅OC sin ∠AOC =12sin π-2α =12sin2α,由余弦定理得AC 2=OA 2+OC 2-2OA ⋅OC cos ∠AOC =1+1-2cos π-2α =2+2cos2α,故等腰直角三角形△ABC 的面积为12AC ⋅BC =12AC 2=1+cos2α,故四边形OABC 的面积为12sin2α+cos2α+1=52sin 2α+φ +1,其中tan φ=2,0<φ<π2,其中α∈0,π2,故2α+φ∈φ,π+φ ⊇π2,π,则当2α+φ=π2时,52sin 2α+φ +1取得最大值,最大值为52+1.故选:A4(2024·湖南益阳·模拟预测)已知f x 的定义域为0,+∞ ,f x 是f x 的导函数,且x 2f x +2xf x =ln x ,2ef e =1,则f 13,f sin 14 ,f tan 12的大小关系是()A.f 13 <f sin 14 <f tan 12 B.f sin 14 <f 13 <f tan12C.f tan 12 <f 13 <f sin 14D.f sin 14 <f tan 12 <f 13【答案】C【解析】因为x 2f (x )+2xf (x )=ln x ,即[x 2f (x )] =ln x ,构造函数g (x )=x 2f (x ),则g (x )=ln x ,f (x )=g (x )x2.将f (x )=g (x )x2代入x 2f (x )+2xf (x )=ln x ,得f (x )=x ln x -2g (x )x 3.再构造函数h (x )=x ln x -2g (x ),则h (x )=ln x +1-2g (x )=1-ln x ,易知,当x ∈(0,e )时,h (x )>0,函数h (x )单调递增;当x ∈(e ,+∞)时,h (x )<0,函数h (x )单调递减,所以h (x )max =h (e )=e -2g (e )=e -2e 2f (e ),由于2ef (e )=1,所以h (e )=0,所以h (x )≤0,所以当x ∈(0,e )时,f (x )<0,函数f (x )单调递减;当x ∈(e ,+∞)时,f (x )<0,函数f (x )单调递减,所以f (x )在(0,+∞)单调递减.又根据单位圆可得三角不等式sin 13<13<tan 13,又sin 14<sin 13,tan 13<tan 12,所以f tan 13<f 13 <f sin 13 ,故f tan 12 <f 13 <f sin 14 .故选:C .5(2024·湖南益阳·模拟预测)如图所示,4个球两两外切形成的几何体,称为一个“最密堆垒”.显然,即使是“最密堆垒”,4个球之间依然存在着空隙.材料学研究发现,某种金属晶体中4个原子的“最密堆垒”的空隙中如果再嵌入一个另一种金属原子并和原来的4个原子均外切,则材料的性能会有显著性变化.记原金属晶体的原子半径为r A ,另一种金属晶体的原子半径为r B ,则r A 和r B 的关系是()A.2r B =3r AB.2r B =6r AC.2r B =3-1 r AD.2r B =6-2 r A【答案】D【解析】由题意知,四个金属原子的球心的连线所围成的图形为如图所示的正四面体P -ABC ,设正四面体的棱长为a a >0 ,高为h h >0 ,外接球球心为O ,D 为正三角形ABC 的中心,则必有PD ⊥平面ABC 且P ,O ,D 三点共线,在正三角形ABC 中,易求得DB =32a ×23=33a ,在△PDB 中,由PB 2=PD 2+DB 2,可得h =PD =a 2-33a 2=63a ,在△OBD 中,由OB 2=OD 2+DB 2,得R 2=(h -R )2+33a2,解得R =64a ,由题意得a =2rA64a =r A +r B,所以64×2r A =r A +r B ,所以2r B =6-2 r A .故选:D .6(2024·湖北武汉·模拟预测)若函数f x =3cos ωx +φ ω<0,-π2<φ<π2的最小正周期为π,在区间-π6,π6 上单调递减,且在区间0,π6上存在零点,则φ的取值范围是()A.π6,π2B.-π2,-π3C.π3,π2D.0,π3 【答案】B【解析】由函数f (x )的最小正周期为π,得2π|ω|=π,而ω<0,解得ω=-2,则f (x )=3cos (-2x +φ)=3cos (2x -φ),由2k π≤2x -φ≤2k π+π,k ∈Z ,得2k π+φ≤2x ≤2k π+π+φ,k ∈Z ,又f (x )在-π6,π6上单调递减,因此2k π+φ≤-π3,且π3≤2k π+π+φ,k ∈Z ,解得-2π3-2k π≤φ≤-π3-2k π,k ∈Z ①,由余弦函数的零点,得2x -φ=n π+π2,n ∈Z ,即2x =n π+π2+φ,n ∈Z ,而f (x )在0,π6 上存在零点,则0<n π+π2+φ<π3,n ∈Z ,于是-n π-π2<φ<-n π-π6,n ∈Z ②,又-π2<φ<π2,联立①②解得-π2<φ≤-π3,所以φ的取值范围是-π2,-π3.故选:B7(2024·湖北武汉·模拟预测)如果a <x <b ,记x 为区间a ,b 内的所有整数.例如,如果2<x <3.5,则x =3;如果1.2<x <3.5,则x =2或3;如果2.3<x <2.7,则x 不存在.已知T =1+142+143+⋯+1481,则T =()A.36B.35C.34D.33【答案】B【解析】令函数f (x )=43x 34(x >0),求导得f (x )=x -14=14x,则14n(n ∈N ∗)可视为函数f (x )=43x 34(x >0)在x =n 处的切线斜率,设A (n ,f (n )),B (n +1,f (n +1)),则直线AB 的斜率k AB =f (n +1)-f (n )n +1-n=f (n +1)-f (n ),由导数的几何意义有f (n +1)<k AB <f (n ),因此14n +1<43(n +1)34-n 34 <14n,而43234-134 +334-234 +434-334 +⋯+8234-8134 <141+142+143+⋯+1481=T ,即有T >438234-1 >438134-1 =43×26=34+23,又T =1+142+143+⋯+1481<1+438134-1 =35+23,因此34+23<T <35+23,所以[T ]=35.故选:B8(2024·山东·二模)已知函数f (x )=sin ωx +π6 (ω>0),若将f (x )的图象向左平移π3个单位后所得的函数图象与曲线y =f (x )关于x =π3对称,则ω的最小值为()A.23B.13C.1D.12【答案】A【解析】函数f (x )=sin ωx +π6 ,f (x )的图象向左平移π3个单位后所得函数g (x )=sin ωx +π3 +π6=sin ωx +πω3+π6,函数y =g (x )的图象与y =f (x )的图象关于直线x =π3对称,则f (x )=g 2π3-x ,于是sin ωx +π6=sin ω2π3-x +πω3+π6 对任意实数x 恒成立,即sin ωx +π6 =sin -ωx +πω+π6 =sin π-ωx -πω+5π6 =sin ωx -πω+5π6 对任意实数x 恒成立,因此-πω+5π6=π6+2k π,k ∈Z ,解得ω=-2k +23,k ∈Z ,而ω>0,则k ∈Z ,k ≤0,所以当k =0时,ω取得最小值23.故选:A9(2024·山东·二模)已知f x 为定义在R 上的奇函数,设f x 为f x 的导函数,若f x =f 2-x +4x -4,则f 2023 =()A.1B.-2023C.2D.2023【答案】C【解析】因为f x =f 2-x +4x -4,所以两边求导,得f (x )=-f (2-x )+4,即f (x )+f (2-x )=4①因为f x 为定义在R 上的奇函数,则f (-x )=-f (x ),所以两边求导,得f (x )=f (-x ),所以f (x )是定义在R 上的偶函数,所以f (2-x )=f (x -2),结合①式可得,f (x )+f (x -2)=4,所以f (x -2)+f (x -4)=4,两式相减得,f (x )=f (x -4),所以f (x )是周期为4的偶函数,所以f (2023)=f (-1)=f (1).由①式,令x =1,得f (1)=2,所以f (2023)=f (1)=2.故选:C .10(2024·河南信阳·模拟预测)棱长为1的正方体ABCD -A 1B 1C 1D 1中,点P 为BD 1上的动点,O 为底面ABCD 的中心,则OP 的最小值为()A.33B.63C.66D.32【答案】C【解析】由题意可得OP 的最小值为点O 到线段BD 1的距离,在平面D 1DB 内过点O 作OP ⊥BD 1于点P ,由题意可得DD 1=1,DB =2,BD 1=3,DD 1⊥平面ABCD ,因为DB ⊂平面ABCD ,则DD 1⊥DB ,因为△OPB ∽△D 1DB ,故OP DD 1=OB BD 1,即OP =OB ⋅DD 1BD 1=22×13=66.故选:C .11(2024·河南信阳·模拟预测)若直线y =ax +b 与曲线y =e x 相切,则a +b 的取值范围为()A.(-∞,e ]B.[2,e ]C.[e ,+∞)D.[2,+∞)【答案】A【解析】对于y =e x ,有y =e x ,令切点为m ,e m ,则切线方程为y =e m x -m +e m ,即y =e m x +1-m e m ,即有a +b =e m +1-m e m =2-m e m ,令f x =2-x e x ,则f x =1-x e x ,当x <1时,f x >0,当x >1时,f x <0,故f x 在-∞,1 上单调递增,在1,+∞ 上单调递减,故f x ≤f 1 =2-1 e 1=e ,又当x 趋向于正无穷大时,f x 趋向于负无穷,故f x ∈(-∞,e ],即a +b ∈(-∞,e ].故选:A .12(2024·福建福州·模拟预测)函数f x =2sin ωx 3sin ωx +cos ωx (ω>0)在0,π3上单调递增,且对任意的实数a ,f x 在(a ,a +π)上不单调,则ω的取值范围为()A.1,52B.1,54C.12,52D.12,54【答案】D【解析】因为f (x )=2sin ωx (3sin ωx +cos ωx )=23sin 2ωx +2sin ωx cos ωx=sin2ωx -3cos2ωx +3=2sin 2ωx -π3 +3,又因为x ∈0,π3 ,且ω>0,则2ωx -π3∈-π3,2ωπ3-π3 ,若f (x )在0,π3上单调递增,所以2ωπ3-π3≤π2,所以0<ω≤54,因为对任意的实数a ,f (x )在(a ,a +π)上不单调,所以f (x )的周期T =2π2ω<2π,所以ω>12,所以12<ω≤54.故选:D .13(2024·浙江嘉兴·二模)6位学生在游乐场游玩A ,B ,C 三个项目,每个人都只游玩一个项目,每个项目都有人游玩,若A 项目必须有偶数人游玩,则不同的游玩方式有()A.180种B.210种C.240种D.360种【答案】C【解析】若A 有2人游玩,则有C 26C 34C 11A 22+C 24C 22A 22A 22=15×8+6 =210种;若A 有4人游玩,则有C 46A 22=15×2=30种;所以共有240种,故选:C .14(2024·浙江嘉兴·二模)已知定义在0,+∞ 上的函数f x 满足xf x =1-x f x ,且f 1 >0,则()A.f 12<f 1 <f 2 B.f 2 <f 1 <f 12C.f 12<f 2 <f 1D.f 2 <f 12<f 1 【答案】D【解析】由xfx =1-x f x 变形得f x -xf x f x=x ,从而有f x -xf x f 2x=x f x ,x f x =x f x ,所以xf x=k ⋅e x ,因为f 1 >0,所以k =1f 1 e1>0,则f x =xk ⋅e x ,则fx =ke x -kx ⋅e x k 2e x =ke x 1-x k 2e x,故当0<x <1时,f x >0,当x >1时,f x <0,所以f x 在0,1 上单调递增,在1,+∞ 单调递减,所以f 12<f 1 ,f 2 <f 1 ,又f 12 -f 2 =12k e -2ke 2=e 32-42ke2,而e 3>2.73≈19.7>16,所以e 32>4,所以f 2 <f 12<f 1 .故选:D .15(2024·浙江宁波·二模)在正四棱台ABCD -A 1B 1C 1D 1中,AB =4,A 1B 1=2,AA 1=3,若球O 与上底面A 1B 1C 1D 1以及棱AB ,BC ,CD ,DA 均相切,则球O 的表面积为()A.9π B.16π C.25πD.36π【答案】C【解析】设棱台上下底面的中心为N ,M ,连接D 1B 1,DB ,则D 1B 1=22,DB =42,所以棱台的高MN =B 1B 2-MB -NB 1 2=3 2-22-2 2=1,设球半径为R ,根据正四棱台的结构特征可知:球O 与上底面A 1B 1C 1D 1相切于N ,与棱AB ,BC ,CD,DA 均相切于各边中点处,设BC 中点为E ,连接OE ,OM ,ME ,所以OE 2=OM 2+ME 2⇒R 2=R -1 2+22,解得R =52,所以球O 的表面积为4πR 2=25π,故选:C16(2024·浙江宁波·二模)已知集合P =x ,y |x 4+ax -2024=0 且xy =2024 ,若P 中的点均在直线y =2024x 的同一侧,则实数a 的取值范围为()A.-∞,-2023 ∪2023,+∞ B.2023,+∞ C.-∞,-2024 ∪2024,+∞ D.2024,+∞【答案】A【解析】依题意集合P 即为关于x 、y 的方程组x 4+ax -2024=0xy =2024 的解集,显然x ≠0,所以a =-x 3+2024xy =2024x,即y =-x 3+2024x y =2024x y =a,令f x =-x 3+2024x ,由y =2024x y =2024x,解得x =1y =1 或x =-1y =-1 ,即函数y =2024x 与y =2024x的交点坐标为1,1 和-1,-1 ,又f -x =-x 3+2024x =--x 3+2024x =-f x ,所以f x 为奇函数,因为y =-x 3与y =2024x 在0,+∞ 上单调递减,所以f x =-x 3+2024x 在0,+∞ 上单调递减,则f x =-x 3+2024x在-∞,0 上单调递减,依题意y =a 与y =-x 3+2024x 、y =2024x的交点在直线y =2024x 的同侧,只需a >f 1 或a <f -1 ,即a >2023或a <-2023,所以实数a 的取值范围为-∞,-2023 ∪2023,+∞ .故选:A17(2024·浙江杭州·二模)在△ABC 中,已知sin A sin B =n sin C ,cos A cos B=n cos C .若tan A +π4 =-3,则n =()A.无解B.2C.3D.4【答案】A 【解析】由tan A +π4 =1+tan A1-tan A=-3,即tan A =2,则cos A ≠0,由sin A sin B =n sin C ,cos A cos B =n cos C ,知cos C ≠0,则tan A tan B=tan C ,则tan A =tan B ⋅tan C =2,又tan A =tan π-B -C =-tan B +C =-tan B +tan C1-tan B ⋅tan C=tan B +tan C ,故tan B +tan C =2,设tan B =t ,则tan C =2-t ,有t 2-t =2,即t 2-2t +2=0,Δ=4-8=-4<0,即该方程无解,故不存在这样三角形,即n 无解.故选:A .18(2024·浙江杭州·二模)设集合M ={-1,1},N ={x |x >0且x ≠1},函数f x =a x +λa -x (a >0且a ≠1),则()A.∀λ∈M ,∃a ∈N ,f x 为增函数B.∃λ∈M ,∀a ∈N ,f x 为减函数C.∀λ∈M ,∃a ∈N ,f x 为奇函数D.∃λ∈M ,∀a ∈N ,f x 为偶函数【答案】D【解析】当λ=1时,f x =a x +a -x ,a >1时,f (x )在(-∞,0)上不是增函数,故A 不正确;当λ=-1时,f x =a x -a -x ,a >1时,f (x )在(0,+∞)上为增函数,B 不正确;当λ=1时,f x =a x +a -x ,f (-x )=a x +a -x =f (x ),f (x )为偶函数,故C 不正确;当λ=1时,f x =a x +a -x ,f (-x )=a x +a -x =f (x ),f (x )为偶函数,故D 正确;故选:D .19(2024·浙江台州·二模)设F 1,F 2是双曲线C :x 2a 2-y 2b 2=1a >0,b >0 的左、右焦点,点M ,N 分别在双曲线C 的左、右两支上,且满足∠MF 2N =π3,NF 2=2MF 1 ,则双曲线C 的离心率为()A.2B.73C.3D.52【答案】B【解析】如图,设NF 1与MF 2的交点为P ,MF 1 =x ,因为NF 2 =2MF 1 ,所以NF 2 =2MF 1 =2x ,所以,由双曲线的定义可知:MF 2 =MF 1 +2a =2a +x ,NF 1 =2a +NF 2 =2x +2a ,因为NF 2 =2MF 1 ,所以NF 2⎳MF 1,所以△NF 2P ∽△F 1MP ,∠F 1MF 2=∠MF 2N =π3,所以PF 2 =23MF 2 =232a +x ,PN =23NF 1 =232a +2x ,所以,在△PNF 2中,∠PF 2N =∠MF 2N =π3,所以,由余弦定理有:cos ∠PF 2N =PF 2 2+F 2N 2-PN 22PF 2 ⋅F 2N=cos π3=12,代入PF 2 =232a +x ,PN =232a +2x ,NF 2 =2x ,整理得3x 2-10ax =0,解得x =103a ,x =0(舍),所以,MF 1 =x =103a ,MF 2 =2a +x =163a ,F 1F 2 =2c ,所以,在△F 1MF 2中,由余弦定理有:cos ∠F 1MF 2=F 1M 2+F 2M 2-F 1F 2 22F 1M ⋅F 2M =12,代入数据整理得:7a =3c ,所以,双曲线的离心率为:e =c a =73.故选:B20(2024·江苏扬州·模拟预测)已知菱形ABCD 的边长为2,∠ABC =60°,动点P 在BC 边上(包括端点),则AD ⋅AP的取值范围是()A.0,1 B.-1,2C.-2,2D.-1,1【答案】C【解析】如图,作Cy ⊥CB ,以C 为原点,建立平面直角坐标系,易知C (0,0),A (1,3),D (-1,3),设P (x ,0),且x ∈0,2 ,故AD =(-2,0),AP=x -1,-3 ,故AD ⋅AP=-2(1-x )=2-2x ,而-2x ∈-4,0 ,2-2x ∈-2,2 .故选:C21(2024·江苏扬州·模拟预测)设方程2x +x +3=0和方程log 2x +x +3=0的根分别为p ,q ,设函数f x =x +p x +q ,则()A.f 2 =f 0 <f 3B.f 0 =f 3 >f 2C.f 3 <f 2 =f 0D.f 0 <f 3 <f 2【答案】B【解析】由2x +x +3=0得2x =-x -3,由log 2x +x +3=0得log 2x =-x -3,所以令y =2x ,y =log 2x ,y =-x -3,这3个函数图象情况如下图所示:设y =2x ,y =-x -3交于点B ,y =log 2x ,y =-x -3交于点C ,由于y =2x ,y =log 2x 的图象关于直线y =x 对称,而y =-x -3,y =x 的交点为A -32,-32 ,所以p +q 2=-32,注意到函数f x =x +p x +q =x 2+p +q x +pq 的对称轴为直线x =-p +q 2,即x =32,且二次函数f x 的图象是开口向上的抛物线方程,从而f 0 =f 3 >f 2 .故选:B .22(2024·河北邢台·一模)如图,正四棱台容器ABCD -A 1B 1C 1D 1的高为12cm ,AB =10cm ,A 1B 1=2cm ,容器中水的高度为6cm .现将57个大小相同、质地均匀的小铁球放入容器中(57个小铁球均被淹没),水位上升了3cm ,若忽略该容器壁的厚度,则小铁球的半径为()A.31πcmB.32πcm C.33πcm D.34πcm 【答案】A【解析】正四棱台容器ABCD -A 1B 1C 1D 1的高为12cm ,AB =10cm ,A 1B 1=2cm ,正四棱台容器内水的高度为6cm ,由梯形中位线的性质可知水面正方形的边长为122+10 =6,其体积为V 1=1362+102+62×102 ×6=392cm 3;放入铁球后,水位高为9cm ,沿A 1B 1作个纵截面,从A 1,B 1分别向底面引垂线,如图,其中EF 是底面边长10cm ,B 1H 是容器的高为12cm ,GH 是水的高为9cm ,由截面图中比例线段的性质GN HF =B 1G B 1H=14,可得GN =1,此时水面边长为4cm ,此时水的体积为V 2=1342+102+42×102 ×9=468cm 3,放入的57个球的体积为468-392=76cm 3,设小铁球的半径为r ,则57×43πr 3=76,解得r =31πcm .故选:A 23(2024·河北邢台·一模)倾斜角为θ的直线l 经过抛物线C :y 2=16x 的焦点F ,且与C 相交于A ,B 两点.若θ∈π6,π4,则AF BF 的取值范围为()A.128,256 B.64,256 C.64,1963 D.1963,128 【答案】A【解析】首先,我们来证明抛物线中的焦半径公式,如图,对于一个抛物线y 2=2px ,倾斜角为θ的直线l 经过抛物线C :y 2=2px 的焦点F ,且与C 相交于A ,B 两点.作准线的垂线AA ,BB ,过F 作FM ⊥AA ,则AF =AA =MA +AM =p +AF cos θ,解得AF =p 1-cos θ,同理可得BF =p1+cos θ,如图,不妨设A 在第一象限,由焦半径公式得AF =81-cos θ,AF =81+cos θ,则AF BF =81-cos θ×81+cos θ=64sin 2θ,而θ∈π6,π4 ,可得sin 2θ∈14,12 ,故64sin 2θ∈128,256 ,故A 正确,故选:A 二、多选题24(2024·广东梅州·二模)已知数列a n 的通项公式为a n =3n ,n ∈N *,在a n 中依次选取若干项(至少3项)a k 1,a k 2,a k 3,⋅⋅⋅,a k n,⋅⋅⋅,使a k n成为一个等比数列,则下列说法正确的是()A.若取k 1=1,k 2=3,则k 3=9B.满足题意的k n 也必是一个等比数列C.在a n 的前100项中,a k n的可能项数最多是6D.如果把a n 中满足等比的项一直取下去,a k n总是无穷数列【答案】AB【解析】因为数列a n 的通项公式为a n =3n ,对于A ,取k 1=1,k 2=3,则a k 1=a 1=3,a k 2=a 3=9,由于a k n为等比数列,则a k 3=27,则有3k 3=27,即k 3=9,故A 正确;对于B ,数列{a n }的通项公式为a n =3n ,则a k n=3k n ,若a k n为等比数列,即3k 1,3k 2,3k 3,⋯,3k n ,⋯是等比数列,则k 1,k 2,k 3,⋯,k n ,⋯,是等比数列,故满足题意的{k n }也必是一个等比数列,故B 正确;对于C ,在a n 的前100项中,可以取k 1=1,k 2=2,k 3=4,k 4=8,k 5=16,k 6=32,k 7=64,可以使a k n成为一个等比数列,此时a k n为7项,故C 错误;对于D ,取k 1=4,k 2=6,则a k 1=12,a k 2=18,则a k 3=27,a k 4=812,a k 4=812不是数列a n 的项,所以把a n 中满足等比的项一直取下去,a k n不总是无穷数列,故D 错误.故选:AB .25(2024·广东梅州·二模)如图,平面ABN ⊥α,AB =MN =2,M 为线段AB 的中点,直线MN 与平面α的所成角大小为30°,点P 为平面α内的动点,则()A.以N 为球心,半径为2的球面在平面α上的截痕长为2πB.若P 到点M 和点N 的距离相等,则点P 的轨迹是一条直线C.若P 到直线MN 的距离为1,则∠APB 的最大值为π2D.满足∠MNP =45°的点P 的轨迹是椭圆【答案】BC【解析】对于A ,由于MN 与平面α的所成角大小为30°,所以点N 到平面α的距离d =MN sin30°=1,故半径为R =2的球面在平面α上截面圆的半径为r =R 2-d 2=3,故截痕长为2πr =23π,A 错误,对于B ,由于平面ABN ⊥α,所以以AB 为y ,在平面α内过M 作x ⊥AB ,平面ABN 内作z ⊥AB ,建立如图所示的空间直角坐标系,则M 0,0,0 ,B 0,1,0 ,A 0,-1,0 ,N 0,3,1 ,设P x ,y ,0 ,则PM =PN ⇒x 2+y 2=x 2+y -3 2+1,化简得y =23,故P 到点M 和点N 的距离相等,则点P 的轨迹是一条直线,B 正确,MN =0,3,1 ,MP =x ,y ,0 ,所以P 到直线MN 的距离为MP 2-MP ⋅MNMN2=x 2+y 2-3y 22=1,化简可得x 2+y 24=1,所以点P 的轨迹是平面α内的椭圆x 2+y 24=1上一点,如图,当P 在短轴的端点时,此时∠APB 最大,由于BM =MP =1,故∠BPM =π4,因此∠APB =2∠BPM =π2,C 正确,对于D ,NM =0,-3,-1 ,NP =x ,y -3,-1 ,MP=x ,y ,0 ,若∠MNP =45°,则cos ∠MNP =cos NM ,NP =NM ⋅NPNM ⋅NP =-3y +42x 2+y -3 2+1=22,化简得y -2324-x 22=1且y <433,故满足∠MNP =45°的点P 的轨迹是双曲线的一部分,D 错误,故选:BC26(2024·广东·二模)设O 为坐标原点,抛物线C :y 2=4x 的焦点为F ,准线l 与x 轴的交点为F 1,过点F 的直线与抛物线C 交于A ,B 两点,过点A ,B 分别作l 的垂线,垂足分别为A 1,B 1,则下列说法正确的有()A.A 1F 1 ⋅B 1F 1 =FF 1 2B.A 1B 1 ≤2FF 1C.OA ⋅OB =OA 1 ⋅OB 1D.OA +OB ≥OA 1 +OB 1【答案】ACD【解析】由已知F (1,0),F 1(-1,0),设过点F 的直线方程为:x =my +1,设点A x 1,y 1 ,B x 2,y 2 ,则A 1(-1,y 1),B 1(-1,y 2),由y 2=4x x =my +1,得y 2-4my -4=0,所以y 1+y 2=4m ,y 1y 2=-4,x 1+x 2=m y 1+y 2 +2=4m 2+2,x 1x 2=y 1y 2216=1,A 1F 1 ⋅B 1F 1 =-y 1y 2=4,FF 1 2=22=4,所以A 1F 1 ⋅B 1F 1 =FF 1 2,故A 正确,A 1B 1 =y 1-y 2 =y 1+y 22-4y 1y 2=16m 2+16≥4=2FF 1 ,故B 错误,OA2⋅OB 2=x 21+y 21 x 22+y 22 =x 21x 22+x 21y 22+x 22y 21+y 21y 22=17+x 22y 21+x 21y 22=17+4x 22x 1+4x 21x 2=17+4x 1x 2x 1+x 2 =25+16m2,O 1A2⋅O 1B 2=1+y 21 1+y 22 =1+y 22+y 21+y 21y 22=17+y 21+y 22=17+y 1+y 2 2-2y 1y 2=25+16m 2,故OA ⋅OB =OA 1 ⋅OB 1 ,C 正确,OA +OB2-OA 1 +OB 1 2=OA 2+OB 2-OA 1 2-OB 1 2+2OA ⋅OB -2OA 1 ⋅OB 1 ,由选项C 可知OA ⋅OB =OA 1 ⋅OB 1 ,所以OA +OB 2-OA 1 +OB 1 2=OA 2+OB 2-OA 1 2-OB 1 2=x 21+y 21 +x 22+y 22 -1+y 21 -1+y 22 =x 21+x 22 -2=x 1+x 2 2-2x 1x 2-2=4m 2+2 2-4≥0,故OA +OB ≥OA 1 +OB 1 ,D 正确;故选:ACD27(2024·湖南益阳·模拟预测)如图1所示,为曲杆道闸车库出入口对出人车辆作“放行”或“阻拦”管制的工具.它由转动杆OP 与横杆PQ 组成,P ,Q 为横杆的两个端点.在道闸抬起的过程中,横杆PQ 始终保持水平.如图2所示,以点O 为原点,水平方向为x 轴正方向建立平面直角坐标系.若点O 距水平地面的高度为1米,转动杆OP 的长度为1.6米,横杆PQ 的长度为2米,OP 绕点O 在与水平面垂直的平面内转动,与水平方向所成的角θ∈30°,90° ()A.则点P 运动的轨迹方程为x 2+(y +1)2=6425(其中x ∈0,435,y ∈45,85)B.则点Q 运动的轨迹方程为(x -2)2+y 2=6425(其中x ∈2,10+435 ,y ∈45,85)C.若OP 绕点O 从与水平方向成30°角匀速转动到与水平方向成90°角,则横杆PQ 距水平地面的高度为135米D.若OP 绕点O 从与水平方向成30°角匀速转动到与水平方向成90°角,则点Q 运动轨迹的长度为135米【答案】BC【解析】对于A :点P 的轨迹显然是以O 为原点,OP 为半径的圆,故点P 运动轨迹方程为x 2+y 2=6425(其中x ∈0,435 ,y ∈45,85),故A 错误;对于B :设Q x ,y ,P x 0,y 0 ,因为PQ 平行于x 轴,所以x =x 0+2y =y 0,所以x 0=x -2y 0=y ,又因为P 在加圆x 2+y 2=6425上,所以点Q 的运动轨迹是以(2,0)为圆心,1.6为半径的圆,所以点Q 的轨迹方程为x -2 2+y 2=6425(其中x ∈2,10+435 ,y ∈45,85),故B 正确;对于C :若OP 绕点O 从与水平方向成30°角匀速转动到与水平方向成90°角,横杆PQ 达到最高点,此时横杆PQ 距水平地面的高度为1+1.6=135,故C 正确;对于D :因为OP 绕点O 从与水平方向成30°角匀速转动到与水平方向成90°角,故Q 绕点2,0 转动的角度与点P 绕点0,0 转动的角度一样为90°-30°=π3,所以点Q 运动轨迹的长度即为圆(其中)的弧长,等于1.6×π3=8π15,故D 错误.故选:BC .28(2024·湖南益阳·模拟预测)在△ABC 中,角A ,B ,C 所对的边依次为a ,b ,c ,已知sin A :sin B :sin C =2:3:4,则下列结论中正确的是()A.a +b :b +c :c +a =5:6:7B.△ABC 为钝角三角形C.若a +b +c =18.则△ABC 的面积是615D.若△ABC 的外接圆半径是R ,内切圆半径为r ,则5R =16r 【答案】BD【解析】因为sin A :sin B :sin C =2:3:4,由正弦定理a sin A=b sin B =csin C =2R ,可得a :b :c =2:3:4,设a =2x x >0 ,b =3x ,c =4x ,则(a +b ):(b +c ):(c +a )=5x :7x :6x =5:7:6,故A 错误;由题意可知,C 为最大角,因为cos C =a 2+b 2-c 22ab =4x 2+9x 2-16x 212x 2=-14<0,故C 为钝角,故B 正确;若a +b +c =18,则a =4,b =6,c =8,又cos C =-14,所以sin C =1-cos 2C =154,所以△ABC 的面积S △ABC =12ab sin C =12×4×6×154=315,故C 错误;由正弦定理得,2R =c sin C =4x 154=16x 15,即R =8x15,由面积公式可得12(a +b +c )r =12ab sin C ,即12×9x ⋅r =12×2x ×3x ×154,所以r =156x ,所以R r =165,故5R =16r ,故D 正确.故选:BD .29(2024·湖北武汉·模拟预测)已知各项都是正数的数列a n 的前n 项和为S n ,且S n =a n 2+12a n,则下列结论正确的是()A.当m >n m ,n ∈N * 时,a m >a nB.S n +S n +2<2S n +1C.数列S 2n 是等差数列D.S n -1S n≥ln n 【答案】BCD【解析】对A ,由题意可知a 1=a 12+12a 1⇒a 21=1,所以a 1=1,则a 1+a 2=a 22+12a 2⇒a 22+2a 2-1=0,所以a 2=2-1<a 1,故A 错误;对C ,由S n =a n 2+12a n ⇒S n =S n -S n -12+12S n -S n -1⇒S 2n -S 2n -1=1n ≥2 ,故C 正确;对C ,所以S 2n =1+n -1 =n ⇒S n =n ,则S n +S n +2=n +n +2<2n +n +22=2S n +1,故B 正确;对D ,易知S n -1S n =n -1n,令f x =x -1x -2ln x x ≥1 ,则f x =1+1x2-2x =1x -1 2≥0,则f x 单调递增,所以f x ≥f 1 =0⇒n -1n≥ln n ,即S n -1S n ≥ln n ,故D 正确.故选:BCD 30(2024·湖北武汉·模拟预测)如图,已知椭圆x 24+y 2=1的左、右顶点分别是A 1,A 2,上顶点为B 1,点C 是椭圆上任意一异于顶点的点,连接A 1C 交直线x =2于点P ,连接A 2C 交OP 于点M (O 是坐标原点),则下列结论正确的是()A.k A 1C ⋅k A 2C 为定值B.2k A 1C =k OPC.当四边形OA 2CB 1的面积最大时,直线OC 的斜率为1D.点M 的纵坐标没有最大值【答案】ABD【解析】依题意,A 1(-2,0),A 2(2,0),设C (2cos θ,sin θ),0<θ<2π,θ∉π2,π,3π2,对于A ,k A 1C ⋅k A 2C =sin θ2cos θ+2⋅sin θ2cos θ-2=-14,A 正确;对于B ,直线A 1C 的方程为y =sin θ2cos θ+2(x +2),它与直线x =2的交点P 2,2sin θcos θ+1,因此k OP =sin θcos θ+1=2k A 1C ,B 正确;对于C ,不妨令0<θ<π2,四边形OA 2CB 1的面积S =S △OA 2C +S △OB 1C=sin θ+cos θ=2sin θ+π4 ≤2,当且仅当θ=π4时取等号,此时点C 2,22 ,直线OC 的斜率为12,C 错误;对于D ,当点C 无限接近点B 1时,点M 的纵坐标无限接近最大值,但取不到最大值,因此没有最大值,D 正确.故选:ABD31(2024·山东·二模)将正四棱锥P -ABCD 和正四棱锥Q -ABCD 的底面重合组成八面体Ω,AB =PA =2,QA =10,则()A.PQ ⊥平面ABCDB.PA ⎳QCC.Ω的体积为42D.二面角P -AB -Q 的余弦值为-13【答案】AC【解析】令正方形ABCD 的中心为O ,连接PO ,QO ,对于A ,由正四棱锥P -ABCD ,得PO ⊥平面ABCD ,同理QO ⊥平面ABCD ,则P ,O ,Q 共线,因此PQ ⊥平面ABCD ,A 正确;对于B ,连接AC ,显然O 是AC 的中点,AO =12AC =2,PO =PA 2-AO 2=2,QO =QA 2-AO 2=22,O 不是PQ 的中点,因此四边形APCQ 不是平行四边形,PA ,QC 不平行,B 错误;对于C ,Ω的体积V =V P -ABCD +V Q -ABCD =13S ABCD ⋅(PO +QO )=13×4×32=42,C 正确;对于D ,取AB 中点M ,连接PM ,QM ,则PM ⊥AB ,QM ⊥AB ,∠PMQ 是二面角P -AB -Q 的平面角,而PM =PA 2-AM 2=3,QM =QA 2-AM 2=3,则cos ∠PMQ =(3)2+32-(32)22×3×3=-33,D 错误.故选:AC32(2024·山东·二模)已知抛物线E :y 2=2px (p >0)焦点为F ,过点M 2,0 (不与点F 重合)的直线交E 于P ,Q 两点,O 为坐标原点,直线PF ,QF 分别交E 于A ,B 两点,∠POQ =90°,则()A.p =1B.直线AB 过定点14,0C.FP ⋅FQ 的最小值为254D.PA +QB 的最小值为254【答案】ACD【解析】设直线PQ :x =my +2与抛物线联立可得:y 2-2pmy -4p =0,设P y 212p ,y 1 ,Q y 222p ,y 2,则y 1y 2=-4p ,因为∠AOB =90°∠AOB =90°,所以OP ⋅OQ =y 1y 2 24p 2+y 1y 2=4-4p =0,解p =1,故A 正确;由A 可知,F 12,0 ,设直线PF :x =m 1y +12,与抛物线联立可得,y 2-2m 1y -1=0,设A x A ,y A ,B x B ,y B ,所以y A =-1y 1,同理可得y B =-1y 2,所以y A y B =1y 1y 2=-14,直线AB :2x -y A +y B y +y A y B =0,即2x -18 -y A +y B y =0,所以直线AB 过定点18,0 ,故B 错误;FP ⋅FQ =y 212+12 y 222+12=y 21y 224+y 21+y 224+14≥y 21y 22+2y 1y 2 +14=254,故C 正确;PA =y 21+1+1y 21+12,QB =y 22+1+1y 22+12,所以PA +QB =y 21+y 22+1y 21+1y 22+42=1716y 21+y 22 +42≥1716×2y 1y 2 +42=254,故D 正确.故选:ACD .33(2024·福建福州·模拟预测)定义在R 上的函数f x 的值域为-∞,0 ,且f 2x +f x +y f x -y =0,则()A.f 0 =-1B.f 4 +f 1 2=0C.f x f -x =1D.f x +f -x ≤-2【答案】ACD【解析】令x =y =0,则有f 0 +f 0 2=0,解得f 0 =0或f 0 =-1,因为函数f x 的值域为-∞,0 ,所以f 0 =-1,A 正确;令x =1,y =0,则有f 2 +f 1 2=0,即f 2 =-f 1 2令x =2,y =0,则有f 4 +f 2 2=0,即f 4 +f 1 4=0,B 不正确;令x =0,则有f 0 +f y f -y =0,所以f y f -y =1,即f x f -x =1,C 正确;因为f x <0,所以-f x >0,-f -x >0,所以-f x +-f -x ≥2f x f -x =2,当且仅当f x =f -x 时,取到等号,所以f x +f -x ≤-2,D 正确.故选:ACD34(2024·福建福州·模拟预测)投掷一枚质地均匀的硬币三次,设随机变量X n =1,第n 次投出正面,-1,第n 次投出反面, (n =1,2,3).记A 表示事件“X 1+X 2=0”,B 表示事件“X 2=1”,C 表示事件“X 1+X 2+X 3=-1”,则()A.B 和C 互为对立事件B.事件A 和C 不互斥C.事件A 和B 相互独立D.事件B 和C 相互独立【答案】BC【解析】根据题意,A 表示事件“X 1+X 2=0”,即前两次抛掷中,一次正面,一次反面,则P A =C 12122=12,B 表示事件“X 2=1”,即第二次抛掷中,正面向上,则P B =12,C 表示事件“X 1+X 2+X 3=-1”,即前三次抛掷中,一次正面,两次反面,P C =C 13×12×122=38,依次分析选项:对于A ,事件B 、C 可能同时发生,则事件B 、C 不是对立事件,A 错误;对于B ,事件A 、C 可能同时发生,则事件A 和C 不互斥,B 正确;对于C ,事件AB ,即前两次抛掷中,第一次反面,第二次正面,P (AB )=12×12=14,由于P A P B =P (AB ),则事件A 和B 相互独立,C 正确;对于D ,事件BC ,即三次抛掷中,第一次和第三次反面,第二次正面,P (BC )=12×12×12=18,P B P C ≠P (BC ),事件B 、C 不是相互独立事件,D 错误.故选:BC .35(2024·浙江嘉兴·二模)已知角α的顶点与原点重合,它的始边与x 轴的非负半轴重合,终边过点A a ,b ab ≠0,a ≠b ,定义:Ti α =a +ba -b.对于函数f x =Ti x ,则()A.函数f x 的图象关于点π4,0 对称B.函数f x 在区间π4,π2上单调递增C.将函数f x 的图象向左平移π4个单位长度后得到一个偶函数的图象D.方程f x =12在区间0,π 上有两个不同的实数解【答案】AB【解析】根据题意,tan x =b a ,∴f x =a +b a -b =1+ba 1-b a=1+tan x 1-tan x =tan π4+tan x 1-tan π4⋅tan x =tan x +π4 ,对于A ,由正切函数的性质得x +π4=k π2,k ∈Z ,解得x =-π4+k π2,所以函数f x 的对称中心为-π4+k π2,0,k ∈Z ,故A 正确;对于B ,x ∈π4,π2 ,∴x +π4∈π2,3π4 ,由正切函数的性质可知f x 在π4,π2上单调递增,故B 正确;对于C ,将f x 的图象向左平移π4个单位可得y =tan x +π4+π4 =tan x +π2=1tan x,为奇函数,故C 错误;对于D ,∵x ∈0,π ,∴x +π4∈π4,3π4,令α=x +π4,由正切函数y =tan α的性质可知在π4,π2 上单调递增,且y ≥1,在π2,π上单调递增,且y ≤0,所以方程f x =tan x +π4 =12在区间0,π 上无实数解,故D 错误.故选:AB .36(2024·浙江嘉兴·二模)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.如图,已知抛物线Ω:y 2=2px (p >0)的准线为l ,O 为坐标原点,在x 轴上方有两束平行于x 轴的入射光线l 1和l 2,分别经Ω上的点A x 1,y 1 和点B x 2,y 2 反射后,再经Ω上相应的点C 和点D 反射,最后沿直线l 3和l 4射出,且l 1与l 2之间的距离等于l 3与l 4之间的距离.则下列说法中正确的是()A.若直线l 3与准线l 相交于点P ,则A ,O ,P 三点共线B.若直线l 3与准线l 相交于点P ,则PF 平分∠APCC.y 1y 2=p 2D.若直线l 1的方程为y =2p ,则cos ∠AFB =725【答案】ACD【解析】对于选项A ,因为直线AC 经过焦点,设C x 3,y 3 ,D x 4,y 4 ,直线AC :x =ty +p 2,与抛物线y 2=2px 联立得y 2-2pty -p 2=0,∴y 1+y 3=2pt ,y 1y 3=-p 2,由题意得P -p 2,y 3 ,A y 212p ,y 1,k OP =-2y 3p ,k AO =2p y 1=2p -p 2y3=-2y 3p ,所以k OP =k AO ,即A 、O 、P 三点共线,故A 正确;对于选项B ,假设∠APF =∠CPF ,又∠CFP =∠CPF ,所以∠APF =∠CFP ,所以AP ⎳CF ,这与AP 和CF 相交于A 点矛盾,故B 错误;对于选项C ,l 1与l 2距离等于l 3与l 4距离,又结合A 选项,则y 1-y 2=y 3-y 4=-p 2y 1+p 2y 2=p 2⋅y 1-y 2y 1y 2,所以y 1y 2=p 2,故C 正确;对于选项D ,由题意可得,A 2p ,2p ,B p 8,p 2,F p 2,0 ,FA =3p 2,2p ,FB =-3p 8,p2,FA ⋅FB =3p 2⋅-3p 8 +2p ⋅p 2=7p 216,FA ⋅FB =3p 2 2+(2p )2⋅-3p 8 2+p 2 2=25p 216,∴cos ∠AFB =FA ⋅FB FA ⋅FB =725,故D 正确.故选:ACD .37(2024·浙江宁波·二模)若平面向量a ,b ,c 满足a =1,b =1,c =3且a ⋅c =b ⋅c,则()A.a +b +c的最小值为2B.a +b +c的最大值为5C.a -b +c的最小值为2 D.a -b +c的最大值为13【答案】BD【解析】当向量a ,b 方向相同,与c 方向相反时,满足a ⋅c =b ⋅c,此时a +b +c 有最小值c -a+b =1,A 选项错误;当向量a ,b ,c 方向相同时,满足a ⋅c =b ⋅c,此时a +b +c 有最大值a +b +c=5,B 选项正确;a ⋅c =b ⋅c ,有a -b ⋅c =0,即a -b ⊥c ,则a -b +c =a -b 2+c 2,向量a ,b 方向相同时,a -b 的最小值为0,a -b +c 的最小值为3,C 选项错误;向量a ,b 方向相反时,a -b 的最大值为2,a -b +c 的最大值为13,D 选项正确.故选:BD38(2024·浙江宁波·二模)已知函数f x =sin ωx +φ (ω>0),()A.若ω=2,φ=π2,则f x 是最小正周期为π的偶函数B.若ω=2,x 0为f x 的一个零点,则x 0+π4必为f x 的一个极大值点C.若φ=-π4,x =π2是f x 的一条对称轴,则ω的最小值为32D.若φ=-π4,f x 在0,π6上单调,则ω的最大值为92【答案】ACD【解析】若ω=2,φ=π2,则f x =sin2x+π2=cos2x,所以f x 是最小正周期为2π2=π的偶函数,A正确;若ω=2,则f x 是最小正周期为2π2=π,若x0为f x 的一个零点,则x0+π4为f x 的一个极大值点或极小值点,B错误;若φ=-π4,x=π2是f x 的一条对称轴,则fπ2=sinπ2ω-π4=±1,所以π2ω-π4=π2+kπ,k∈Z,即ω=32+2k,k∈Z,又ω>0,所以ω的最小值为32,C正确;若φ=-π4, 则f x =sinωx-π4(ω>0),由正弦函数的单调性,令-π2+2kπ≤ωx-π4≤π2+2kπ,解得-π4ω+2kπω≤x≤3π4ω+2kπω,又f x 在0,π6上单调,所以当k=0时,0,π6⊆-π4ω,3π4ω,即π6≤3π4ω,解得ω≤92,则ω的最大值为92,D正确.故选:ACD.39(2024·浙江宁波·二模)指示函数是一个重要的数学函数,通常用来表示某个条件的成立情况.已知U为全集且元素个数有限,对于U的任意一个子集S,定义集合S的指示函数1S x ,1S x =1,x∈S0,x∈∁U S若A,B,C⊆U,则()注:x∈M f(x)表示M中所有元素x所对应的函数值f x 之和(其中M是f x 定义域的子集).A.x∈A 1A(x)<x∈U 1A(x)B.1A∩B(x)≤1A(x)≤1A∪B(x)C.x∈U 1A∪B(x)=x∈U1A(x)+1B(x)-1A(x)1B(x)D.x∈U1-1A(x)1-1B(x)1-1C(x)=x∈U 1U(x)-x∈U 1A∪B∪C(x)【答案】BCD【解析】对于A,由于A⊆U,所以x∈U 1A(x)=x∈A 1A(x)+x∈∁u A 1A(x)=x∈A 1A(x),故x∈A 1A(x)=x∈U 1A(x),故A错误,对于B,若x∈A∩B,则1A∩B(x)=1,1A(x)=1,1A∪B(x)=1,此时满足1A∩B(x)≤1A(x)≤1A∪B(x),若x∈A且x∉B时,1A∩B(x)=0,1A(x)=1,1A∪B(x)=1,若x∈B且x∉A时,1A∩B(x)=0,1A(x)=0,1A∪B(x)=1,若x∉A且x∉B时,1A∩B(x)=0,1A(x)=0,1A∪B(x)=0,综上可得1A ∩B (x )≤1A (x )≤1A ∪B (x ),故B 正确,对于C ,x ∈U1A (x )+1B (x )-1A (x )1B (x ) =x ∈A ∩∁U B1A (x )+1B (x )-1A (x )1B (x )+x ∈B ∩∁U A1A (x )+1B (x )-1A (x )1B (x )+x ∈A ∩B1A (x )+1B (x )-1A (x )1B (x )+x ∈∁U A ∪B1A (x )+1B (x )-1A (x )1B (x )=x ∈A ∩∁U B1A (x )+1B (x )-1A (x )1B (x )+x ∈B ∩∁U A1A (x )+1B (x )-1A (x )1B (x )+x ∈A ∩B1A (x )+1B (x )-1A (x )1B (x )+x ∈∁U A ∪B=x ∈A ∪B1A (x )+1B (x )-1A (x )1B (x )而x ∈U1A ∪B (x )=x ∈A ∪B1A ∪B (x )+x ∈∁U A ∪B1A ∪B(x )=x ∈A ∪B1A ∪B (x ),由于1A ∪B x =1,x ∈A ∪B0,x ∈∁U A ∪B,所以1A (x )+1B (x )-1A (x )1B (x )=1A ∪B (x )故x ∈U1A ∪B (x )=x ∈U1A (x )+1B (x )-1A (x )1B (x ) ,C 正确,x ∈U1U (x )-x ∈U1A ∪B ∪C (x )=x ∈∁U A ∪B ∪C1U(x ),当x ∈A ∪B ∪C 时,此时1A (x ),1B (x ),I C (x )中至少一个为1,所以1-1A (x ) 1-1B (x ) 1-1C (x ) =0,当x ∉A ∪B ∪C 时,此时1A (x ),1B (x ),I C (x )均为0,所以1-1A (x ) 1-1B (x ) 1-1C (x ) =1,故x ∈U1-1A (x ) 1-1B (x ) 1-1C (x ) =x ∈∁U A ∪B ∪C1-1A (x )1-1B (x ) 1-1C (x ) =x ∈∁U A ∪B ∪C1U(x ),故D 正确,故选:BCD40(2024·浙江杭州·二模)已知函数f x 对任意实数x 均满足2f x +f x 2-1 =1,则()A.f -x =f xB.f 2 =1C.f -1 =13 D.函数f x 在区间2,3 上不单调【答案】ACD【解析】对于A ,令x 等价于-x ,则2f -x +f x 2-1 =1,所以f -x =f x =1-f x 2-1 2,故A 正确;对于B ,令x =1,则2f 1 +f 0 =1,令x =0,则2f 0 +f 1 =1,解得:f 0 =f 1 =13,令x =2,2f 2 +f 1 =1,则f 2 =13,故B 错误;对于C ,由A 知,f -x =f x ,所以f -1 =f 1 =13,故C 正确;对于D ,令x =x 2-1,所以x 2-x -1=0,解得:x =1±52,令x =1+52,则2f 1+52+f 1+52 =1,所以f 1+52 =13,因为1+52∈2,3 ,f 1+52 =f 2 =13,所以函数f x 在区间2,3 上不单调,故D 正确.故选:ACD .。
新高考数学题型试卷

新高考数学题型试卷一、选择题(每题5分,共8小题)1. 设集合A = {xx^2-3x + 2 = 0},B={xx^2-ax + a - 1 = 0},若A∩ B = B,则a的值为()- A. 2.- B. 3.- C. 2或3。
- D. 1或2或3。
解析:- 先求解集合A,对于方程x^2-3x + 2 = 0,因式分解得(x - 1)(x - 2)=0,解得x = 1或x = 2,所以A={1,2}。
- 对于集合B,方程x^2-ax + a - 1 = 0可化为(x - 1)[x-(a - 1)] = 0,解得x = 1或x=a - 1,所以B={1,a - 1}。
- 因为A∩ B = B,所以B⊆ A。
- 当a-1 = 1时,a = 2;当a - 1=2时,a = 3。
所以a的值为2或3,答案选C。
2. 复数z=(1 + i)/(1 - i)的共轭复数是()- A. i- B. -i- C. 1 - i- D. 1 + i解析:- 先化简z=(1 + i)/(1 - i),分子分母同时乘以1 + i,得到z=frac{(1 + i)^2}{(1 - i)(1 + i)}=frac{1 + 2i+i^2}{2}=(2i)/(2)=i。
- 复数i的共轭复数是-i,所以答案选B。
3. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x的值为()- A. - 2.- B. 2.- C. -(1)/(2)- D. (1)/(2)解析:- 因为→a⊥→b,根据向量垂直的性质→a·→b=0。
- 又→a=(1,2),→b=(x,1),则→a·→b=1× x+2×1 = 0,即x + 2 = 0,解得x=-2,答案选A。
4. 在等差数列{a_n}中,a_3=5,a_7=13,则a_11的值为()- A. 21.- B. 22.- C. 23.- D. 24.解析:- 根据等差数列的性质:若m,n,p,q∈ N^+,且m + n=p + q,则a_m+a_n=a_p+a_q。
2024年高考数学最后冲刺训练《新高考新题型一》含答案解析

2024年高考考前逆袭卷(新高考新题型)01数 学(考试时间:120分钟 试卷满分:150分)全国新高考卷的题型会有所调整,考试题型为8(单选题)+3(多选题)+3(填空题)+5(解答题),其中最后一道试题是新高考地区新增加的题型,主要涉及集合、数列,导数等模块,以解答题的方式进行考查。
预测2024年新高考地区数列极有可能出现在概率与统计大题中,而结构不良型题型可能为集合或导数模块中的一个,出现在19题的可能性较大,难度中等偏上,例如本卷第19题。
第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
1.已知样本数据12100,,,x x x 的平均数和标准差均为4,则数据121001,1,,1x x x ------ 的平均数与方差分别为( )A .5,4-B .5,16-C .4,16D .4,42.已知向量()1,2a = ,3b = ,2a b -= ,则向量a在向量b 上的投影向量的模长为( )A .6B .3C .2D 3.已知在等比数列{}n a 中,23215a a +=,234729a a a =,则n n S a -=( )A .1232n -⨯-B .()11312n --C .23n n ⨯-D .533n ⨯-4.已知三棱锥A BCD -中,6,3,AB AC BC ===A BCD -的体积为500π3,则线段CD 长度的最大值为( )A .7B .8C .D .105.一个信息设备装有一排六只发光电子元件,每个电子元件被点亮时可发出红色光、蓝色光、绿色光中的一种光.若每次恰有三个电子元件被点亮,但相邻的两个电子元件不能同时被点亮,根据这三个被点亮的电子元件的不同位置以及发出的不同颜色的光来表示不同的信息,则这排电子元件能表示的信息种数共有( )A .60种B .68种C .82种D .108种6.已知 1.12a -=,1241log log 33b c ==,则( )A .a b c<<B .c b a<<C .b a c<<D .b c a<<7.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为7.5A 时,放电时间为60h ;当放电电流为25A 时,放电时间为15h ,则该蓄电池的Peukert 常数λ约为(参考数据:lg 20.301≈,lg 30.477≈)( )A .1.12B .1.13C .1.14D .1.158.已知双曲线22122:1(0,0)x y C a b a b -=>>与抛物线22:2(0)C y px p =>,抛物线2C 的准线过双曲线1C 的焦点F ,过点F 作双曲线1C 的一条渐近线的垂线,垂足为点M ,延长FM 与抛物线2C 相交于点N ,若34ON OF OM +=,则双曲线1C 的离心率等于( )A1+BCD1二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在复平面内,下列说法正确的是( )A .若复数1i1i-=+z (i 为虚数单位),则741z =-B .若复数z 满足z z =,则z ∈R C .若120z z =,则10z =或20z =D .若复数z 满足112z z -++=,则复数z 对应点的集合是以坐标原点O 为中心,焦点在x 轴上的椭圆10.设直线系:cos sin 1n m M x y θθ+=(其中0,m ,n 均为参数,02π≤≤θ,{},1,2m n ∈),则下列命题中是真命题的是( )A .当1m =,1n =时,存在一个圆与直线系M 中所有直线都相切B .存在m ,n ,使直线系M 中所有直线恒过定点,且不过第三象限C .当m n =时,坐标原点到直线系M 中所有直线的距离最大值为1D .当2m =,1n =时,若存在一点()0A a ,,使其到直线系M 中所有直线的距离不小于1,则0a ≤11.如图所示,一个圆锥SO 的底面是一个半径为3的圆,AC 为直径,且120ASC ∠=︒,点B 为圆O 上一动点(异于A ,C 两点),则下列结论正确的是( )A .SAB ∠的取值范围是ππ,62⎡⎤⎢⎥⎣⎦B .二面角S BC A --的平面角的取值范围是ππ,62⎛⎫⎪⎝⎭C .点A 到平面SBC 的距离最大值为3D .点M 为线段SB 上的一动点,当SA SB ⊥ 时,6AM MC +>第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.设集合{}2|60A x x x =--<,{|}B x a x a =-≤≤,若A B ⊆,则实数a 的取值范围是 .13.已知三棱柱111ABC A B C -中,ABC 是边长为2的等边三角形,四边形11ABB A 为菱形,160A AB ∠=︒,平面11ABB A ⊥平面ABC ,M 为AB 的中点,N 为1BB 的中点,则三棱锥11C A MN -的外接球的表面积为 .14.已知对任意()12,0,x x ∈+∞,且当12x x <时,都有:()212112ln ln 11a x x x x x x -<+-,则a 的取值范围是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC 中,内角A ,B ,C 所对的边分别a ,b ,c,其中2,a b c =+=,且sin A C =.(1)求c 的值;(2)求tan A 的值;(3)求cos 24A π⎛⎫+ ⎪⎝⎭的值.16.(15分)如图,在三棱锥-P ABC 中,M 为AC 边上的一点,90APC PMA ∠=∠=︒,cos CAB ∠=2AB PC ==PA =.(1)证明:AC ⊥平面PBM ;(2)设点Q 为边PB 的中点,试判断三棱锥P ACQ -的体积是否有最大值?如果有,请求出最大值;如果没有,请说明理由.17.(15分)近年来,某大学为响应国家号召,大力推行全民健身运动,向全校学生开放了,A B 两个健身中心,要求全校学生每周都必须利用课外时间去健身中心进行适当的体育锻炼.(1)该校学生甲、乙、丙三人某周均从,A B 两个健身中心中选择其中一个进行健身,若甲、乙、丙该周选择A 健身中心健身的概率分别为112,,233,求这三人中这一周恰好有一人选择A 健身中心健身的概率;(2)该校学生丁每周六、日均去健身中心进行体育锻炼,且这两天中每天只选择两个健身中心的其中一个,其中周六选择A 健身中心的概率为12.若丁周六选择A 健身中心,则周日仍选择A 健身中心的概率为14;若周六选择B 健身中心,则周日选择A 健身中心的概率为23.求丁周日选择B 健身中心健身的概率;(3)现用健身指数[]()0,10k k ∈来衡量各学生在一个月的健身运动后的健身效果,并规定k 值低于1分的学生为健身效果不佳的学生,经统计发现从全校学生中随机抽取一人,其k 值低于1分的概率为0.12.现从全校学生中随机抽取一人,如果抽取到的学生不是健身效果不佳的学生,则继续抽取下一个,直至抽取到一位健身效果不佳的学生为止,但抽取的总次数不超过n .若抽取次数的期望值不超过23,求n 的最大值.参考数据:2930310.980.557,0.980.545,0.980.535≈≈≈.18.(17分)已知椭圆2222:1(0)x y C a b a b +=>>的上下顶点分别为12,B B ,左右顶点分别为12,A A ,四边形1122A B A B 的面积为C 上的点到右焦点距离的最大值和最小值之和为6.(1)求椭圆C 的方程;(2)过点()1,0-且斜率不为0的直线l 与C 交于,P Q (异于12,A A )两点,设直线2A P 与直线1AQ 交于点M ,证明:点M 在定直线上.19.(17分)给定整数3n ≥,由n 元实数集合P 定义其随影数集{},,Q x y x y P x y =-∈≠∣.若()min 1Q =,则称集合P 为一个n 元理想数集,并定义P 的理数t 为其中所有元素的绝对值之和.(1)分别判断集合{}{}2,1,2,3,0.3, 1.2,2.1,2.5S T =--=--是不是理想数集;(结论不要求说明理由)(2)任取一个5元理想数集P ,求证:()()min max 4P P +≥;(3)当{}122024,,,P x x x = 取遍所有2024元理想数集时,求理数t 的最小值.注:由n 个实数组成的集合叫做n 元实数集合,()()max ,min P P 分别表示数集P 中的最大数与最小数.2024年高考考前逆袭卷(新高考新题型)01数 学(考试时间:120分钟 试卷满分:150分)全国新高考卷的题型会有所调整,考试题型为8(单选题)+3(多选题)+3(填空题)+5(解答题),其中最后一道试题是新高考地区新增加的题型,主要涉及集合、数列,导数等模块,以解答题的方式进行考查。
高三数学新题型试卷优质

一、选择题(本大题共10小题,每小题5分,共50分)1. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且f(1) = 3,f(2) = 5,f(3) = 7,则f(4)的值为:A. 9B. 11C. 13D. 152. 在三角形ABC中,角A、B、C的对边分别为a、b、c,且a^2 + b^2 = 2c^2,则三角形ABC为:A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形3. 设函数g(x) = x^3 - 3x^2 + 2x - 1,若g(x)在x=1处取得极值,则该极值为:A. 0B. 1C. -1D. -24. 已知数列{an}满足an = 2an-1 - 1,且a1 = 1,则数列{an}的通项公式为:A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 25. 设平面直角坐标系中,点P(2, 3),点Q在直线y = 2x + 1上,且PQ的中点为M,则M的坐标为:A. (2, 1)B. (1, 2)C. (3, 4)D. (4, 3)6. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在:A. 实轴上B. 虚轴上C. 第一象限D. 第二象限7. 已知函数h(x) = log2(x - 1) - log2(x + 1),则h(x)的定义域为:A. (1, +∞)B. (-∞, -1) ∪ (1, +∞)C. (-∞, -1) ∪ (1, +∞)D. (-∞, -1) ∪ (1, +∞)8. 若等差数列{bn}的首项为b1,公差为d,则b1 + b2 + ... + bn的和为:A. (n + 1)b1 + n(n - 1)d/2B. nb1 + n(n - 1)d/2C. (n - 1)b1 + n(n -1)d/2 D. (n + 1)b1 + (n - 1)(n - 2)d/29. 设函数f(x) = e^x - x - 1,则f'(x)的值恒大于:A. 0B. 1C. eD. e^x10. 已知向量a = (2, 3),向量b = (-1, 2),则向量a·b的值为:A. 7B. -1C. -7D. 1二、填空题(本大题共5小题,每小题10分,共50分)11. 已知函数f(x) = x^2 - 4x + 4,则f(x)的顶点坐标为__________。
新高考高三数学新题型试卷

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列各式中,属于对数式的是()A. 2^x = 8B. x^3 = 27C. log_2(4) = 2D. sin(x) = 12. 已知函数f(x) = ax^2 + bx + c(a ≠ 0),若f(1) = 2,f'(2) = 4,则a = ()A. 1B. 2C. 3D. 43. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (3,2)B. (2,3)C. (3,3)D. (2,2)4. 若复数z满足|z-1| = |z+1|,则z在复平面上的对应点位于()A. 实轴上B. 虚轴上C. 第一象限D. 第二象限5. 下列函数中,在定义域内单调递增的是()A. y = 2^xB. y = log_2(x)C. y = x^2D. y = -x6. 已知数列{an}满足an = 2an-1 - 1(n ≥ 2),且a1 = 1,则数列{an}的通项公式为()A. an = 2^n - 1B. an = 2^n + 1C. an = 2^nD. an = 2^n - 27. 在△ABC中,若∠A = 60°,∠B = 45°,则sinC = ()A. 1/2B. √3/2C. √2/2D. 18. 下列命题中,正确的是()A. 函数y = x^3在R上单调递增B. 等差数列{an}的公差一定为正数C. 对数函数y = log_2(x)在定义域内单调递增D. 二项式定理中,展开式中第r+1项的系数为C(n,r)9. 若复数z = a + bi(a,b∈R),且|z| = √(a^2 + b^2) = 1,则z的共轭复数是()A. a - biB. -a - biC. a + biD. -a + bi10. 已知函数f(x) = x^3 - 3x,则f(x)的极值点为()A. x = -1B. x = 0C. x = 1D. x = -1 或 x = 1二、填空题(本大题共5小题,每小题10分,共50分。
新题型高考数学试卷

一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 已知函数$f(x) = ax^2 + bx + c$,若$f(1) = 0$,$f(2) = 3$,$f(3) = 6$,则$a+b+c=$A. 0B. 3C. 6D. 92. 在等差数列$\{a_n\}$中,若$a_1 = 3$,$a_5 = 11$,则该数列的公差$d=$A. 2B. 3C. 4D. 53. 若复数$z$满足$|z - 1| = |z + 1|$,则复数$z$对应的点在A. 虚轴上B. 实轴上C. 第一象限D. 第二象限4. 下列函数中,奇函数是A. $f(x) = x^2 - 1$B. $f(x) = x^3$C. $f(x) = \frac{1}{x}$D. $f(x) = |x|$5. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若$\sin A + \sin B +\sin C = 2$,则三角形ABC是A. 直角三角形B. 等腰三角形C. 等边三角形D. 不存在6. 已知函数$f(x) = x^3 - 3x$,则$f'(1)=$A. 0B. 1C. -1D. -37. 在平面直角坐标系中,点P(2,3)关于直线y=x的对称点为A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)8. 若等比数列$\{a_n\}$中,$a_1 = 2$,$a_3 = 8$,则该数列的公比$q=$A. 2B. 4C. 8D. 169. 在等差数列$\{a_n\}$中,若$a_1 = 1$,$a_n = 100$,则该数列的项数n为A. 50B. 100C. 200D. 50010. 已知函数$f(x) = \frac{1}{x^2 + 1}$,则$f(x)$的对称中心为A. (0,0)B. (0,1)C. (0,-1)D. 无对称中心二、填空题(本大题共5小题,每小题5分,共25分。
2024年高考数学19题新模式新结构新题型数学与阅读理解 解析版

2024年高考数学19题新模式新结构新题型1(2023上·北京朝阳·高三统考期中/24南通)已知A m =a 1,1a 1,2⋯a 1,m a 2,1a 2,2⋯a 2,m ⋮⋮⋱⋮a m ,1a m ,2⋯a m ,m(m ≥2)是m 2个正整数组成的m 行m 列的数表,当1≤i <s ≤m ,1≤j <t ≤m 时,记d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t .设n ∈N *,若A m 满足如下两个性质:①a i ,j ∈1,2,3;⋯,n (i =1,2,⋯,m ;j =1,2,⋯,m );②对任意k ∈1,2,3,⋯,n ,存在i ∈1,2,⋯,m ,j ∈1,2,⋯,m ,使得a i ,j =k ,则称A m 为Γn 数表.(1)判断A 3=123231312是否为Γ3数表,并求d a 1,1,a 2,2 +d a 2,2,a 3,3 的值;(2)若Γ2数表A 4满足d a i ,j ,a i +1,j +1 =1(i =1,2,3;j =1,2,3),求A 4中各数之和的最小值;(3)证明:对任意Γ4数表A 10,存在1≤i <s ≤10,1≤j <t ≤10,使得d a i ,j ,a s ,t =0.【答案】(1)是;5(2)22(3)证明见详解【分析】(1)根据题中条件可判断结果,根据题中公式进行计算即可;(2)根据条件讨论a i +1,j 的值,根据d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t ,得到相关的值,进行最小值求和即可;(3)当r i ≥2时,将横向相邻两个k 用从左向右的有向线段连接,则该行有r i -1条有向线段,得到横向有向线段的起点总数,同样的方法得到纵向有向线段的起点总数,根据条件建立不等关系,即可证明.【详解】(1)A 3=123231312是Γ3数表,d a 1,1,a 2,2 +d a 2,2,a 3,3 =2+3=5.(2)由题可知d a i ,j ,a s ,t =a i ,j -a s ,j +a s ,j -a s ,t =1(i =1,2,3;j =1,2,3).当a i +1,j =1时,有d a i ,j ,a i +1,j +1 =(a i ,j -1)(a i +1,j +1-1)=1,所以a i ,j +a i +1,j +1=3.当a i +1,j =2时,有d a i ,j ,a i +1,j +1 =(2-a i ,j )(2-a i +1,j +1)=1,所以a i ,j +a i +1,j +1=3.所以a i ,j +a i +1,j +1=3(i =1,2,3;j =1,2,3).所以a 1,1+a 2,2+a 3,3+a 4,4=3+3=6,a 1,3+a 2,4=3,a 3,1+a 4,2=3.a 1,2+a 2,3+a 3,4=3+1=4或者a 1,2+a 2,3+a 3,4=3+2=5,a 2,1+a 3,2+a 4,3=3+1=4或者a 2,1+a 3,2+a 4,3=3+2=5,a 1,4=1或a 1,4=2,a 4,1=1或a 4,1=2,故各数之和≥6+3+3+4+4+1+1=22,当A 4=1111122212111212时,各数之和取得最小值22.(3)由于Γ4数表A 10中共100个数字,必然存在k ∈1,2,3,4 ,使得数表中k 的个数满足T ≥25.设第i 行中k 的个数为r i (i =1,2,⋅⋅⋅,10).当r i ≥2时,将横向相邻两个k 用从左向右的有向线段连接,则该行有r i -1条有向线段,所以横向有向线段的起点总数R =∑r i ≥2(r i -1)≥∑i =110(r i -1)=T -10.设第j 列中k 的个数为c j (j =1,2,⋅⋅⋅,10).当c j ≥2时,将纵向相邻两个k 用从上到下的有向线段连接,则该列有c j -1条有向线段,所以纵向有向线段的起点总数C =∑c j ≥2(c j -1)≥∑j =110(c j -1)=T -10.所以R +C ≥2T -20,因为T ≥25,所以R +C -T ≥2T -20-T =T -20>0.所以必存在某个k 既是横向有向线段的起点,又是纵向有向线段的终点,即存在1<u <v ≤10,1<p <q ≤10,使得a u ,p =a v ,p =a v ,q =k ,所以d a u ,p ,a v ,q =a u ,p -a v ,p +a v ,p -a v ,q =0,则命题得证.2(镇海高三期末)在几何学常常需要考虑曲线的弯曲程度,为此我们需要刻画曲线的弯曲程度.考察如图所示的光滑曲线C :y =f x 上的曲线段AB,其弧长为Δs ,当动点从A 沿曲线段AB运动到B 点时,A 点的切线l A 也随着转动到B 点的切线l B ,记这两条切线之间的夹角为Δθ(它等于l B 的倾斜角与l A 的倾斜角之差).显然,当弧长固定时,夹角越大,曲线的弯曲程度就越大;当夹角固定时,弧长越小则弯曲程度越大,因此可以定义K =ΔθΔs为曲线段AB 的平均曲率;显然当B 越接近A ,即Δs 越小,K 就越能精确刻画曲线C 在点A 处的弯曲程度,因此定义K =lim Δs →0ΔθΔs =y 1+y 2 32(若极限存在)为曲线C 在点A 处的曲率.(其中y ',y ''分别表示y =f x 在点A 处的一阶、二阶导数)(1)求单位圆上圆心角为60°的圆弧的平均曲率;(2)求椭圆x 24+y 2=1在3,12处的曲率;(3)定义φy =22y1+y3为曲线y =f x 的“柯西曲率”.已知在曲线f x =x ln x -2x 上存在两点P x 1,f x 1 和Q x 2,f x 2 ,且P ,Q 处的“柯西曲率”相同,求3x 1+3x 2的取值范围.【答案】(1)1(2)16749(3)2e ,1 【解析】【分析】(1)依据所给定义求解即可.(2)直接利用定义求解即可.(3)合理构造给定式子,转化为一元函数,结合高观点极限方法求解即可.【小问1详解】K =ΔθΔs=π3π3=1.【小问2详解】y =1-x 24,y=-x 41-x 24 -12,y =-141-x 24 -12-x 2161-x 24-32,故y x =3=-32,y x =3=-2,故K =21+3432=16749.【小问3详解】fx =ln x -1,fx =1x ,故φy =22y 1+y3=22x ln x 3=2233s ln s 3,其中s =3x ,令t 1=3x 1,t 2=3x 2,则t 1ln t 1=t 2ln t 2,则ln t 1=-t ln tt -1,其中t =t 2t 1>1(不妨t 2>t 1)令p x =x ln x ,p x =1+ln x ⇒p x 在0,1e 递减,在1e ,+∞ 递增,故1>t 2>1e>t 1>0;令h t =ln t 1+t 2 =ln t +1 -t ln tt -1,h 't =1t -1 2ln t -2t -1 t +1 ,令m (t )=ln t -2t -1 t +1(t >1),则m(t )=t -1 2t (t +1),当t >1时,m (t )>0恒成立,故m (t )在(1,+∞)上单调递增,可得m (t )>m (1)=0,即ln t -2t -1t +1>0,故有h t =1t -1 2ln t -2t -1 t +1>0,则h t 在1,+∞ 递增,又lim t →1h t =ln2-1,lim t →+∞h t =0,故ln t 1+t 2 ∈ln2-1,0 ,故3x 1+3x 2=t 1+t 2∈2e ,1.【点睛】关键点点睛:本题考查求导数新定义,解题关键是将给定式子合理转化为一元函数,然后利用极限方法求得关键函数值域,最终即可求解.3(合肥一中期末)同余定理是数论中的重要内容.同余的定义为:设a ,b ∈Z ,m ∈N *且m >1.若m a -b 则称a 与b 关于模m 同余,记作a ≡b (mod m )(“|”为整除符号).(1)解同余方程x 2-x ≡0(mod3);(2)设(1)中方程的所有正根构成数列a n ,其中a 1<a 2<a 3<⋯<a n .①若b n =a n +1-a n (n ∈N *),数列b n 的前n 项和为S n ,求S 2024;②若c n =tan a 2n +1⋅tan a 2n -1(n ∈N *),求数列c n 的前n 项和T n .解:(1)由题意x x -1 ≡0(mod3),所以x =3k 或x -1=3k (k ∈Z ),即x =3k 或x =3k +1(k ∈Z ).(2)由(1)可得a n 为3,4,6,7,9,10,⋯ ,所以a n =3×n +12n 为奇数3×n 2+1n 为偶数.①因为b n =a n +1-a n (n ∈N *),所以b n =1n 为奇数2n 为偶数.S 2024=b 1+b 2+b 3+⋯+b 2024=3×1012=3036.②c n =tan a 2n +1⋅tan a 2n -1=tan3n ⋅tan3n +1 (n ∈N *).因为tan3n ⋅tan3n +1 =tan3n +1 -tan3ntan3-1,所以T n =c 1+c 2+⋯c n =tan6-tan3tan3-1 +tan9-tan6tan3-1 +⋯+tan3n +1 -tan3n tan3-1=tan3n +1 -tan3tan3-n =tan3n +1 tan3-n -1.4(北京西城)给定正整数N ≥3,已知项数为m 且无重复项的数对序列A :x 1,y 1 ,x 2,y 2 ,⋅⋅⋅,x m ,y m 满足如下三个性质:①x i ,y i ∈1,2,⋅⋅⋅,N ,且x i ≠y i i =1,2,⋅⋅⋅,m ;②x i +1=y i i =1,2,⋅⋅⋅,m -1 ;③p ,q 与q ,p 不同时在数对序列A 中.(1)当N =3,m =3时,写出所有满足x 1=1的数对序列A ;(2)当N =6时,证明:m ≤13;(3)当N 为奇数时,记m 的最大值为T N ,求T N .【答案】(1)A :1,2 ,2,3 ,3,1 或A :1,3 ,3,2 ,2,1(2)证明详见解析(3)T N =12N N -1【解析】【分析】(1)利用列举法求得正确答案.(2)利用组合数公式求得m 的一个大致范围,然后根据序列A 满足的性质证得m ≤13.(3)先证明T N +2 =T N +2N +1,然后利用累加法求得T N .【小问1详解】依题意,当N =3,m =3时有:A :1,2 ,2,3 ,3,1 或A :1,3 ,3,2 ,2,1 .【小问2详解】当N =6时,因为p ,q 与q ,p 不同时在数对序列A 中,所以m ≤C 26=15,所以1,2,3,4,5,6每个数至多出现5次,又因为x i +1=y i i =1,2,⋯,m -1 ,所以只有x 1,y m 对应的数可以出现5次,所以m ≤12×4×4+2×5 =13.【小问3详解】当N 为奇数时,先证明T N +2 =T N +2N +1.因为p ,q 与q ,p 不同时在数对序列A 中,所以T N ≤C 2N =12N N -1 ,当N =3时,构造A :1,2 ,2,3 ,3,1 恰有C 23项,且首项的第1个分量与末项的第2个分量都为1.对奇数N ,如果和可以构造一个恰有C 2N 项的序列A ,且首项的第1个分量与末项的第2个分量都为1,那么多奇数N +2而言,可按如下方式构造满足条件的序列A :首先,对于如下2N +1个数对集合:1,N +1 ,N +1,1 ,1,N +2 ,N +2,1 ,2,N +1 ,N +1,2 ,2,N +2 ,N +2,2 ,⋯⋯N ,N +1 ,N +1,N ,N ,N +2 ,N +2,N ,N +1,N +2 ,N +2,N +1 ,每个集合中都至多有一个数对出现在序列A 中,所以T N +2 ≤T N +2N +1,其次,对每个不大于N 的偶数i ∈2,4,6,⋯,N -1 ,将如下4个数对并为一组:N +1,i ,i ,N +2 ,N +2,i +1 ,i +1,N +1 ,共得到N -12组,将这N -12组对数以及1,N +1 ,N +1,N +2 ,N +2,1 ,按如下方式补充到A 的后面,即A ,1,N +1 ,N +1,2 ,2,N +2 ,N +2,3 ,3,n +1 ,⋯,(N +1,N -1),(N -1,N +2),(N +2,N ),(N ,N +1),(N +1,N +2),(N +2,1).此时恰有T N +2N +1项,所以T N +2 =T N +2N +1.综上,当N 为奇数时,T N =T N -T N -2 +T N -2 -T N -4 +⋯+T 5 -T 3 +T 3 =2N -2 +1 +2N -4 +1 +⋯+2×3+1 +3=2N -2 +1 +2N -4 +1 +⋯+2×3+1 +2×1+1 =2N -3 +2N -7 +⋯+7+3=2N -3+32×N -2+12=12N N -1 .【点睛】方法点睛:解新定义题型的步骤:(1)理解“新定义”--明确“新定义”的条件、原理、方法、步骤和结论.(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的解题方法.归纳“举例”提供的分类情况.(3)类比新定义中的概念、原理、方法,解决题中需要解决的问题.5(如皋市)对于给定的正整数n ,记集合R n ={α |α=(x 1,x 2,x 3,⋅⋅⋅,x n ),x j ∈R ,j =1,2,3,⋅⋅⋅,n },其中元素α称为一个n 维向量.特别地,0 =(0,0,⋅⋅⋅,0)称为零向量.设k ∈R ,α =(a 1,a 2,⋅⋅⋅,a n )∈R n ,β =(b 1,b 2,⋅⋅⋅,b n )∈R n ,定义加法和数乘:kα =(ka 1,ka 2,⋅⋅⋅,ka n ),α +β=(a 1+b 1,a 2+b 2,⋅⋅⋅,a n +b n ).对一组向量α1 ,α2 ,⋯,αs (s ∈N +,s ≥2),若存在一组不全为零的实数k 1,k 2,⋯,k s ,使得k 1α1 +k 2α2+⋅⋅⋅+k s αs =0 ,则称这组向量线性相关.否则,称为线性无关.(1)对n =3,判断下列各组向量是线性相关还是线性无关,并说明理由.①α=(1,1,1),β =(2,2,2);②α =(1,1,1),β =(2,2,2),γ=(5,1,4);③α =(1,1,0),β =(1,0,1),γ=(0,1,1),δ =(1,1,1).(2)已知α ,β ,γ 线性无关,判断α +β ,β +γ ,α +γ是线性相关还是线性无关,并说明理由.(3)已知m (m ≥2)个向量α1 ,α2 ,⋯,αm线性相关,但其中任意m -1个都线性无关,证明:①如果存在等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0(k i ∈R ,i =1,2,3,⋅⋅⋅,m ),则这些系数k 1,k 2,⋯,k m 或者全为零,或者全不为零;②如果两个等式k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 ,l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 (k i ∈R ,l i ∈R ,i =1,2,3,⋅⋅⋅,m )同时成立,其中l 1≠0,则k 1l 1=k 2l 2=⋅⋅⋅=km l m.(1)解:对于①,设k 1α +k 2β =0 ,则可得k 1+2k 2=0,所以α ,β线性相关;对于②,设k 1α +k 2β +k 3γ =0,则可得k 1+2k 2+5k 3=0k 1+2k 2+k 3=0k 1+2k 2+4k 3=0 ,所以k 1+2k 2=0,k 3=0,所以α ,β ,γ线性相关;对于③,设k 1α +k 2β +k 3γ+k 4δ =0 ,则可得k 1+k 2+k 4=0k 1+k 3+k 4=0k 2+k 3+k 4=0 ,解得k 1=k 2=k 3=-12k 4,所以α ,β ,γ ,δ 线性相关;(2)解:设k 1(α +β )+k 2(β +γ )+k 3(α +γ)=0 ,则(k 1+k 3)α +(k 1+k 2)β +(k 2+k 3)γ =0,因为向量α ,β ,γ线性无关,所以k 1+k 3=0k 1+k 2=0k 2+k 3=0 ,解得k 1=k 2=k 3=0,所以向量α +β ,β +γ ,α +γ线性无关,(3)①k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0,如果某个k i =0,i =1,2,⋯,m ,则k 1α1 +k 2α2 +⋯+k i -1αi -1 +k i +1αi +1 +⋅⋅⋅+k m αm =0 ,因为任意m -1个都线性无关,所以k 1,k 2,⋯k i -1,k i +1,⋅⋅⋅,k m 都等于0,所以这些系数k 1,k 2,⋅⋅⋅,k m 或者全为零,或者全不为零,②因为l 1≠0,所以l 1,l 2,⋅⋅⋅,l m 全不为零,所以由l 1α1 +l 2α2 +⋅⋅⋅+l m αm =0 可得α1 =-l 2l 1α2 -⋅⋅⋅-l m l 1αm,代入k 1α1 +k 2α2 +⋅⋅⋅+k m αm =0 可得k 1-l 2l 1α2 -⋅⋅⋅-l m l 1αm+k 2α2 +⋅⋅⋅+k m αm =0 ,所以-l 2l 1k 1+k 2 α2 +⋅⋅⋅+-lm l 1k 1+k mαm =0 ,所以-l 2l 1k 1+k 2=0,⋯,-lm l 1k 1+k m =0,所以k 1l 1=k 2l 2=⋅⋅⋅=km l m.6(江苏四校)交比是射影几何中最基本的不变量,在欧氏几何中亦有应用.设A ,B ,C ,D 是直线l 上互异且非无穷远的四点,则称AC BC ⋅BDAD(分式中各项均为有向线段长度,例如AB =-BA )为A ,B ,C ,D四点的交比,记为(A ,B ;C ,D ).(1)证明:1-(D ,B ;C ,A )=1(B ,A ;C ,D );(2)若l1,l2,l3,l4为平面上过定点P且互异的四条直线,L1,L2为不过点P且互异的两条直线,L1与l1,l2,l3,l4的交点分别为A1,B1,C1,D1,L2与l1,l2,l3,l4的交点分别为A2,B2,C2,D2,证明:(A1,B1;C1,D1)= (A2,B2;C2,D2);(3)已知第(2)问的逆命题成立,证明:若ΔEFG与ΔE F G 的对应边不平行,对应顶点的连线交于同一点,则ΔEFG与ΔE F G 对应边的交点在一条直线上.解:(1)1-(D,B;C,A)=1-DC⋅BABC⋅DA=BC⋅AD+DC⋅BABC⋅AD=BC⋅(AC+CD)+CD⋅ABBC⋅AD=BC⋅AC+BC⋅CD+CD⋅ABBC⋅AD =BC⋅AC+AC⋅CDBC⋅AD=AC⋅BDBC⋅AD=1(B,A;C,D);(2)(A1,B1;C1,D1)=A1C1⋅B1D1B1C1⋅A1D1=SΔPA1C1⋅SΔPB1D1SΔPB1C1⋅SΔPA1D1=12⋅PA1⋅PC1⋅sin∠A1PC1⋅12⋅PB1⋅PD1⋅sin∠B1PD112⋅PB1⋅PC1⋅sin∠B1PC1⋅12⋅PA1⋅PD1⋅sin∠A1PD1=sin∠A1PC1⋅sin∠B1PD1sin∠B1PC1⋅sin∠A1PD1=sin∠A2PC2⋅sin∠B2PD2sin∠B2PC2⋅sin∠A2PD2=SΔPA2C2⋅SΔPB2D2SΔPB2C2⋅SΔPA2D2==A2C2⋅B2D2B2C2⋅A2D2=(A2,B2;C2,D2);第(2)问图第(3)问图(3)设EF与E F 交于X,FG与F G 交于Y,EG与E G 交于Z,连接XY,FF 与XY交于L,EE 与XY交于M,GG 与XY交于N,欲证X,Y,Z三点共线,只需证Z在直线XY上.考虑线束XP,XE,XM,XE ,由第(2)问知(P,F;L,F )=(P,E;M,E ),再考虑线束YP,YF,YL,YF ,由第(2)问知(P,F;L, F )=(P,G;N,G ),从而得到(P,E;M,E )=(P,G;N,G ),于是由第(2)问的逆命题知,EG,MN,E G 交于一点,即为点Z,从而MN过点Z,故Z在直线XY上,X,Y,Z三点共线.7(高考仿真)已知无穷数列a n满足a n=max a n+1,a n+2-min a n+1,a n+2(n=1,2,3,⋯),其中max {x,y}表示x,y中最大的数,min{x,y}表示x,y中最小的数.(1)当a1=1,a2=2时,写出a4的所有可能值;(2)若数列a n中的项存在最大值,证明:0为数列a n中的项;(3)若a n>0(n=1,2,3,⋯),是否存在正实数M,使得对任意的正整数n,都有a n≤M?如果存在,写出一个满足条件的M;如果不存在,说明理由.【答案】(1){1,3,5}(2)证明见解析(3)不存在,理由见解析【解析】【分析】(1)根据定义知a n≥0,讨论a3>2、a3<2及a3,a4大小求所有a4可能值;(2)由a n≥0,假设存在n0∈N*使a n≤a n0,进而有a n≤max{a n+1,a n+2}≤a n,可得min{a n+1,a n+2}=0,即可证结论;(3)由题设a n ≠a n +1(n =2,3,⋯),令S ={n |a n >a n +1,n ≥1},讨论S =∅、S ≠∅求证a n >M 即可判断存在性.【小问1详解】由a n =max a n +1,a n +2 -min a n +1,a n +2 ≥0,a 1=max {2,a 3}-min {2,a 3}=1,若a 3>2,则a 3-2=1,即a 3=3,此时a 2=max {3,a 4}-min {3,a 4}=2,当a 4>3,则a 4-3=2,即a 4=5;当a 4<3,则3-a 4=2,即a 4=1;若a 3<2,则2-a 3=1,即a 3=1,此时a 2=max {1,a 4}-min {1,a 4}=2,当a 4>1,则a 4-1=2,即a 4=3;当a 4<1,则1-a 4=2,即a 4=-1(舍);综上,a 4的所有可能值为{1,3,5}.【小问2详解】由(1)知:a n ≥0,则min a n +1,a n +2 ≥0,数列a n 中的项存在最大值,故存在n 0∈N *使a n ≤a n 0,(n =1,2,3,⋯),由a n 0=max {a n 0+1,a n 0+2}-min {a n 0+1,a n 0+2}≤max {a n 0+1,a n 0+2}≤a n 0,所以min {a n 0+1,a n 0+2}=0,故存在k ∈{n 0+1,n 0+2}使a k =0,所以0为数列a n 中的项;【小问3详解】不存在,理由如下:由a n >0(n =1,2,3,⋯),则a n ≠a n +1(n =2,3,⋯),设S ={n |a n >a n +1,n ≥1},若S =∅,则a 1≤a 2,a i <a i +1(i =2,3,⋯),对任意M >0,取n 1=Ma 1+2([x ]表示不超过x 的最大整数),当n >n 1时,a n =(a n -a n -1)+(a n -1-a n -2)+...+(a 3-a 2)+a 2=a n -2+a n -3+...+a 1+a 2≥(n -1)a 1>M ;若S ≠∅,则S 为有限集,设m =max {n |a n >a n +1,n ≥1},a m +i <a m +i +1(i =1,2,3,⋯),对任意M >0,取n 2=M a m +1+m +1([x ]表示不超过x 的最大整数),当n >n 2时,a n =(a n -a n -1)+(a n -1-a n -2)+...+(a m +2-a m +1)+a m +1=a n -2+a n -3+...+a m +a m +1≥(n -m )a m +1>M ;综上,不存在正实数M ,使得对任意的正整数n ,都有a n ≤M .【点睛】关键点点睛:第三问,首选确定a n ≠a n +1(n =2,3,⋯),并构造集合S ={n |a n >a n +1,n ≥1},讨论S =∅、S ≠∅研究存在性.8(高考仿真)若项数为k (k ∈N *,k ≥3)的有穷数列{a n }满足:0≤a 1<a 2<a 3<⋅⋅⋅<a k ,且对任意的i ,j (1≤i ≤j ≤k ),a j +a i 或a j -a i 是数列{a n }中的项,则称数列{a n }具有性质P .(1)判断数列0,1,2是否具有性质P ,并说明理由;(2)设数列{a n }具有性质P ,a i (i =1,2,⋯,k )是{a n }中的任意一项,证明:a k -a i 一定是{a n }中的项;(3)若数列{a n }具有性质P ,证明:当k ≥5时,数列{a n }是等差数列.解析:(1)数列0,1,2具有性质P .理由:根据有穷数列a n满足:0≤a1<a2<a3<⋅⋅⋅<a k,且对任意的i,j(1≤i≤j≤k),a j+a i或a j-a i是数列a n中的项,则称数列a n具有性质P,对于数列0,1,2中,若对任意的i,j(1≤i≤j≤k),可得a j-a i=0或1或2,可得a j-a i一定是数列a n中的项,所以数列0,1,2具有性质P.⋯⋯⋯⋯⋯4分(2)证明:由a i(i=1,2,⋯,k)是数列a n中的任意一项,因为数列{a n}具有性质P,即a j+a i或a j-a i是数列a n中的项,令j=k,可得a k+a i或a k-a i是数列a n中的项,又因为0≤a1<a2<⋯<a k,可得a k+a i一定不是数列a n中的项,所以a k-a i一定是数列a n中的项. ⋯⋯⋯⋯⋯8分(3)由数列{a n}具有性质P,可得a k+a k∉a n,所以a k-a k∈a n,则0∈a n,且a1=0,又由a k+a i∉a n,所以a k-a i∈a n,又由0=a k-a k<a k-a k-1<a k-a k-2<⋯<a k-a2<a k-a1,①设2≤i≤k,因为0≤a1<a2<⋯<a k可得a k-a k=0,a k-a k-1=a2,a k-a k-2=a3,⋯,a k-a2=a k-1,a k-a1=a k,当k≥5时,可得a k-a k-i=a i+11≤i≤k-1, (∗)②设3≤i≤k-2,则a k-1+a i>a k-1+a2=a k,所以a k-1+a i∉a n,由0=a k-1-a k-1<a k-1-a k-2<⋯<a k-1-a3<a k-a3=a k-2,又由0≤a1<a2<⋯<a k-3<a k-2,可得a k-1-a k-1=a1,a k-1-a k-2=a2⋯<a k-1-a k-3=a3,a k-1-a3=a k-3,所以a k-1-a k-i=a i(1≤i≤k-3),因为k≥5,由以上可知:a k-1-a k-1=a1且a k-1-a k-2=a2,所以a k-1-a1=a k-1且a k-1-a2=a k-2,所以a k-1-a k-i=a i(1≤i≤k-1),(∗∗)由(∗)知,a k-a k-i=a i+11≤i≤k-1两式相减,可得a k-a k-1=a i+1-a i1≤i≤k-1,所以当k≥5时,数列a n为等差数列. ⋯⋯⋯⋯⋯17分.9(安徽)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M与两定点Q,P的距离之比MQMP=λ(λ>0,λ≠1),λ是一个常数,那么动点M的轨迹就是阿波罗尼斯圆,圆心在直线PQ上.已知动点M的轨迹是阿波罗尼斯圆,其方程为x2+y2=4,定点分别为椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F与右顶点A,且椭圆C的离心率为e=1 2.(1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为k (k >0)的直线l 与椭圆C 相交于B ,D (点B 在x 轴上方),点S ,T 是椭圆C 上异于B ,D 的两点,SF 平分∠BSD ,TF 平分∠BTD .①求BSDS的取值范围;②将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为81π8,求直线l 的方程.【答案】(1)x 28+y 26=1(2)①13,1 ②y =52x -102【解析】(1)方法①特殊值法,令M ±2,0 ,c -2 a -2=c +2a +2,且a =2c ,解得c 2=2.∴a 2=8,b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1,方法②设M x ,y ,由题意MFMA =(x -c )2+y 2(x -a )2+y 2=λ(常数),整理得:x 2+y 2+2c -2aλ2λ2-1x +λ2a 2-c2λ2-1=0,故2c -2aλ2λ2-1=0λ2a 2-c 2λ2-1=-4,又c a =12,解得:a =22,c = 2.∴b 2=a 2-c 2=6,椭圆C 的方程为x 28+y 26=1.(2)①由S △SBF S △SDF =12SB⋅SF ⋅sin ∠BSF 12SD⋅SF ⋅sin ∠DSF =SB SD ,又S △SBF S △SDF =BF DF ,∴BS DS=BF DF(或由角平分线定理得),令BF DF=λ,则BF =λFD,设D x 0,y 0 ,则有3x 20+4y 20=24,又直线l 的斜率k >0,则x 0∈-22,2 ,x B =2λ+1 -λx 0y B =-λy 0代入3x 2+4y 2-24=0得:321+λ -λx 0 2+4λ2y 20-24=0,即λ+1 5λ-3-2λx 0 =0,∵λ>0,∴λ=35-2x 0∈13,1 .②由(1)知,SB SD=TB TD=BF DF,由阿波罗尼斯圆定义知,S ,T ,F 在以B ,D 为定点的阿波罗尼斯圆上,设该圆圆心为C 1,半径为r ,与直线l 的另一个交点为N ,则有BF DF =NB ND ,即BF DF =2r -BF 2r +DF ,解得:r =11BF-1DF.又S 圆C 1=πr 2=818π,故r =922,∴1BF -1DF=229又DF =x 0-2 2+y 20=x 0-2 2+6-34x 20=22-12x 0,∴1BF -1DF =1λDF -1DF =5-2x 0322-12x 0 -122-12x 0=2-2x 0322-12x 0=229.解得:x 0=-22,y 0=-6-34x 20=-3104,∴k =-y 02-x 0=52,∴直线l 的方程为y =52x -102.10(郑州外国语)记U ={1,2,⋯,100}.对数列a n n ∈N * 和U 的子集T ,若T =∅,定义S T =0;若T =t 1,t 2,⋯,t k ,定义S T =a t 1+a t 2+⋯+a tk .例如:T =1,3,66 时,S T =a 1+a 3+a 66.现设a n n ∈N * 是公比为3的等比数列,且当T =2,4 时,S T =30.(1)求数列a n 的通项公式;(2)对任意正整数k 1≤k ≤100 ,若T 1,2,⋯,k ,求证:S T <a k +1;(3)设C ⊆U ,D ⊆U ,SC ≥SD ,求证:S C +S C ∩D ≥2S D .解:(1)当T =2,4 时,S T =a 2+a 4=a 2+9a 2=30,因此a 2=3,从而a 1=a 23=1,a n =3n -1;(2)S T ≤a 1+a 2+⋯a k =1+3+32+⋯+3k -1=3k -12<3k =a k +1;(3)设A =∁C C ∩D ,B =∁D C ∩D ,则A ∩B =∅,S C =S A +S C ∩D ,S D =S B +S C ∩D ,S C +S C ∩D -2S D =S A -2S B ,因此原题就等价于证明S A ≥2S B .由条件S C ≥S D 可知S A ≥S B .①若B =∅,则S B =0,所以S A ≥2S B .②若B ≠∅,由S A ≥S B 可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m ,若m ≥l +1,则由第(2)小题,S A <a l +1≤a m ≤S B ,矛盾.因为A ∩B =∅,所以l ≠m ,所以l ≥m +1,S B ≤a 1+a 2+⋯+a m =1+3+32+⋯+3m -1=3m -12<a m +12≤a l 2≤S A 2,即S A >2S B .综上所述,S A ≥2S B ,因此S C +S C ∩D ≥2S D .11(福建模拟)2022年北京冬奥会标志性场馆--国家速滑馆的设计理念来源于一个冰和速度结合的创意,沿着外墙面由低到高盘旋而成的“冰丝带”,就像速度滑冰运动员高速滑动时留下的一圈圈风驰电掣的轨迹,冰上划痕成丝带,22条“冰丝带”又象征北京2022年冬奥会.其中“冰丝带”呈现出圆形平面、椭圆形平面、马鞍形双曲面三种造型,这种造型富有动感,体现了冰上运动的速度和激情这三种造型取自于球、椭球、椭圆柱等空间几何体,其设计参数包括曲率、挠率、面积体积等对几何图形的面积、体积计算方法的研究在中国数学史上有过辉煌的成就,如《九章算术》中记录了数学家刘徽提出利用牟合方盖的体积来推导球的体积公式,但由于不能计算牟合方盖的体积并没有得出球的体积计算公式直到200年以后数学家祖冲之、祖眶父子在《缀术》提出祖暅原理:“幂势既同,则积不容异”,才利用牟合方盖的体积推导出球的体积公式原理的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.(Ⅰ)利用祖暅原理推导半径为R 的球的体积公式时,可以构造如图所示的几何体M ,几何体M 的底面半径和高都为R ,其底面和半球体的底面同在平面α内.设与平面α平行且距离为d 的平面β截两个几何体得到两个截面,请在图中用阴影画出与图中阴影截面面积相等的图形并给出证明;(Ⅱ)现将椭圆x 2a 2+y 2b2=1a >b >0 所围成的椭圆面分别绕其长轴、短轴旋转一周后得两个不同的椭球A ,B (如图),类比(Ⅰ)中的方法,探究椭球A 的体积公式,并写出椭球A ,B 的体积之比.【答案】解: (Ⅰ)由图可知,图①几何体的为半径为R 的半球,图②几何体为底面半径和高都为R 的圆柱中挖掉了一个圆锥,与图①截面面积相等的图形是圆环(如阴影部分)证明如下:在图①中,设截面圆的圆心为O 1,易得截面圆O 1的面积为πR 2-d 2 ,在图②中,截面截圆锥得到的小圆的半径为d ,所以,圆环的面积为πR 2-d 2 ,所以,截得的截面的面积相等(Ⅱ)类比(Ⅰ)可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上(如图),在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ;在半椭球截面圆的面积πb 2a2a 2-d 2 ,在圆柱内圆环的面积为πb 2-πb 2a 2d 2=πb 2a2a 2-d 2 ∴距离平面α为d 的平面截取两个几何体的平面面积相等,根据祖暅原理得出椭球A 的体积为:V A =2V 圆柱-V 圆锥 =2π⋅b 2⋅a -13π⋅b 2⋅a =4π3ab 2,同理:椭球B 的体积为V B =4π3a 2b 所以,两个椭球A ,B 的体积之比为b a. 【解析】本题考查新定义问题,解题的关键是读懂题意,构建圆柱,通过计算得到高相等时截面面积相等,考查学生的空间想象能力与运算求解能力,属于中档题.(Ⅰ)由题意,直接画出阴影即可,然后分别求出图①中圆的面积及图②中圆环的面积即可证明;(Ⅱ)类比(Ⅰ)可知,椭圆的长半轴为a ,短半轴为b ,构造一个底面半径为b ,高为a 的圆柱,把半椭球与圆柱放在同一个平面上,在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥,即挖去的圆锥底面半径为b ,高为a ,证明截面面积相等,由祖暅原理求出出椭球A 的体积,同理求出椭球B 的体积,作比得出答案.12用数学的眼光看世界就能发现很多数学之“美”.现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若f 'x 是f x 的导函数,f ''x 是f 'x 的导函数,则曲线y =f x 在点x ,f x 处的曲率K =|f (x )|1+[f (x )]232.(1)若曲线f x =ln x+x与g x =x在1,1处的曲率分别为K1,K2,比较K1,K2的大小;(2)求正弦曲线h x =sin x(x∈R)曲率的平方K2的最大值.【答案】解:(1)由题意,得f'(x)=1x+1,f''(x)=-1x2,g'(x)=12x-12,g''(x)=-14x-32,∴K1=f''(1)1+f'(1)232=-11+2232=1125,K2=g''(1)1+g'(1)232=-141+12232=1412564=2125,∴K1<K2;(2)由h(x)=sin x(x∈R),得h'(x)=cos x,h''(x)=-sin x,则K=-sin x1+cos2x32,K2=sin2x1+cos2x3=sin2x2-sin2x3,令t=2-sin2x,则t∈1,2,K2=2-tt3,设p t =2-tt3,t∈1,2,则p't =-t3-32-tt2t6=2t-6t4,所以p't <0,p t 在1,2上单调递减,则p(t)max=p1 =1,即当sin2x=1,cos x=0时,即x=nπ+π2,n∈Z时,K2取最大值1.【解析】本题考查了导数的运算、指数幂运算、三角函数的性质、利用导数求函数的最值,属于中档题.(1)利用曲率的定义分别求出K1,K2,然后比较即可;(2)利用曲率的定义求出K,再求出K2,然后利用正弦函数的性质结合利用导数求最值即可求解.13设P为多面体M的一个顶点,定义多面体M在点P处的离散曲率为1-12π(∠Q1PQ2+∠Q2PQ3+⋯+∠Q k-1PQ k+∠Q k PQ1),其中Q i(i=1,2,⋯,k,k≥3)为多面体M的所有与点P相邻的顶点,且平面Q 1PQ 2,平面Q 2PQ 3,⋯,平面Q k -1PQ k和平面Q k PQ 1遍历多面体M的所有以P为公共点的面.(1)任取正四面体的一个顶点,求该点处的离散曲率;(2)如图1,已知长方体A 1B 1C 1D 1-ABCD,AB=BC=1,AA1=22,点P为底面A 1B 1C 1D 1内的一个动点,则求四棱锥P-ABCD在点P处的离散曲率的最小值;(3)图2为对某个女孩面部识别过程中的三角剖分结果,所谓三角剖分,就是先在面部取若干采样点,然后用短小的直线段连接相邻三个采样点形成三角形网格.区域α和区域β中点的离散曲率的平均值更大的是哪个区域?(只需确定“区域α”还是“区域β”)【答案】解:记∠Q1PQ2+∠Q2PQ3+⋯+∠Q n PQ1=θ,则离散曲率为1-θ2π,θ越大离散曲率越小.(1)对于正四面体而言,每个面都是正三角形,所以∠Q1PQ2=∠Q2PQ3=∠Q3PQ1=60°,所以离散曲率为1-1 2ππ3×3=12;(2)P在底面ABCD的投影记为H,通过直观想象,当H点在平面ABCD中逐渐远离正方形ABCD的中心,以至于到无穷远时,θ逐渐减小以至于趋近于0.所以当H点正好位于正方形ABCD的中心时,θ最大,离散曲率最小.此时HA=HB=22=PH,所以PA=PB=1=AB,所以∠APB=60°,θ=4π3,离散曲率为1-12π×4π3=13;(3)区域β比区域α更加平坦,所以θ更大,离散曲率更小,故区域α和区域β中点的离散曲率的平均值更大的是区域α.【解析】本题考查空间几何体的性质以及新定义,正四面体的几何特征和曲率的计算公式,考查分析问题的能力以及空间想象能力,综合性较强,属于较难题.(1)利用离散曲率为1-θ2π,以及三角形的内角和公式求解;(2)记∠Q1PQ2+∠Q2PQ3+⋯+∠Q n PQ1=θ,于是θ越大离散曲率越小,进而求得结果;(3)区域β比区域α更加平坦,所以θ更大,离散曲率更小,进而得答案.14近些年来,三维扫描技术得到空前发展,从而催生了数字几何这一新兴学科.数字几何是传统几何和计算机科学相结合的产物.数字几何中的一个重要概念是曲率,用曲率来刻画几何体的弯曲程度.规定:多面体在顶点处的曲率等于2π与多面体在该点的所有面角之和的差(多面体的面角是指多面体的面上的多边形的内角的大小,用弧度制表示),多面体在面上非顶点处的曲率均为零.由此可知,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正方体在每个顶点有3个面角,每个面角是π2,所以正方体在各顶点的曲率为2π-3×π2=π2,故其总曲率为4π.(1)求四棱锥的总曲率;(2)表面经过连续变形可以变为球面的多面体称为简单多面体.关于简单多面体有著名欧拉定理:设简单多面体的顶点数为D ,棱数为L ,面数为M ,则有:D -L +M =2.利用此定理试证明:简单多面体的总曲率是常数.【答案】解:(1)四棱锥有5个顶点,4个三角形面,1个凸四边形面,故其总曲率为2π×5-4×π-2π=4π.(2)设多面体有M 个面,给组成多面体的多边形编号,分别为1,2,⋯,M 号.设第i 号(1≤i ≤M )多边形有L i 条边.则多面体共有L =L 1+L 2+⋯+L M2条棱.由题意,多面体共有D =2-M +L =2-M +L 1+L 2+⋯+L M2个顶点.i 号多边形的内角之和为πL i -2π,故所有多边形的内角之和为π(L 1+L 2+⋯+L M )-2πM ,故多面体的总曲率为2πD -πL 1+L 2+⋯+L M -2πM=2π2-M +L 1+L 2+⋯+L M2 -πL 1+L 2+⋯+L M -2πM =4π所以满足题目要求的多面体的总曲率为4π.【解析】本题考查棱锥与简单组合体的结构特征,属于较难题.(1)利用总曲率定义即可得到结果;(1)利用总曲率定义及欧拉定理即可证明其为常数.。
高考数学试题2024新高考新题型考前必刷卷01(参考答案)

2024年高考考前信息必刷卷(新题型地区专用)01数学·答案及评分标准(考试时间:120分钟试卷满分:150分)第I 卷(选择题)一、选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合要求的。
12345678DDBDADAA二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目的要求,全部选对的得6分,部分选对的得部分分,有选错的得0分。
91011ADABCAC第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分。
12.513.①④14.①③四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤。
15.(13分)【解析】(1)当1a =时,函数31()ln 222f x x x x x =--+的定义域为(0,)+∞,求导得21()ln 212f x x x '=+-,(2分)令21()ln ,0212g x x x x =+->,求导得233111()x g x x x x-'=-=,(4分)当01x <<时,()0g x '<,当1x >时,()0g x '>,则函数()g x 在(0,1)上递减,在(1,)+∞上递增,()(1)0g x g ≥=,即(0,)∀∈+∞x ,()0f x '≥,当且仅当1x =时取等号,所以函数()f x 在(0,)+∞上单调递增,即函数()f x 的递增区间为(0,)+∞.(6分)(2)依题意,5(2)2ln 204f a =->,则0a >,(7分)由(1)知,当1x ≥时,31ln 2022x x x x--+≥恒成立,当1a ≥时,[1,)x ∀∈+∞,ln 0x x ≥,则3131()ln 2ln 202222f x ax x x x x x x x=--+≥--+≥,因此1a ≥;(9分)当01a <<时,求导得231()(1ln )22f x a x x '=+-+,令231()(1ln )22h x a x x =+-+,(11分)求导得()23311a ax h x x x x -=-=',当1x <<时,()0h x '<,则函数()h x ,即()f x '在上单调递减,当x ∈时,()(1)10f x f a ''<=-<,因此函数()f x 在上单调递减,当x ∈时,()(1)0f x f <=,不符合题意,所以a 的取值范围是[1,)+∞.(13分)16.(15分)【解析】(1)由题意得584018x =-=,422220y =-=;(4分)(2)由22()()()()()n ad bc a b c d a c b d χ-=++++,得22100(40221820) 4.625 3.84158426040χ⨯⨯-⨯=≈>⨯⨯⨯,∴有95%以上的把握认为“生育意愿与城市级别有关”.(8分)(3)抽取6名育龄妇女,来自一线城市的人数为20624020⨯=+,记为1,2,来自非一线城市的人数为40644020⨯=+,(10分)记为a ,b ,c ,d ,选设事件A 为“取两名参加育儿知识讲座,求至少有一名来自一线城市”,基本事件为:(1,2),(1,),(1,),(1,),(1,),(2,),(2,),(2,),(2,),(,),(,)a b c d a b c d a b a c ,(,),(,),(,),(,)a d b c b d c d ,事件(1,2),(1,),(1,),(1,),(1,),(2,),(2,)(2,),(2,)A a b c d a b c d 共有9个,(13分)93()155P A ==或63()1155P A ⎛⎫=-= ⎪⎝⎭(15分)17.(15分)【解析】(1)因为//AD BC ,且22BC AD AB AB BC ===⊥,可得AD AB ==2BD ==,(2分)又因为45DBC ADB ∠=∠=︒,可得2CD ==,所以222BD DC BC +=,则CD BD ⊥,(4分)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,且CD ⊂平面BCD ,所以CD ⊥平面ABD ,又因为AB ⊂平面ABD ,所以CD AB ⊥;(6分)(2)因为CD ⊥平面ABD ,且BD ⊂平面ABD ,所以CD BD ⊥,(7分)如图所示,以点D 为原点,建立空间直角坐标系,可得()1,0,1A ,()2,0,0B ,()0,2,0C ,()0,0,0D ,(9分)所以()0,2,0CD =- ,()1,0,1AD =--.设平面ACD 的法向量为(),,n x y z = ,则200n CD y n AD x z ⎧⋅=-=⎪⎨⋅=--=⎪⎩,令1x =,可得0,1y z ==-,所以()1,0,1n =-,(11分)假设存在点N ,使得AN 与平面ACD 所成角为60 ,(12分)设BN BC λ=uuu r uu u r,(其中01λ≤≤),则()22,2,0N λλ-,()12,2,1AN λλ=-- ,所以sin 60n ANn AN⋅︒==(13分)整理得28210λλ+-=,解得14λ=或12λ=-(舍去),所以在线段BC 上存在点N ,使得AN与平面ACD 所成角为60︒,此时14=BN BC .(15分)18.(17分)【解析】(1)由已知得()11,0F -,22220000313434x y x y +=⇒=-(2分)则10122PF x ==+.所以当012x =时,194PF =;(5分)(2)设(),0M m ,在12F PF △中,PM 是12F PF ∠的角平分线,所以1122PF MF PF MF =,(6分)由(1)知10122PF x =+,同理20122PF x =-,(8分)即0012121122x m m x ++=--,解得014m x =,所以01,04M x ⎛⎫ ⎪⎝⎭,过P 作PH x ⊥轴于H .所以34PM MH PNOH ==.(10分)(3)记1F N P 面积的面积为S ,由(1)可得,(100001114423612S F M y y x x =⋅+=+=+()()02,00,2x ∈-⋃,则)20022S xx =+'-,(12分)当()()02,00,1x ∈-⋃时,0,S S '>单调递增;当)01,2x ∈时,0,S S '<单调递减.(16分)所以当01x =-时,S 最大.(17分)19.(17分)【解析】(1)由题意得124n a a a +++= ,则1124++=或134+=,故所有4的1减数列有数列1,2,1和数列3,1.(4分)(2)因为对于1i j n ≤<≤,使得i j a a >的正整数对(),i j 有k 个,且存在m 的6减数列,所以2C 6n ≥,得4n ≥.(6分)①当4n =时,因为存在m 的6减数列,所以数列中各项均不相同,所以1234106m ≥+++=>.(7分)②当5n =时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m ≥.(8分)若6m =,满足要求的数列中有四项为1,一项为2,所以4k ≤,不符合题意,所以6m >.(9分)③当6n ≥时,因为存在m 的6减数列,所以数列各项中必有不同的项,所以6m >.综上所述,若存在m 的6减数列,则6m >.(10分)(3)若数列中的每一项都相等,则0k =,若0k ≠,所以数列A 存在大于1的项,若末项1n a ≠,将n a 拆分成n a 个1后k 变大,所以此时k 不是最大值,所以1n a =.(12分)当1,2,,1i n =- 时,若1i i a a +<,交换1,i i a a +的顺序后k 变为1k +,所以此时k 不是最大值,所以1i i a a +≥.若{}10,1i i a a +-∉,所以12i i a a +≥+,所以将i a 改为1i a -,并在数列末尾添加一项1,所以k 变大,所以此时k 不是最大值,所以{}10,1i i a a +-∈.(14分)若数列A 中存在相邻的两项13,2i i a a +≥=,设此时A 中有x 项为2,将i a 改为2,并在数列末尾添加2i a -项1后,k 的值至少变为11k x x k ++-=+,所以此时k 不是最大值,所以数列A 的各项只能为2或1,所以数列A 为2,2,,2,1,1,,1 的形式.设其中有x 项为2,有y 项为1,因为存在2024的k 减数列,所以22024x y +=,所以()2220242220242(506)512072k xy x x x x x ==-=-+=--+,(16分)所以,当且仅当506,1012x y ==时,k 取最大值为512072.所以,若存在2024的k 减数列,k 的最大值为512072.(17分)。