钢铁烧结工艺技术

合集下载

详述烧结工艺的具体流程

详述烧结工艺的具体流程

烧结厂工艺技术规程第一章概述烧结生产是现代钢铁联合企业的重要组成部分。

烧结是铁矿粉造块的主要方法之一,是为高炉冶炼提供“精料”的重要措施。

烧结矿的产质量直接影响高炉生铁的产质量和焦化。

因此,发展烧结生产,不断提高烧结矿的产、质量,对提高企业经济效益和促进钢铁工业的发展具有重要意义。

我厂烧结用含铁原料由公司码头的2台500t/h桥式抓斗卸船机卸下,通过皮带运输机及三台DQLK300/600-25型斗轮堆取料机(定点堆积)堆放到一次料场,小批量的高炉灰、转炉灰及轧钢皮通过车运至一次料场附近堆放,再通过推取料机、前装载机按照原料场一次配料的需要,有皮带机送至一次配料仓,一次配料按规定指标配制成铁料混匀料,铁料混匀料通过皮带机送至规格为HDB600.19.5小型混匀机,混匀堆料机通过往复走行不间断堆积以造长堆为主,达到分层匀矿的目的,再由规格为QLQS2 400-30桥式双斗轮取料机从铁料混匀料堆的横断面截取,皮带机送烧结配料仓进行二次配料,通过对铁料的平铺截取、中和混匀,使得铁料混匀后TFe和SiQ2波动范围比混匀前大大缩写,标准偏差在规定范围之内,稳定了原料的化学成分。

1.1.2.2溶剂准备:白云石、石灰石粉由公司供应部门直接外购质量符合要求的合格产品,通过码头带机运至原料场堆存,使用时,再由原料场皮带机运至烧结配料仓进行二次配料。

生石灰粉由金康集团石灰厂生产的生石灰经破碎后供给,通过风动输送将生石灰粉送至烧结配料仓。

1.1.2.3燃料准备燃料焦屑、无烟煤破碎,为烧结配料工序准备符合要求的燃料,粗破为对辊,细破为四辊,破碎后的燃料粒度≤3㎜的部分达80%以上。

1.1.2.4配料与混合制粒1.1.2.4.1配料:其任务是根据技术要求和烧结矿的化学成分,通过计算按比例进行给料,保证混合料和烧结矿化学成分的稳定。

1.1.2.4.2混合与制粒:其任务是加水润湿混合料,使混合料混匀和制粒,并担负混合料的预热。

烧结及高炉炼铁基本原理及工艺课件

烧结及高炉炼铁基本原理及工艺课件
高炉炼铁的主要设备包括高炉本体、热风炉、鼓风机、除尘设备等。高炉是核心 设备,用于炼铁;热风炉用于提供热风;鼓风机用于向高炉内鼓入空气;除尘设 备用于除去烟尘,保护环境。
03
烧结及高炉炼铁的能耗 与环保
能耗分析
烧结过程的能耗
烧结过程是钢铁生产中能耗最高的环节之一,其主要能耗来自于点火燃料、电力消耗和工艺用水。其中,点火燃 料是烧结过程最主要的能源,占整个烧结过程能耗的60%以上。
高炉炼铁的能耗
高炉炼铁的能耗主要包括煤炭、电力、焦炭和氧气等,其中煤炭和焦炭是最主要的能耗来源。在炼铁过程中,需 要将这些能源转化为化学能以还原铁矿石中的铁元素。
环保措施与减排技术
烧结过程的环保措施
在烧结过程中,采取一系列环保措施以减少环境污染,例如使用低硫燃料、安装除尘设备、进行烟气 脱硫等。此外,还可以通过提高烧结矿的质量和利用率来减少废渣的产生。
碳捕获和储存技术
利用该技术可以有效地减少高炉炼铁过程中的碳排放,提高环保 水平。
氢还原技术
利用氢气作为还原剂,替代焦炭,以减少碳排放和环境污染。
自动化和智能化设备
应用先进的自动化和智能化设备,可以提高生产效率、降低劳动成 本,并确保产品质量。
05
烧结及高炉炼铁生产过 程中的问题与解决方案
烧结生产过程中的问题与解决方案
高炉炼铁的环保措施
高炉炼铁过程中产生的废气和废水对环境造成的影响较大。为了减少环境污染,需要采取一系列环保 措施,例如使用高效除尘设备、进行废气脱硫、废水处理等。此外,还可以通过提高炼铁效率来减少 废渣的产生。
可持续发展的方向和前景
烧结及高炉炼铁的可持续 发展方向
为了实现烧结及高炉炼铁的可持续发展,需 要从能源消耗和环境保护两个方面入手。一 方面,需要研发和推广低能耗技术和设备, 提高能源利用效率;另一方面,需要加强环 保措施和技术的研究和应用,减少环境污染 和排放。

钢铁烧结工艺

钢铁烧结工艺

钢铁烧结工艺
钢铁烧结工艺是一种制备高品质钢铁的工艺方法。

该工艺主要利用矿物粉末在区域内高温下烧结成块状物,再通过加热、还原等步骤,把烧结块转化为钢铁。

该工艺具有生产效率高、工艺简单等优点,因此在现代钢铁生产中得到了广泛应用。

钢铁烧结工艺的主要步骤包括:原材料预处理、混合、压块、烧结、降温、分选和包装等环节。

其中,原材料预处理是指将矿物粉末进行筛分、清洗等预处理工作,以确保烧结块的质量;混合是将不同种类的矿物粉末按一定比例混合,以达到制备特定品种钢铁的目的;压块是将混合后的矿物粉末通过压力加工成块状物;烧结是将压块后的矿物粉末在高温下进行烧结,使其块状物结晶生长;降温是将烧结块缓慢冷却至室温;分选是将烧结块按照不同品种进行分类;包装是将分类好的烧结块进行包装,并存放在适宜的仓库中。

钢铁烧结工艺的重要性在于,它可以制备出高品质、高强度的钢铁,尤其是在制备特殊钢种时,该工艺的优势更为明显。

同时,钢铁烧结工艺在生产过程中能够节约能源、降低污染等方面也具有显著优势。

- 1 -。

烧结技术

烧结技术

烧结生产0概述全世界的矿石储量2500亿吨,富矿20%我国矿石储量500亿吨,富矿5%随着钢铁工业的发展,天然富矿从产量和质量上都不能满足高炉冶炼的要求。

而且精矿粉和富矿粉都不能直接入炉冶炼。

为了解决这一难题,将粉矿制成块状人造富矿。

方法:烧结法和球团法。

一、现代高炉对原料的要求1、节焦上(1)、铁矿石品位高,杂质少。

首钢经验:品位提高1%,焦比下降2%,产量提高3%。

产量提高,单位热损失减少,加入熔剂少,减少热量支出。

(2)、熟料比高。

不用或少加熔剂,减少热量支出,冶金性能好。

(3)碱度高。

可以不加石灰石,减少热量支出。

C a C O=CaO+CO2 吸热32、透气性(1)粒度均匀大小不均造成小块填到大块中间破块透气性上限40~50mm下限5~10mm。

(2)粉末少(3)强度高3、冶炼性能(1)还原性好有利于铁氧化物还原,有利于煤气利用的改善与焦比的下降(2)低温还原粉化率低粉化率高粉末多影响透气性(3)软熔性能软化温度高软化区间窄使成渣带下移变薄改善透气性二、人工富矿的方法1、烧结法烧结是将各种粉状含铁原料,配入一定数量的燃料和熔剂,混匀后,进行燃烧,进行一系列的物化反应,产生一定数量的液相,冷凝后粘结起来的块状产品叫做烧结矿,这个过程叫烧结。

2球团法球团矿:把润湿的铁精矿粉和少量的添加剂混合,再造球设备中滚动成9~16mm左右的圆球,在经过干燥,预热,焙烧、均热、冷却、发生一系列的物化反映,使生球固结,成为高炉需要的球团矿。

三、烧结矿在钢铁工业中的重要地位1、扩大矿石来源贫矿经过选矿、造块、烧结制成烧结矿,供高炉使用。

富矿粉经过造块后,供高炉使用。

2、可以改善高炉技术经济指标改善了原料的物理化学性能。

孔隙率高,反应面积增大,加速冶炼过程。

粒度均匀,透气性好。

机械强度高还原性好。

低温还原粉化率低,高温还原软化性好,提高冶炼效果。

3、能够充分利用冶金工业和化学工业的废品。

烧结可以利用高炉炉灰,轧钢皮,硫酸渣、转炉尘作为原料,合理利用资源,降低生产成本。

烧结工艺介绍

烧结工艺介绍

烧结原料 三、回收料 在冶金及其它一些工业生产部门有不少副产 品,其含铁量都比较高,这些工业副产品如当作 废物抛弃,造成资源浪费而且导致环境恶化。烧 结配用这类工业副产品作为原料后,不仅可以降 低烧结成本,而且可以综合利用资源,保护环境 不被污染。烧结厂常用的工业副产品有: 1、瓦斯灰 瓦斯灰是高炉煤气带出来的炉尘,通常含铁40% 左右,它实际上是矿粉和焦粉的混合物。瓦斯灰 的粒度较细,呈深灰色,亲水性差。烧结料中加 入部分瓦斯灰,可节约铁料和燃料消耗。加上价 格低廉,还可以降低成本。进厂的瓦斯灰,要适 当加水润湿,以便运输和改善条件。
烧结工业的发展概况 2、工艺先进化,已被证实和利用的新工艺有: (1)改善原料中和(建立机械化和计算机控制的原料 场); (2)改善原料准备工艺(添加生石灰或消石灰,燃料分 加,分层布料,强化制粒等); (3)改进烧结技术(厚料层、高负压、高碱度、低燃耗, 混合料预热,富氧和热风烧结等) (4)强化烧结矿产品粒度。 (5)强调环境保护、资源综合利用烧结厂余热利用等。
烧结基本知识 二、烧结与炼铁的关系 烧结生产是炼铁生产的前工序,是整个钢铁工业生 产中的一个不可缺少的重要环节,也就是炼铁生产 的原料准备。烧结生产是为高炉服务的,所以烧结 矿的质量很大程度上决定了高炉生产的各项经济技 术指标和生铁质量。烧结生产的主要任务,是将铁 矿粉进行造块,为高炉冶炼提供优质的人造富矿。
技术质量处: 技术质量处:孙石磊
大纲
烧结基本知识 烧结工业发展概况 烧结原料介绍 烧结设备 烧结工艺流程 烧结矿的分类
一、为什么要进行烧结 在自然界中,金属状态的铁是极少见的。一般都和 其它元素结合成化合物。随着工业的发展,能直接 用于高炉冶炼的富矿越来越少,使得人们不得不开 采贫矿(品位25-40%)。但是贫矿直接入炉冶炼是 不经济的,所以,必须经过选矿处理,要选矿,就 必须对矿石进行破碎研磨。这样,选矿后的矿粉, 品位提高了,但其粒度(<0.043mm>90%)不符合 高炉冶炼要求,因此,对于开采出和筛选出来的矿 粉都必须经过造块后方可用于冶炼。

金属冶炼中的烧结与煅烧技术

金属冶炼中的烧结与煅烧技术

03
烧结与属冶炼中的重要环节,通过将 铁矿粉、熔剂、燃料等原料按照一定比例混 合,在高温下进行烧结,得到具有一定强度 和冶金性能的烧结矿。
烧结过程中,铁矿粉中的氧化铁被还原成铁 ,同时加入的熔剂和燃料等发生化学反应, 生成液相填充在矿粉颗粒之间,使烧结矿具 有较好的强度和冶金性能。
煅烧的原理与工艺流程
原理
煅烧的原理是利用高温下物料的物理和化学变化,使物料内 部的组分和结构发生变化,从而达到所需的性能和成分。
工艺流程
煅烧工艺流程一般包括原料准备、预热、加热、保温、冷却 等阶段。根据不同的物料和需求,煅烧工艺流程会有所不同 。在煅烧过程中,需要控制温度、气氛、时间等工艺参数, 以保证获得最佳的煅烧效果。
感谢您的观看
THANKS
和冶金性能。
铜矿烧结技术广泛应用于铜冶炼行业, 能够提高铜的产量和质量,降低能耗和
生产成本。
锌矿烧结
锌矿烧结是提取锌的一种方法,通过将锌矿石、熔剂、燃料等原料混合后进行高温 烧结,得到锌焙砂,再从中提取锌。
锌矿烧结过程中,锌矿石中的氧化锌被还原成锌,同时加入的熔剂发生反应,生成 液相填充在矿石颗粒之间,使烧结块具有较好的强度和冶金性能。
目的
烧结的目的是为了使物料中的各个组分或颗粒相互融合,提高其机械性能、物理性能和化学性能,以满足各种 工业应用的需求。
烧结技术的发展历程
古代烧结
早在古代,人们就已经开始使用烧结技术, 如陶瓷、砖瓦等材料的制作。
近代烧结
随着科技的发展,人们开始研究各种新型的 烧结方法和材料,如金属粉末烧结、陶瓷复 合材料等。
煅烧技术的发展历程
古代煅烧技术
现代煅烧技术
古代煅烧技术主要依靠自然条件下的 燃烧和焙烧,如烧制陶器、砖瓦等。

钢铁烧结工艺

钢铁烧结工艺

钢铁烧结工艺钢铁烧结工艺是一种重要的冶金工艺,用于将金属粉末通过高温烧结过程使其聚结成块状材料。

这种工艺在钢铁行业中应用广泛,具有高效、节能、环保等优点。

本文将详细介绍钢铁烧结工艺的基本原理、应用领域以及发展趋势。

一、钢铁烧结工艺的基本原理钢铁烧结工艺是利用金属粉末的高温烧结性质,通过加热和冷却过程使其粒子间发生扩散和结合,从而形成块状材料。

具体步骤包括原料制备、成型、烧结和冷却四个过程。

原料制备是钢铁烧结工艺的第一步,主要包括金属粉末的选择和配比。

金属粉末通常由铁粉、合金粉等组成,根据不同要求可以添加一定比例的添加剂。

配比的合理与否直接影响到烧结后材料的性能。

成型是将原料粉末按一定的形状和尺寸进行压制,使其具有一定的强度和形状稳定性。

常用的成型方式有压制、注塑、挤压等。

成型后的材料称为绿坯。

烧结是将成型后的绿坯置于高温环境中,使其发生热变形和结合。

烧结的温度通常在金属材料的熔点以下,但高于金属的晶界扩散温度。

在烧结过程中,金属粉末颗粒间会发生扩散,同时表面粒子经过短时间的高温接触,使其发生部分熔化,从而实现颗粒间的结合。

冷却是烧结后的最后一个过程,将已烧结的块状材料冷却至室温,使其具有一定的强度和形状稳定性。

冷却过程中,要注意避免过快或过慢的冷却速度,以免引起材料内部应力过大或结构不稳定。

钢铁烧结工艺广泛应用于钢铁行业的各个环节,包括铁矿石的烧结、高炉炉料的制备、铁精粉的制备等。

在铁矿石的烧结过程中,通过烧结工艺可以将低品位的铁矿石转化为高品位的烧结矿。

这样不仅提高了铁矿石的利用率,还减少了矿石资源的消耗,对环境保护也起到了积极的作用。

高炉炉料的制备是钢铁生产过程中的重要环节。

通过烧结工艺,可以将粉状的铁精粉和其他辅助材料烧结成块状的高炉炉料。

这样可以提高炉料的流动性和透气性,进一步提高高炉的冶炼效率和产量。

铁精粉的制备是钢铁烧结工艺的另一个重要应用领域。

通过烧结工艺,可以将铁精粉和其他添加剂烧结成块状的铁精矿。

钢铁厂烧结混料工艺介绍

钢铁厂烧结混料工艺介绍

钢铁厂烧结混料工艺介绍
烧结是钢铁生产中重要的工艺环节之一,通过烧结工艺可以将
铁矿石、焦炭和其他添加剂混合烧结成球团,用于高炉冶炼。

烧结
混料工艺是烧结过程中最关键的环节之一,下面我们就来介绍一下
烧结混料工艺的主要内容。

首先,在烧结混料工艺中,原料的选择非常重要。

通常,铁矿
石是烧结混料的主要原料,而焦炭和石灰石等也是必不可少的原料。

这些原料的选择和配比直接影响烧结球团的质量和成本。

其次,在混合过程中,需要对原料进行粉碎、混合和湿法球团
化处理。

粉碎过程是将原料破碎成所需粒度的颗粒,以便后续的混
合和球团化。

混合过程是将各种原料按照一定的配比混合均匀,确
保烧结球团的成分均匀。

湿法球团化处理是将混合好的原料加入适
量的水进行球团化,形成一定大小的球团。

最后,在烧结混料工艺中,需要对球团进行烧结。

烧结是将湿
法球团化处理后的原料在高温下进行烧结,使其成为坚固的球团。

这个过程需要严格控制温度、时间和气氛,以确保球团的质量。

总的来说,烧结混料工艺是钢铁生产中不可或缺的环节,它直接影响着炼铁的效率和产品质量。

通过科学的原料选择、混合和球团化处理,以及严格的烧结过程控制,可以生产出质量优良的烧结球团,为后续的高炉冶炼提供优质的原料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

钢铁烧结工艺技术
烧结是粉末或粉末压坯加热到低于其中基本成分的熔点的温度,然后以一定的方法和速度冷却到室温的过程。

烧结的结果是粉末颗粒之间发生粘结,烧结体的强度增加,把粉末颗粒的聚集体变成为晶粒的聚结体,从而获得所需的物理、机械性能的制品或材料。

烧结工艺是指根据原料特性所选择的加工程序和烧结工艺制度。

它对烧结生产的产量和质量有着直接而重要的影响。

本工艺按照烧结过程的内在规律选择了合适的工艺流程和操作制度,利用现代科学技术成果,强化烧结生产过程,能够获得先进的技术经济指标,保证实现高产、优质、低耗。

本生产工艺流程有原料的接受,兑灰,拌合,筛分破碎及溶剂燃料的破碎筛分,配料,混料,点火,抽风烧结,抽风冷却,破碎筛分,除尘等环节组成。

1.低温预烧阶段
在此阶段主要发生金属的回复及吸附气体和水分的挥发,压坯内成形剂的分解和排除等。

2.中温升温烧结阶段
此阶段开始出现再结晶,在颗粒内,变形的晶粒得以恢复,改组为新晶粒,同时表面的氧化物被还原,颗粒界面形成烧结颈。

3.高温保温完成烧结阶段
此阶段中的扩散和流动充分的进行和接近完成,形成大量闭孔,并继续缩小,使孔隙尺寸和孔隙总数有所减少,烧结体密度明显增加。

烧结生产工艺流程[1]
1.烧结的概念
将各种粉状含铁原料,配入适量的燃料和熔剂,加入适量的水,经混合和造球后在烧结设备上使物料发生一系列物理化学变化,将矿粉颗粒黏结成块的过程。

2. 烧结生产的工艺流程
目前生产上广泛采用带式抽风烧结机生产烧结矿。

烧结生产的工艺流程如图2—4所示。

主要包括烧结料的准备,配料与混合,烧结和产品处理等工序。

抽风烧结工艺流程
烧结原料的准备
①含铁原料
含铁量较高、粒度<5mm的矿粉,铁精矿,高炉炉尘,轧钢皮,钢渣等。

一般要求含铁原料品位高,成分稳定,杂质少。

②熔剂
要求熔剂中有效CaO含量高,杂质少,成分稳定,含水3%左右,粒度小于3mm的占90%以上。

在烧结料中加入一定量的白云石,使烧结矿含有适当的MgO,对烧结过程有良好的作用,可以提高烧结矿的质量。

③燃料
主要为焦粉和无烟煤。

对燃料的要求是固定碳含量高,灰分低,挥发分低,含硫低,成分稳定,含水小于10%,粒度小于3mm的占95%以上。

对入厂烧结原料的一般要求见表2—2。

入厂烧结原料一般要求
配料与混合
①配料
配料目的:获得化学成分和物理性质稳定的烧结矿,满足高炉冶炼的要求。

常用的配料方法:容积配料法和质量配料法。

容积配料法是基于物料堆积密度不变,原料的质量与体积成比例这一条件进行的。

准确性较差。

质量配料法是按原料的质量配料。

比容积法准确,便于实现自动化。

②混合
混合目的:使烧结料的成分均匀,水分合适,易于造球,从而获得粒度组成良好的烧结混合料,以保证烧结矿的质量和提高产量。

混合作业:加水润湿、混匀和造球。

根据原料性质不同,可采用一次混合或二次混合两种流程。

一次混合的目的:润湿与混匀,当加热返矿时还可使物料预热。

二次混合的目的:继续混匀,造球,以改善烧结料层透气性。

用粒度10~Omm的富矿粉烧结时,因其粒度已经达到造球需要,采用一次混合,混合时间约50s。

使用细磨精矿粉烧结时,因粒度过细,料层透气性差,为改善透气性,必须在混合过程中造球,所以采用二次混合,混合时间一般不少于2.5~3min。

我国烧结厂大多采用二次混合。

烧结生产
烧结作业是烧结生产的中心环节,它包括布料、点火、烧结等主要工序。

①布料
将铺底料、混合料铺在烧结机台车上的作业。

当采用铺底料工艺时,在布混合料之前,先铺一层粒度为10~25mm,厚度为20~25mm的小块烧结矿作为铺底料,其目的是保护炉箅,降低除尘负荷,延长风机转子寿命,减少或消除炉箅粘料。

铺完底料后,随之进行布料。

布料时要求混合料的粒度和化学成分等沿台车纵横方向均匀分布,并且有一定的松散性,表面平整。

目前采用较多的是圆辊布料机布料。

②点火
点火操作是对台车上的料层表面进行点燃,并使之燃烧。

点火要求有足够的点火温度,适宜的高温保持时间,沿台车宽度点火均匀。

点火温度取决于烧结生成物的熔化温度。

常控制在1250±50℃。

点火时间通常40~60s。

点火真空度4~6kPa。

点火深度为10~20mm。

③烧结
准确控制烧结的风量、真空度、料层厚度、机速和烧结终点。

烧结风量:平均每吨烧结矿需风量为3200m3,按烧结面积计算为(70~
90)m3/(cm2.min)。

真空度:决定于风机能力、抽风系统阻力、料层透气性和漏风损失情况。

料层厚度:合适的料层厚度应将高产和优质结合起来考虑。

国内一般采用料层厚度为250~500mm。

机速:合适的机速应保证烧结料在预定的烧结终点烧透烧好。

实际生产中,机速一般控制在1.5~4m/min为宜。

烧结终点的判断与控制:控制烧结终点,即控制烧结过程全部完成时台车所处的位置。

中小型烧结机终点一般控制在倒数第二个风箱处,大型烧结机控制在倒数第三个风箱处。

带式烧结机抽风烧结过程是自上而下进行的,沿其料层高度温度变化的情况一般可分为5层,各层中的反应变化情况如图2—5所示。

点火开始以后,依次出现烧结矿层,燃烧层,预热层,干燥层和过湿层。

然后后四层又相继消失,最终只剩烧结矿层。

①烧结矿层
经高温点火后,烧结料中燃料燃烧放出大量热量,使料层中矿物产生熔融,随着燃烧层下移和冷空气的通过,生成的熔融液相被冷却而再结晶(1000—1100℃)凝固成网孔结构的烧结矿。

这层的主要变化是熔融物的凝固,伴随着结晶和析出新矿物,还有吸入的冷空气被预热,同时烧结矿被冷却,和空气接触时低价氧化物可能被再氧化。

②燃烧层
燃料在该层燃烧,温度高达1350~1600℃,使矿物软化熔融黏结成块。

该层除燃烧反应外,还发生固体物料的熔化、还原、氧化以及石灰石和硫化物的分解等反应。

③预热层
由燃烧层下来的高温废气,把下部混合料很快预热到着火温度,一般为400~800℃。

此层内开始进行固相反应,结晶水及部分碳酸盐、硫酸盐分解,磁铁矿局部被氧化。

④干燥层
干燥层受预热层下来的废气加热,温度很快上升到100℃以上,混合料中的游离水大量蒸发,此层厚度一般为l0~30mm。

实际上干燥层与预热层难以截然分开,可以统称为干燥预热层。

该层中料球被急剧加热,迅速干燥,易被破坏,恶化料层透气性。

⑤过湿层
从干燥层下来的热废气含有大量水分,料温低于水蒸气的露点温度时,废气中的水蒸气会重新凝结,使混合料中水分大量增加而形成过湿层。

此层水分过多,使料层透气性变坏,降低烧结速度。

烧结过程中的基本化学反应
①固体碳的燃烧反应
固体碳燃烧反应为:
反应后生成C0和C02,还有部分剩余氧气,为其他反应提供了氧化还原气体和热量。

燃烧产生的废气成分取决于烧结的原料条件、燃料用量、还原和氧化反应的发展程度、以及抽过燃烧层的气体成分等因素。

②碳酸盐的分解和矿化作用
烧结料中的碳酸盐有CaC03、MgC03、FeC03、MnC03等,其中以CaC03为主。

在烧结条件下,CaC03在720℃左右开始分解,880℃时开始化学沸腾,其他碳酸盐相应的分解温度较低些。

碳酸钙分解产物Ca0能与烧结料中的其他矿物发生反应,生成新的化合物,这就是矿化作用。

反应式为:
CaCO3+SiO2=CaSiO3+CO2
CaCO3+Fe2O3=CaO ·Fe2O3+ CO2
如果矿化作用不完全,将有残留的自由Ca0存在,在存放过程中,它将同大气中的水分进行消化作用:
CaO+H2O=Ca(OH)2
使烧结矿的体积膨胀而粉化。

③铁和锰氧化物的分解、还原和氧化
铁的氧化物在烧结条件下,温度高于l300℃时,Fe203可以分解
Fe304在烧结条件下分解压很小,但在有Si02存在、温度大于1300℃时,也可能分解。

相关文档
最新文档