三角形外接圆半径的求法及应用

三角形外接圆半径的求法及应用
三角形外接圆半径的求法及应用

三角形外接圆半径的求法及应用

九年义教初中《几何)第三册(以下简称“教材”)第94页例2:

AD是△ABC的高,AE是△ABC的外接圆直径.

求证 AB2AC=AE2AD.

即:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商.

例1 如图1,已知等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆的半径.(课本题).

解由题意知三角形底边上的高为

(95山西中考)

解从A作AM⊥BC于M,则

AD2-MD2=AM2

=AC2-(MD+CD)2.

即 52-MD2=72-(MD+3)2.

得R=14,

则△ABC外接圆面积

S=πR2=196π.

例3如图3,已知抛物线y=x2-4x+h的顶点A在直线y=-4x-1上,求①抛物线的顶点坐标;

②抛物线与x轴的交点B、C的坐标;

③△ABC的外接圆的面积.

(94山西)

解①A(2,-9);

②B(-1,0); C(5, 0).

③从A作AM⊥x轴交于M点,

则BM=MC=3.AM =9.

∴R=5

△ABC外接圆面积S=πR2=25π

教材第206页第5题:

在锐角△ABC中,BC=a、CA=b、AB=c,外接圆半径为R.

因此,知道一个锐角和它的对边时,即可用此法求出三角形的外接圆半径,如:

例4 如果正三角形的外接圆半径为6cm,那么这个正三角形的边长a =______cm.(95广西中考)

解∵正三角形每一个内角为60°.

例5 已知等腰三角形ABC的底边BC的长为10cm,顶角为120°,求它的外接圆的直径.(课本题)

解由题意知:

1.抛物线是轴对称图形。对称轴为直线x = -b/2a。

对称轴与抛物线唯一的交点为抛物线的顶点P。

特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)

2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )

当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。

3.二次项系数a决定抛物线的开口方向和大小。

当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。

|a|越大,则抛物线的开口越小。

4.一次项系数b和二次项系数a共同决定对称轴的位置。

当a与b同号时(即ab>0),对称轴在y轴左;因为若对称轴在左边则对称轴小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同号

当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是-b/2a>0,所以b/2a要小于0,所以a、b要异号

可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b 异号时(即ab<0),对称轴在y轴右。

事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

5.常数项c决定抛物线与y轴交点。

抛物线与y轴交于(0,c)

6.抛物线与x轴交点个数

Δ= b^2;-4ac>0时,抛物线与x轴有2个交点。

Δ= b^2;-4ac=0时,抛物线与x轴有1个交点。

_______

Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)

当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b²/4a;在{x|x<-b/2a}上是减函数,在{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^ 2/4a}相反不变

当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a ≠0)

7.特殊值的形式

①当x=1时 y=a+b+c

②当x=-1时 y=a-b+c

③当x=2时 y=4a+2b+c

④当x=-2时 y=4a-2b+c

8.定义域:R

值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,正无穷);②[t,正无穷)

奇偶性:偶函数

周期性:无

解析式:

①y=ax^2+bx+c[一般式]

⑴a≠0

⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;

⑶极值点:(-b/2a,(4ac-b^2)/4a);

⑷Δ=b^2-4ac,

Δ>0,图象与x轴交于两点:

([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);

Δ=0,图象与x轴交于一点:

(-b/2a,0);

Δ<0,图象与x轴无交点;

②y=a(x-h)^2+k[顶点式]

此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;

③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)

对称轴X=(X1-X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X的增大而减小

此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。

任意三角形的外接圆与内切圆半径的求法

任意三角形的外接圆与内切圆半径的求法 圆与三角形有着密不可分的关系,对于任意一个三角形来说,三角形是圆的内接三角形或是外切三角形。而对于圆来说,三角形必定有它的外接圆和内切圆。那么三角形的各边数量关系与其对应的圆的半径有着怎样的一种关系呢?下面就上述问题作一探索。 一、特殊三角形―――直角三角形的外接圆和内切圆半径的求法。 例1、已知R t △ABC 中,∠C =900,AB =13,AC =5,BC =12,求外接圆半径R 和内切圆半径r 值。 解:由题意得;2132==c R ;22 131252=-+=-+=c b a r 。 二、非特殊三角形的外接圆和内切圆半径的求法。 例2、已知△ABC 中,AB =13,AC =14,BC =15,求外接圆半径R 和内切圆半径r 值。 解:如图:作BC 边上的高线AD ;设BD =x ,则CD =15-x 。由勾股定理得:AD 2=AB 2-BD 2=AC 2-CD 2, 即:()2222151413x x --=-,得x=5 33; 再得:AD =5 56, 1、先求内切圆半径: 根据()r c b a s ABC ++= ?21 得:()r 1514132 15561521++=?? 得: r =4 ; 2、作△ABC 的外接圆⊙O ,连接AO 并延长交⊙O 于 E ,连接CE 。则△ABD ∽△AEC , 则AC AD AE AB = ,即14 556 213=R ,得R =865。 例3、已知△ABC 中,AB =13,AC =25,BC =17,求 外接圆半径R 和内切圆半径r 值。

解:如图:作BC 边上的高线AD ;设BD =x ,则CD =17-x 。由勾股定理得:AD 2=AB 2-BD 2=AC 2-CD 2, 即:()()2222172 513x x --=-,得x=12; 再得:AD =5, 1、先求内切圆半径: 根据()r c b a s ABC ++= ?21 得:()r 2517132151721++=?? 得: r =2 26- ; 2、作△ABC 的外接圆⊙O ,连接AO 并延长交⊙O 于E ,连接CE 。则△ABE ∽△ADC , 则AC AE AD AB = ,即252513R = ,得R =2 213。 三、小结 例2和例3中,求三角形内切圆半径是通过()r c b a s ABC ++= ?21公式,根据三角形的面积和周长来达到目的。 求三角形外接圆半径是通过三角形相似来计算的。它们有一共同的特征就是要求出一条边上的高线。 例2和例3中的三角形分别是锐角三角形和钝角三角形,为了避免在计算中分类的问题,可统一为选择最长的一边为底边,再计算这条边上的高线即可,这时就不需考虑这个三角形是锐角还是钝角三角形的问题。 2009-1-6

三角函数公式推导过程

三角函数公式推导过程 万能公式推导 sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α)) (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导 tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2s in^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a-b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2 同理,若把两式相减,就得到cosa*sinb=(sin(a+b)-sin(a-b))/2 同样的,我们还知道cos(a+b)=cosa*cosb-sina*sinb,cos(a-b)=cosa*cosb+sina*sinb 所以,把两式相加,我们就可以得到cos(a+b)+cos(a-b)=2cosa*cosb 所以我们就得到,cosa*cosb=(cos(a+b)+cos(a-b))/2 同理,两式相减我们就得到sina*sinb=-(cos(a+b)-cos(a-b))/2

任意三角形外接圆半径、内切圆半径的求法及通用公式

一、任意三角形外接圆半径 设三角形各边边长分别为a,b,c 外接圆半径为R ,(如右图所示) 则βαβαβαsin sin cos cos 2)cos(2 22-=-+= +ab c b a (余弦定理) 而R b R b 22cos ==α,R b R 4sin 22 - = α R a R a 22cos ==β,R a R 4sin 2 2 - = β 即有:=-+ab c b a 2222R a R R b R R a R b 442222 22 - ? --? 即有:2 22222222) 4)(4(R a R b R ab ab c b a ---= -+ 所以:)4)(4()( 222222 222 a R b R ab c b a R ab --=-+- 即有:2222242 2224 2 2 2 2 2 )(416)( 4)(4)(b a R b a R ab c b a R c b a R ab ++-=-++-+- 所以:])( 4[2 2222 2 ab c b a R c -+-=,即:])(4[2222222222c b a b a R c b a -+-= 所以:) )()()((a c b b c a c b a c b a abc R -+-+-+++= 而三角形面积: ))()()((4a c b b c a c b a c b a S -+-+-+++= (海伦公式) 所以,有:S abc R 4= ※ 另一求法,可用正弦定理,即:R A a 2sin =,而bc a c b A 2cos 222-+= 所以: 2 222222 2222)(4) 2(12) (cos 12sin 2a c b c b abc bc a c b a A a A a R -+-= -+-= -==

三角形面积公式5种推导方法

三角形面积公式的五种推导方法 三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。 关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。 第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。 前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。

三角形外接圆与内切圆半径求法

三角形的外接圆与内切圆半径的求法 江苏省海安县曲塘镇花庄初中(226661)马金全 一、求三角形的外接圆的半径 1、直角三角形 如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 例1已知:在△ABC 中,AB =13,BC =12,AC =5 求△ABC 的外接圆的半径. 解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2 , ∴∠C =90°, ∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径为6.5. 2、一般三角形 ①已知一角和它的对边 例2如图,在△ABC 中,AB =10,∠C =100°, 求△ABC 外接圆⊙O 的半径.(用三角函数表示) 分析:利用直径构造含已知边AB 的直角三角形. 解:作直径BD ,连结AD. 则∠D =180°-∠C =80°,∠BAD =90° ∴BD = D sin AB =? 80sin 10 ∴△ABC 外接圆⊙O 的半径为 ? 80sin 5 . 注:已知两边和其中一边的对角,以及已知两角和一边,都可以利用本题的方法求出三角形的外接圆的半径. 例3如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50° 求△ABC 外接圆⊙O 的半径. 分析:可转化为①的情形解题. 解:作直径AD ,连结BD. 则∠D =∠C =180°-∠CAB -∠BAC =60°,∠DBA =90° ∴AD = D sin AB =?60sin 10=33 20 ∴△ABC 外接圆⊙O 的半径为 33 10 . ②已知两边夹一角 例4如图,已知,在△ABC 中,AC =2,BC =3,∠C =60° 求△ABC 外接圆⊙O 的半径. 分析:考虑求出AB ,然后转化为①的情形解题. 解:作直径AD ,连结BD.作AE ⊥BC ,垂足为E. 则∠DBA =90°,∠D =∠C =60°,CE =2 1 AC =1,AE =3, BE =BC -CE =2,AB =22BE AE +=7 A B C O A B C O D A B C O D A B C O D E

三角形的外接圆与内切圆半径的求法

三角形的外接圆与内切圆半径的求法 一、求三角形的外接圆的半径 1、直角三角形 如果三角形是直角三角形,那么它的外接圆的直径就是直角三角形的斜边. 例1已知:在△ABC 中,AB =13,BC =12,AC =5 求△ABC 的外接圆的半径. 解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2 , ∴∠C =90°, ∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径为6.5. 2、一般三角形 ①已知一角和它的对边 例2如图,在△ABC 中,AB =10,∠C =100°, 求△ABC 外接圆⊙O 的半径.(用三角函数表示) 分析:利用直径构造含已知边AB 的直角三角形. 解:作直径BD ,连结AD. 则∠D =180°-∠C =80°,∠BAD =90° ∴BD = D sin AB =? 80sin 10 ∴△ABC 外接圆⊙O 的半径为 ? 80sin 5 . 注:已知两边和其中一边的对角,以及已知两角和一边,都可以利用本题的方法求出三角形的外接圆的半径. 例3如图,已知,在△ABC 中,AB =10,∠A =70°,∠B =50° 求△ABC 外接圆⊙O 的半径. 分析:可转化为①的情形解题. 解:作直径AD ,连结BD. 则∠D =∠C =180°-∠CAB -∠BAC =60°,∠DBA =90° ∴AD = D sin AB =?60sin 10= 33 20 ∴△ABC 外接圆⊙O 的半径为 33 10 . ②已知两边夹一角 例4如图,已知,在△ABC 中,AC =2,BC =3,∠C =60° 求△ABC 外接圆⊙O 的半径. 分析:考虑求出AB ,然后转化为①的情形解题. 解:作直径AD ,连结BD.作AE ⊥BC ,垂足为E. 则∠DBA =90°,∠D =∠C =60°,CE =2 1 AC =1,AE =3, BE =BC -CE =2,AB =22BE AE +=7

探求三角形的外接圆半径

探求三角形的外接圆半径 泰州市二中附属初中 王 征 我们知道任意一个三角形都有外接圆,如何求三角形的外接圆的半径呢?其主要方法是构造直角三角形,利用相似三角形、勾股定理等知识求解。 一、特殊三角形 1.直角三角形 例1.已知:如图,在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径r. 分析:通过判定三角形为直角三角形,易求得直角三角形外接圆的直径等于斜 边。 解:∵AB =13,BC =12,AC =5, ∴AB 2=BC 2+AC 2, ∴∠C =90°, ∴AB 为△ABC 的外接圆的直径, ∴△ABC 的外接圆的半径r 为6.5. 2.等腰三角形 例2.已知:如图,在△ABC 中,AB =AC=10,BC =12,求△ABC 外接圆⊙O 的半径r. 分析:利用等腰三角形的对称性,相似三角形的相关知识解题. 解:作直径AD 交BC 于点E ,交圆于点D ,连接BD.∴∠ABD=90°, ∵AB=AC ,∴∠ABC=∠C , ∵∠C=∠D ,∴∠ABC=∠D. ∵∠BAE=∠DAB ,∴△ABE ∽△ADB, ∴∠AEB=∠ABD=90°,∴BE=CE=6.∴AE=822=-BE AB . ∵△ABE ∽△ADB ,∴ AB AE AD AB =

∴188 122 2===AE AB AD , ∴△ABC 外接圆⊙O 的半径r 为9. 二、一般三角形 1.已知一角和它的对边 ⑴ 锐角三角形 例3.已知:如图,在△ABC 中,AB =10,∠C =60°,求△ 径r. 分析:利用直径构造含已知边AB 的直角三角形. 解:作直径AD ,连结BD. ∴∠D =∠C ==60°,∠DBA =90°. ∴AD = D sin AB = ? 60sin 10=3 3 20 ∴△ABC 外接圆⊙O 的半径r 为3 3 10. ⑵ 钝角三角形 例4.在△ABC 中,AB =10,∠C =100°,求△ABC 外接圆⊙O 的半径r.(用三角函数表示) 分析:方法同例3. 解:作直径BD ,连结AD. 则∠D =180°-∠C =80°,∠BAD =90° ∴BD = D sin AB = ? 80sin 10 ∴△ABC 外接圆⊙O 的半径r 为? 80sin 5. 注:已知两边和其中一边的对角,以及已知两角和一边,都可以利用本题的方法求出三角形的外接圆的半径. 2.已知两边夹一角 例5.已知:如图,在△ABC 中,AC =2,BC =3,∠C =60°,求△ABC 外接圆⊙O 的半径r.

任意三角形外接圆半径内切圆半径的求法及通用公式

任意三角形外接圆半径内切圆半径的求法及通 用公式 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

一、任意三角形外接圆半径 设三角形各边边长分别为a,b,c 外接圆半径为R ,(如右图所示) 则βαβαβαsin sin cos cos 2)cos(2 2 2 -=-+= +ab c b a (余弦定理) 而R b R b 22cos ==α,R b R 4sin 22 - = α R a R a 22cos ==β,R a R 4sin 2 2 - = β 即有:=-+ab c b a 2222R a R R b R R a R b 442222 22 - ?-- ? 即有:2 22222222) 4)(4(R a R b R ab ab c b a ---=-+ 所以:)4)(4()( 222222 222 a R b R ab c b a R ab --=-+- 即有: 2222242 2224 2 2 2 2 2 )(416)(4)(4)(b a R b a R ab c b a R c b a R ab ++-=-++-+- 所以:])( 4[2 2222 2 ab c b a R c -+-=,即:])(4[2222222222c b a b a R c b a -+-= 所以:) )()()((a c b b c a c b a c b a abc R -+-+-+++= 而三角形面积: ))()()((4a c b b c a c b a c b a S -+-+-+++= (海伦公式) 所以,有:S abc R 4= ※ 另一求法,可用正弦定理,即:R A a 2sin =,而bc a c b A 2cos 222-+= 所以:

三角形面积公式的五种推导方法数学论文

六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标; 二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下:第一步没什么问题,每个教师都有自己的导入新课的方式。第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的内容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。按这个说法,学生在寻找计算三角形面积的方法时,他首先会在他手中所拿的三角形卡片上琢磨,对这个三角形进行加工处理。在不得要领,或是找到了办法,问题解决了,但心有余味,继续探索下去时才会考虑到利用其他内容扩展思考空间,再找一个一样的三角形牵线搭桥,把思路引到问题的外面。教材中还有一点缺失:学生在教师的引导下用两个“全等”三角形进行拼接时,是一个尝试的过程。教材举例说:小华拼出了一个长方形一个平行四边形。小林拼出了两个三角形——一个人拼的全是能利用的,一个人拼的全是不能用的,两个人的对比太大。我们想这不是教材的疏漏,是为了突出教学任务和目标。另外,教材举的例子是两个三角形能拼成一个长方形和一个平行四边形。但实际上能拼成两个平行四边形,加上长方形就是有三个图形是已经学习过的,都能用来推算三角形面积。教材忽略这个没有列出的平行四边形,我们猜可能是因为它的倾斜度过大,在视觉上有一种要“倒”的感觉。如果学生受视觉效果的影响,注意力分散,会影响到他们分析两种图形的底、高和面积的关系。也可能是基于简单化原则,有两个就够了,何必要三个。但是按这个说法,要一个就够了,何必两个。按照教材设定的思路,我们可以设想:学生手拿三角形,听老师布置完任务。怎么拼,能拼出什么都不太清楚,只能先随便的拼一下试试。如果运气好或者预想能力较强,可能直接拼出平行四边形和长方形。学生在试验时,会发现不等边拼接没有后续效果,因为这些组合图形都不规则,不能把握。然后,学生会把注意力放在那些特殊图形上。一类是那些中心对称的平行四边形,这是学习过的内容;一类是那些左右对称的凸多边形,这是好奇心驱使,随后即会放弃。学生的试验,开始可能是无序状态,随着注意的集中,目标一个一个的出现,学生的意识中必定会对自己刚才的所有拼接进行回顾(很多时候这个回顾是无意识的),找到拼出所有图形的方法得出两个全

三角形的面积计算公式的推导

“三角形的面积计算公式的推导”教学活动设计 一、活动主题的提出 数学实践活动是教师结合学生相关数学方面的生活经验和知识背景,引导学生以自主探索或合作交流的方式,展开形式多样、丰富多彩的学习活动。“三角形面积计算公式的推导”教材是通过拼的方法探究计算方法的,从表面上看,学生动手操作了,也探究了公式的形成过程,但实际上学生仅仅机械地拼了一拼,做了一次“操作工”,他们并没有自己的猜想和创造,没有真正参与知识的产生和形成,教材所提供的学习材料缺乏思维含量,缺少挑战性,学生体会不到思考的乐趣,思维得不到充分发展,为了培养学生的探究意识和探究水平,促动学生探究的有效性,特安排主题活动“三角形面积计算公式的推导”。 二、活动目标 1.探索并掌握三角形的面积计算公式,培养学生应用已有知识解决新问题的水平。 2.使学生经历操作、观察、讨论、归纳等数学活动,进一步体会转化方法的价值,发展学生的空间观点和初步的推理水平。 3.在探索活动中使学生获得积极地情感体验,感受数学的乐趣,体会成功的喜悦,进一步培养学生学习数学的兴趣。 三、课前准备 1.分组:每4人为一小组。 2.每人准备3张正方形纸片。 3.每位同学准备尺子、剪刀、铅笔。 四、时间:一课时(不包括活动前的准备) 五、活动过程 1.检查学生课前的准备情况。 2.揭示课题 师:三角形的面积能够怎样计算呢?这就是我们这节课要研究的问题。 板书课题:三角形面积的计算公式 3.探究操作 师:(先每4人一小组分好小组)每人拿出一张正方形纸片,在上面剪一刀,要求剪下一个三角形。当然你用笔和尺子把想剪的三角形在正方形上画出来,不剪也能够。(学生剪、画) 汇报展示。(选择如下三种图) ①②③ 师:这三种剪法中哪种剪法剪下的三角形面积你能计算?你是怎么知道的? 学生观察、思考、分析、推理、小组讨论、汇报。 第三种(图③)剪法剪下的三角形面积能计算,三角形面积正好是这个正方形面积的一半,只要把剪下的两个三角形重叠在一起,就能够发现他们完全一样(形状

三角形的内切圆和外接圆

三角形外接圆半径的求法及应用 方法一:R =ab/(2h ) 三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商。 AD 是△A BC的高,AE 是△ABC 的外接圆直径.求证 AB ·AC=AE ·AD . 证:连接AO 并延长交圆于点E ,连接BE, 则∠AB E=90°. ∵∠E =∠C, ∠ABE =∠ADC=90°, ∴Rt △ABE ∽Rt △ADC , ∴AC AE AD AB , ∴ AB ·AC=AE ·AD 方法二:2R=a/S inA,a 为∠A 的对边 在锐角△A BC 中,外接圆半径为R 。求证: 2R=AB/Si nC 证:连接AO 并延长交圆于点E,连接BE, 则∠ABE=90°. ∴AE =AB/SinE ∵∠C =∠E,Sin C =S inE ∴AE=AB/Si nC ∴2R =AB/SinC 若C为钝角,则S inC =Sin (180o-C) 应用一、已知三角形的三边长,求它的外接圆的半径。 例1 已知:如图,在△ABC 中,AC =13,BC=14,AB =15,求△ABC 外接圆⊙O 的半径r. 分析:作出直径AD,构造Rt △A BD.只要求出△ABC 中B C边上的高AE,用方法一就可以求出直径AD. 解:作AE ⊥BC ,垂足为E. 设C E=x , ∵A C2-CE 2=AE 2=AB 2-BE 2 ,∴132-x 2=152-(14-x)2 ∴x=5,即CE =5,∴AE=12 R=ab/(2h )=13x15/(2x 12)=65/8 A B C O D E

∴△A BC 外接圆⊙O 的半径r 为 8 65. 例 2 已知:在△AB C中,AB =13,BC =12,AC=5,求△ABC 的外接圆的半径R. 分析:通过判定三角形为直角三角形,易求得直角三角形外接圆的直径等于斜边。 应用二、已知三角形的二边长及其夹角(特殊角),求外接圆的半径。 例3 已知:如图,在△ABC 中,AC=2,BC=3,∠C =60°,求△ABC 外接圆⊙O 的半径R . 分析:考虑求出角的对边长AB,然后用方法一或方法二解题. 解:作直径AD,连结BD.作A E⊥BC ,垂足为E. 则∠DBA=90°,∠D=∠C=60°, ∠CA E=∠DAB = 90°- 60°=30° CE=2 1AC=1,AE = 3 ,AB =√7∴R=AC ·AB/2AE=2x √7/(2x 3 ) 应用三、已知三角形的一边长二角度或对角的度数(特殊角),求它的外接圆的半径。 用方法二 例4 已知AD=5,AC=7,C D=3,AB=10√3,求它的外接圆的半径 解 从A 作AM ⊥B C于M,则 AD 2-MD 2=A M 2 =AC2-(MD+C D)2.即 52-MD 2=72-(MD +3)2. 得R =14, 则△ABC 外接圆面积S =πR2=196π. 例5 如图3,已知抛物线y =x 2-4x+h 的顶点A 在直线y =-4x-1上, 求①抛物线的顶点坐标; ②抛物线与x 轴的交点B、C 的坐标; ③△ABC 的外接圆的面积. 解 ①A(2,-9); A B C O D E

三角形面积公式的五种推导方法

三角形面积公式的五种 推导方法 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

三角形面积公式的五种推导方法 摘自:《小学数学网》六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标;二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形;六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”;七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其内涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。

三角函数公式推导过程

三角函数公式推导过程 万能公式推导: sin2α=2sinαcosα=2sinαcosα/(cos^2(α)+sin^2(α))......*, (因为cos^2(α)+sin^2(α)=1) 再把*分式上下同除cos^2(α),可得 sin2α=2tanα/(1+tan^2(α)) 然后用α/2代替α即可。 同理可推导余弦的万能公式。正切的万能公式可通过正弦比余弦得到。 三倍角公式推导: tan3α=sin3α/cos3α =(sin2αcosα+cos2αsinα)/(cos2αcosα-sin2αsinα) =(2sinαcos^2(α)+cos^2(α)sinα-sin^3(α))/(cos^3(α)-cosαsin^2(α)-2sin^2(α)cosα) 上下同除以cos^3(α),得: tan3α=(3tanα-tan^3(α))/(1-3tan^2(α)) sin3α=sin(2α+α)=sin2αcosα+cos2αsinα =2sinαcos^2(α)+(1-2sin^2(α))sinα =2sinα-2sin^3(α)+sinα-2sin^3(α) =3sinα-4sin^3(α) cos3α=cos(2α+α)=cos2αcosα-sin2αsinα =(2cos^2(α)-1)cosα-2cosαsin^2(α) =2cos^3(α)-cosα+(2cosα-2cos^3(α)) =4cos^3(α)-3cosα 即 sin3α=3sinα-4sin^3(α) cos3α=4cos^3(α)-3cosα 和差化积公式推导: 首先,我们知道sin(a+b)=sina*cosb+cosa*sinb,sin(a- b)=sina*cosb-cosa*sinb 我们把两式相加就得到sin(a+b)+sin(a-b)=2sina*cosb 所以,sina*cosb=(sin(a+b)+sin(a-b))/2

三角形面积公式的另类推导方法

三角形面积公式的另类推导方法 在讲单位换算时时常强调,一平方米即边长为一米的正方形的面积。转而又想,能否以此定义为基础,导出三角形的面积等于底乘高除以2呢?仔细想想,确实可行。 过三角形A的两个顶点作各自对边的平行线,可得一与之全等的三角形和一由此两全等三角形组成的平行四边形B。显然,平行四边形B的面积是三角形A的面积的两倍。 过平行四边形B的任一边的两个顶点作其对边的高,可得一矩形C。由这两条高与各自的邻边所围成的两个直角三角形全等,可推知矩形C与平行四边形B的面积相等。这样,三角形A的面积就等于矩形C的一半。因此,问题也就转化为证明矩形的面积等于两邻边边长的乘积。 若矩形C的两邻边的边长分别是单位长一米的m与n倍(注:m、n与下文中的p、q均为自然数),则将此两条邻边分别均分m 与n等份。过这两条邻边的这些等分点作各自对边的垂线。显然,这些垂线将矩形C分成mn个边长为一米的正方形。由一平方米的定义可推知,矩形C的面积等于两邻边边长的乘积。 若矩形C的两相邻边边长分别为一米的m与n分之一,则可将边长为一米的正方形的两邻边分别均分为m与n等份。过这两条邻边的这些等分点作各自对边的垂线。显然,这些垂线将此正方形分成mn个小矩形,所有的小矩形都与矩形C全等。这样,矩形C的面积就等于一平方米的mn分之一,因而也就等于矩形C的两相邻邻边边长的乘积。 将上述两种情形结合起来,不难导出两邻边边长分别为单位长一米的m/p与n/q倍的矩形C的面积计算公式。具体地讲,先将矩

形C的两邻边各自均分m与n等份,再过各自的等分点作对边的垂线。这些垂线将矩形C分为mn个邻边边长分别为单位长一米的p 与q分之一小矩形。由于小矩形的面积等于一平方米的pq分之一,故矩形C的面积为一平方米的mn/pq倍。这样,矩形C的面积也就等于其两相邻邻边边长的乘积。 若矩形C的两相邻邻边之一或两者的长度均为单位长一米的无理数倍,则由任何一个无理数都可用一组有理数无限逼近可推知,矩形C也可用一组边长为单位长一米的有理数倍的矩形逼近。这样,矩形C的面积也就也等于其两相邻邻边边长的乘积。 后记: 物理学是建立在测量的基础上的。测量是将待测量与标准量进行比较的过程,测量结果的含义即为待测量是标准量的多少倍。与之相类似,数学也应可建立在度量的基础上。基于这样的一种想法,我就试着以面积的度量单位为基础导出三角形的面积公式。 在导出了三角形的面积公式后,我想依此类推应当可以导出锥体体积的计算公式。在推导锥体体积的过程中,突然想起了祖暅原理。运用比例相关的知识与祖暅原理,不难导出锥体体积公式。 进一步将三角形的面积公式与祖暅原理对照起来看,发现在某种意义上讲,前者可视作二维情形下祖暅原理的一个推论。将任一三角形与一与之等底等高的直角三角形放在一起,使它们的底边处在同一直线上。过直角三角形斜边上的任一点作底边的平行线,由比例知识可知,此线被上述的两个三角形所切割得的两线段相等。由祖暅原理可知,上述的两个三角形的面积相等。这样,就可由直角三角形的面积公式导出一般三角形的面积公式。 由三角形面积公式含系数1/2,三维锥体体积公式含系数1/3,

三角形面积公式的五种推导方法

三角形面积公式的五种推导方法 摘自:《小学数学网》六年制小学数学第九册《三角形面积的计算》一节,教材上是这样安排的:一、明确目标; 二、用数格的方式不能确定三角形的面积;三、能否转化成以前学过的图形进行计算?四、拿两个全等的直角三角形可以拼成以前学习过的学习过的长方形和平行四边形,直角三角形的面积是长方形和平行四边形面积的一半;五、验证锐角三角形和钝角三角形是否也能拼成平行四边形; 六、三次试验确定所有类型的三角形能转化成平行四边形,两者的关系是“等底等高,面积一半”; 七、总结三角形的面积公式。 我们在多次的课堂教学实践和课下辅导过程中,发现上面的几个“环节”有些地方不太符合学生的认知特点。具体分析一下: 第一步没什么问题,每个教师都有自己的导入新课的方式。 第二步也没有什么:学生在学习长方形和正方形的面积时用的是“数格”的方式。学习平行四边形时用的是切割再组合的方式,就是所谓的“转化”。在大部分学生对面积这个概念的理解还不十分透彻的情况下,面对三角形,学生们的首选方法就是“数格”。因为这是学生学习有关面积计算的第一经验,第一印象,第一个技巧。也是最简单,最直接(当然也是最麻烦)的方法。关于第三步:教材上只有一句话:能不能把三角形转化成已经学过的图形再计算面积。这是化未知为已知的思维方式,我们常给初中学生提起这些认知策略,但它的基础却在小学阶段和学生的日常生活经验中。教材把这个重要的数学思想一笔带过,把挖掘其涵,为学生建立辩证观念的重任留给了老师。但很多老师并不特别重视这句话,只是把它当作一个过渡句,当成进入下面环节的引言。 第四步。转化是一定的。但是,转化成什么?怎么转化?把三角形转化成“能计算的图形”大致有五种情况。教材推荐的是第五种(如图)。教材上的引导方式只有教师的主导性,而忽视了学生的主体位置。 前面提到,学生计算三角形面积的首选方法是数格,那么次选方法是什么?他们的第二方案应该还是在自己的经验中寻找帮助。这些经验当中,与计算面积有关的直接、简单、容易操作的容就是在前面的几节课刚学过的“切割平行四边形成长方形”的方法。他们对“切割”这个动作记忆犹新。因为:一、这个技巧刚刚学过;二、切割是个动作,但这个动作能把不规则变规则,所以印象深刻;三、这个简单的动作能完成面积计算的任务。所以他们的下一步动作会是模仿上一节课的做法,想办法切割三角形的某一角移动填补另一角,变三角形成长方形或平行四边形。

多边形内角和公式的几种推导方法

多边形内角和公式的几种推导方法 云南省西双版纳州勐海县勐阿中学 赵艳 学生在学习探索多边形的内角和的时候,已学习了三角形内角和定理、三角形相关知识,在前面特殊四边形性质的探索过程中,也体会了转化思想在解题中的应用,所以具备了进一步学习的基础。随着几何知识学习的逐步深入,学生具备了一定的解决几何问题的方法,本节课需要用到图形转化,多边形内角和定理的探索,需要学生结合图形发现规律。所以在教学中教师引导学生推导多边形内角和公式的方法是将多边形分割为多个三角形,将多边形的内角和转化为我们所熟知的三角形内角和来解决。下面介绍几种推导多边形内角和公式常用的方法。 方法(一):如(图七)所示,取多边形上任意一个 顶点,连接除相邻的两点,则多边形的内角和可转化为 三角形内角和之间的关系,即六边形ABCDEF 的内角和 等于4个三角形内角和之和:4×1800 ,从而边数为6的多边形内角和为(6-2)×1800 =4×1800 ,再列举 其它多边形可以归纳总结出n 边形内角和为(n-2)× 1800 。 方法(二):如(图八)所示,在多边形内任意找一 点O ,连接各个点,则多边形的内角和可转化为三角形内角和之间的关系,即八边形ABCDEFGH 的内角和等于 8个三角形内角和减去一个周角的度数:8×1800 -3600=8×1800 -2×1800 =(8-2)×1800 ,再列举其它 多边形可以归纳总结出n 边形内角和为(n-2)×1800 。 方法(三):如(图九)所示,在多边形的一条边上 任意取一点P ,连接这点与各顶点的线段,把六边形 ABCDEF 分成了五个三角形,所以此六边形的内角和等 于五个三角形的内角和减去一个平角的度数,即:5× 1800 -1800=4×1800 ,归纳之后得到n 边形的内角和为 (n-2)×1800 。 方法(四):如(图十)所示,在多边形外取一点 (图七)F E D C B A O H G (图八)F E D C B A (图九)F E D P C B A (图十)F E D P C B A

三角形外接圆半径的求法及应用

三角形外接圆半径的求法及应用 九年义教初中《几何)第三册(以下简称“教材”)第94页例2: AD是△ABC的高,AE是△ABC的外接圆直径. 求证 AB2AC=AE2AD. 即:三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商. 例1 如图1,已知等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆的半径.(课本题). 解由题意知三角形底边上的高为 (95山西中考)

解从A作AM⊥BC于M,则 AD2-MD2=AM2 =AC2-(MD+CD)2. 即 52-MD2=72-(MD+3)2. 得R=14, 则△ABC外接圆面积 S=πR2=196π. 例3如图3,已知抛物线y=x2-4x+h的顶点A在直线y=-4x-1上,求①抛物线的顶点坐标; ②抛物线与x轴的交点B、C的坐标; ③△ABC的外接圆的面积. (94山西)

解①A(2,-9); ②B(-1,0); C(5, 0). ③从A作AM⊥x轴交于M点, 则BM=MC=3.AM =9. ∴R=5 △ABC外接圆面积S=πR2=25π 教材第206页第5题: 在锐角△ABC中,BC=a、CA=b、AB=c,外接圆半径为R. 因此,知道一个锐角和它的对边时,即可用此法求出三角形的外接圆半径,如: 例4 如果正三角形的外接圆半径为6cm,那么这个正三角形的边长a =______cm.(95广西中考) 解∵正三角形每一个内角为60°.

例5 已知等腰三角形ABC的底边BC的长为10cm,顶角为120°,求它的外接圆的直径.(课本题) 解由题意知: 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a ) 当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。

三角形的内切圆和外接圆

三角形外接圆半径的求法及应用 方法一:R =ab/(2h) 三角形外接圆的直径等于两边的乘积除以第三边上的高所得的商。 AD 是△ABC 的高,AE 是△ABC 的外接圆直径.求证 AB ·AC =AE ·AD . 证:连接AO 并延长交圆于点E ,连接BE , 则∠ABE =90°. ∵∠E =∠C , ∠ABE =∠ADC =90°, ∴Rt △ABE ∽Rt △ADC , ∴AC AE AD AB , ∴ AB ·AC =AE ·AD 方法二:2R =a/SinA ,a 为∠A 的对边 在锐角△ABC 中,外接圆半径为R 。求证: 2R =AB/SinC 证:连接AO 并延长交圆于点E ,连接BE , 则∠ABE =90°. ∴AE =AB/SinE ∵∠C =∠E ,SinC =SinE ∴AE =AB/SinC ∴2R =AB/SinC 若C 为钝角,则SinC =Sin (180o -C ) 应用一、已知三角形的三边长,求它的外接圆的半径。 例1 已知:如图,在△ABC 中,AC =13,BC =14,AB =15,求△ABC 外接圆⊙O 的半径r. 分析:作出直径AD ,构造Rt △ABD.只要求出△ABC 中BC 边上的高AE ,用方法一就可以求出直径AD. 解:作AE ⊥BC ,垂足为E. 设CE =x, ∵AC 2-CE 2=AE 2=AB 2-BE 2 ,∴132-x 2=152-(14-x)2 ∴x=5,即CE =5,∴AE =12 R = ab/(2h)=13x15/(2x12)=65/8 A B C O D E

∴△ABC 外接圆⊙O 的半径r 为 8 65. 例2 已知:在△ABC 中,AB =13,BC =12,AC =5,求△ABC 的外接圆的半径R. 分析:通过判定三角形为直角三角形,易求得直角三角形外接圆的直径等于斜边。 应用二、已知三角形的二边长及其夹角(特殊角),求外接圆的半径。 例3 已知:如图,在△ABC 中,AC =2,BC =3,∠C =60°,求△ABC 外接圆⊙O 的半径R. 分析:考虑求出角的对边长AB ,然后用方法一或方法二解题. 解:作直径AD ,连结BD.作AE ⊥BC ,垂足为E. 则∠DBA =90°,∠D =∠C =60°, ∠CAE =∠DAB = 90°- 60°=30° CE =2 1AC =1,AE = 3 ,AB=√7∴R=AC ·AB/2AE=2x √7/(2x 3 ) 应用三、已知三角形的一边长二角度或对角的度数(特殊角),求它的外接圆的半径。 用方法二 例4 已知AD=5,AC=7,CD=3,AB=10√3,求它的外接圆的半径 解 从A 作AM ⊥BC 于M ,则 AD 2-MD 2=A M 2 =AC 2-(MD +CD)2.即 52-MD 2=72-(MD +3)2. 得R =14, 则△ABC 外接圆面积S =πR 2=196π. 例5 如图3,已知抛物线y =x 2-4x +h 的顶点A 在直线y =-4x -1上, 求①抛物线的顶点坐标; ②抛物线与x 轴的交点B 、C 的坐标; ③△ABC 的外接圆的面积. 解 ①A(2,-9); A B C O D E

相关文档
最新文档