2020年(生物科技行业)海洋生物活性肽研究进展

2020年(生物科技行业)海洋生物活性肽研究进展
2020年(生物科技行业)海洋生物活性肽研究进展

(生物科技行业)海洋生物活性肽研究进展

海洋生物活性肽研究进展

海洋生物物种的多样性以及所含化合物的特异性,为海洋生物资源的开发利用提供了许多机遇和挑战。由于海洋存在许多极端环境,如高压(深海)、低温(极地、深海)、高温(海底火山口)和高盐等。为了适应这些极端的海洋生境,海洋生物蛋白质无论氨基酸的组成或序列都和陆地生物蛋白有很大的不同。生物活性肽是指那些有特殊生理活性的肽类。同时,海洋生物蛋白资源无论在种类仍是在数量上都远远大于陆地蛋白资源,且且未得到很好的开发。

1海洋天然生物活性肽

天然存在的活性肽包括肽类抗生素、激素等生物体的次级代谢产物以及各种组织系统,如骨骼、肌肉、免疫、消化、中枢神经系统中存在的活性肽。随着人们对海洋资源认识水平的提高,以及现代生物技术在海洋药物研究中的应用,RP-HPLC,2D-NMR,TOF-MS,手性色谱(包括GC,HPLC)等技术的发展,使得对海洋活性肽的研究易于进行。目前研究的海洋活性肽主要包括来源于海鞘、海葵、海绵、芋螺、海星、海兔、海藻、鱼类、贝类等的活性肽以及在海洋生物中广泛分布的生物防御素。

1.1海鞘多肽

海鞘(Ascidian)属于脊索动物门,海鞘纲和尾索动物亚门的另外俩个纲称为被囊动物(Tunicate),约有2000种,海鞘是被囊动物中种类最丰富、含有重要生物活性物质最多的壹类。自1980年Ireland等从海鞘中发现壹个具有抗肿瘤活性的环肽Ulithiacycla-mide 以来,不断有环肽从此类海洋生物中发现。最令人瞩目的是从加利福尼亚海域及加勒比海中群体海鞘Trididemnumsolidum.中分离出的3种环肽DidemninA~C,它们都具有体内和体外抗病毒和抗肿瘤活性,其中DidemninB的活性最强,对乳腺癌、卵巢癌具明显的抑制活性。同时,它仍有明显的免疫抑制活性,体内活性较环抱霉素A强1000倍,有望成为新型

抗肿瘤药.

1.2海葵多肽

海葵(Anemone)是另壹类富含生物活性物质的海洋生物。文献报道从海洋生物海葵中提取得到的溶细胞性活性肽可分为3类:(1)存在于16种海葵中的鞘磷脂抑制性碱性多肽,平均相对分子质量在15000~21000之间。(2)从Metridrumsenile属海葵中分离得到的具胆固醉抑制活性肽,其平均相对分子质量在80000左右。(3)从Aiptasupalli-da属海葵中分离提取的、活性未知的Aipta-siolysinA多肽。

1.3海绵多肽

海绵(Sponge)是最低等的多细胞动物,结构较简单,但作为壹个特殊生物群体含有极丰富的生物活性物质。富含活性多肽的海绵包括离海绵目、外射海绵目、石海绵目、软海绵目、硬海绵目。Jaspamide是从斐济和几内亚海域离海绵目Jaspis属海绵中分离得到的环肽。实验证明该肽具有杀伤线虫活性和细胞毒活性,其结构的全合成已经完成。GeodiamolidesA,B是从加勒比海离海绵目Geodiasp.属海绵中分离得到的环肽成分。具有细胞毒活性,利用NMR和X-射线晶体衍射分析已确定其化学结构。CelenamidesA~D是从东太平洋硬海绵目中分离得到的具乙酞化的小肽,体外实验证明具有降低血色素的作用。

1.4芋螺多肽

芋螺(Conus)是海洋腹足纲软体动物,其在猎取鱼、海洋蠕虫、软体动物时常分泌壹系列毒性物质,称为芋螺毒素(Conotoxin)。经过近20年的研究已发现的芋螺毒素有近百种,主要包括α-芋螺毒素、μ-芋螺毒素、ω-芋螺毒素、δ-芋螺毒素。大多为由10~30个氨基酸残基组成的小肽,富含2对或3对二硫键,是迄今发现的最小核酸编码的动物神经毒素肽,也是二硫键密度最高的小肽。其活性和蛇毒、蝎毒等动物神经毒素相似,可引起动物出现惊厥、颤抖及麻痹等症状。

1.5海星多肽

从烫灼或自主运动的壹种海星所分泌的体液中分离纯化到壹种自主刺激因子。凝胶电泳分析表明该肽的相对分子质量为1200,HPLC检测为单峰组分。具有刺激细胞运动且使之产生应激反应的功能。

1.6海兔多肽

从印度海兔(Dolabellaauricularia)中分离到10种细胞毒性环肽Dollabilatin1~10。其中Dollabilatinl0对B16黑色素瘤治疗剂量仅为1.1μg·mL-1,是目前已知活性最强的抗肿瘤化合物之壹。

1.7海藻多肽

海藻(Alga)种类繁多,其中含有的生物活性物质也多种多样。从培养的蓝藻中分离出壹种具有鱼毒性、抗菌、杀细胞活性的生物活性肽,已具备大规模生产能力。Hor-mothamin 是从海藻Prymnesiumpatellife-rum中提取的毒素肽,具有溶细胞、细胞毒和神经毒等活性,其作用机制主要是影响脑垂体细胞静止期的钙离子通道、提高电压敏感性钙离子通道的释放,促进脑内激素如催乳素的分泌增加而产生作用。从海藻Lyngb-yamajuscula中分离到壹具有细胞毒活性的环肽majusculamideC,它对X5536骨髓瘤细胞的抑制效果达到35%。

1.8鱼类多肽

鱼类是人们最早食用的海洋生物之壹,其体内含有丰富的蛋白质成分,营养价值相当高。但从其中开发具有药用价值的活性物质的研究却较少。曾有报道从铜吻蓝鳃太阳鱼中分离且鉴定出4种具缓激肽活性的肽类,对鱼肠组织细胞具有强烈的刺激作用。仍有研究从大西洋鳕鱼(Gadusmorhua)、虹蹲(Ondorhyridusmykis)、欧洲鳗鲡(An-guillaanguilla)等鱼类的嗜铬细胞组织中提取到壹系列的生物活性肽及其类似物,且利用免疫组织化学方法研究其

在细胞组织中的作用,发现此类肽和肾上腺素受体具有壹定的亲合性,可能具有控制儿茶酚类物质释放的作用。

1.9贝类多欣

从海洋贝类的神经元中提取到2种神经肽Pd5和Pd6,它们具有促进神经元产生的活性。利用HPLC方法纯化且对其氨基酸序列进行了分析。现已完成其结构的全合成。

1.10生物防御素

生物防御素(Defensin)是近年来发现的壹组新型抗菌活性肽。它们通常都是由35~50个氨基酸残基组成,且分子内富含二硫键。由于其具有牢固的分子骨架、广泛的分布以及生物活性功能,因而对它们的研究已成为当前国际学术界中壹个引人关注的研究热点。各类抗菌防御素不但在结构上具有相应的保守序列和相似的紧密空间构型,在功能上也都有相似的共性如抗菌、抗病毒能力和细胞毒性作用等。无论α-、β-防御素对革兰阳性和阴性细菌都具有杀伤作用。相对而言,它们对革兰阳性细菌,显示了更强的杀伤能力,而植物防御素被认为是真菌生长的有效抑制剂。许多α-防御素如NPI~2,HNPI~3等已被验证了对病毒的杀伤作用。各类防御素除具有上述抗菌和抗病毒功效外,对自身细胞似乎也有侵害作用,如已有实验表明多形核细胞可释放某种细胞侵害因子,该因子的产生和作用似乎和多形核细胞胞内防御素的含量成正比关系。此外某些防御素仍能杀死肿瘤细胞、淋巴细胞、嗜中性粒细胞和内皮细胞等。其杀伤能力呈现浓度和时间依赖性,通常最适浓度为25~l00μg·mL-1,作用6h达到最大效力。

大量的研究资料表明,防御素和其他类型抗菌肽作用机制相似,它们主要是通过在细胞膜上形成通道,引起细胞离子通道性的失衡和胞内物质的泄漏、进而导致细胞活动的异常。防御素在细胞膜上的通道形成过程和膜的磷脂组成成分和所处的温度环境等因素有关。然而,壹旦防御素在膜上形成了通道,上述因素便不会对其通道的活动构成本质的影响。

生物防御素的抗菌、抗病毒及其杀伤肿瘤细胞的多重功能效应无疑正展示着它们对物种生存、抵御侵害以及提高人的生活质量等实际应用中的显要身价。另壹诱人的前景是,这些防御素由于分子小且具有稳定的分子结构等优点,又为当今研制多肽新药提供了理想的分子设计骨架和模板。

2海洋酶解生物活性肽

天然存在的活性肽大部分或含量微少,或提取难,不足以大量生产供给所需;化学人工合成又费时费力,成本昂贵;因此,人们更多地把目光投向开发蛋白酶解产物这条途径上来。

2.1水解营养蛋白生产生物活性肽的理论基础

过去,人们壹直未对利用贮藏蛋白,如花生、大豆、小麦等种子蛋白等和动物营养蛋白如乳蛋白水解制备生物活性肽给予应有的重视,可是当下科学家逐渐注意到:在营养蛋白的多肽链内部可能普遍存在着功能区,选择适当的蛋白酶水解,这些多肽有可能被释放出来,从而制备各种各样的生物活性肽。

从生物进化上见,营养和贮藏蛋白应该是从功能蛋白进化而来的,因为原始的生物是不可能合成大量此类蛋白的。当生物进化到需要为后代发育提供营养时,它不可能凭空制造出壹种营养蛋白,最好的方法就是通过若干功能区(结构域,Domain)DNA“组装”出营养或贮藏蛋白基因。所以,在不同的营养和贮藏蛋白的多肽中可能广泛存在着不同的功能区,选择适当的蛋白酶就可将其释放出来,仍原其功能特性,通过这种方法能够获得相当广泛的生物活性短肽。

从免疫学见,尽管不同的生物都具有功能上非常相似的蛋白质,可是由于其非功能区存在着较大氨基酸差异,所以不能互相使用,因为生物正是通过免疫系统识别自身蛋白和外来蛋白的这些非功能区的差异来清除异己和保持自身稳定性的。如果我们把注意力放在这些具有不同生理功能的生物活性短肽上,则我们可能有效地避免免疫排斥反应的困扰。例如,乳

转铁蛋白用于注射可能会产生免疫排斥反应,但如果用其水解所得到的短肽,就可能安全地用于注射。再如实验证明免疫活性肽和白细胞介素相似,能够激活T细胞和巨噬细胞,从而增强机体免疫力,虽然它来源于动物蛋白,但研究表明它可能安全地用于医药。

从生物多样性来见,生物的各种功能大多来自蛋白质的多样性。这是由于20种氨基酸在排列成不同长度的多肽链时,具有天文数字的多样性。所以20个氨基酸残基组成的多肽,其序列多样性足能够胜任所有生物的所有功能。也就是说,理论上所有的生物功能肽都可能以短肽的形式找到。

由于生物对营养蛋白和贮藏蛋白需求量很大,基因表达率自然很高。因此,这些蛋白在自然界蕴藏量极大。通过蛋白酶水解这些蛋白所获得的生物活性肽具有很多优点:原料廉价,成本低,安全性好,不需要很高级的实验条件和很贵重的仪器设备,便于工业化生产。大量文献表明,该研究领域发展很快,已经受到了各国科学家和政府的高度重视,在短短的几年里就有众多的生物活性肽被辨认出来且进行了系统研究。有些生物活性肽已经作为保健食品和药物实现了工业化生产,且取得巨大的经济效益,如酪蛋白磷酸肽(Caseinphosphopeptides,CPPs)和类吗啡因子等。综上所述,生物活性已展示了非常好的开发和应用前景。

2.2海洋蛋白源是开发生物活性肽的重要资源之壹

种类繁多的海洋蛋白氨基酸序列中,潜在着许多具有生物活性的氨基酸序列,用特异的蛋白酶水解,就释放出有活性的肽段。生物活性肽是世界上药物及保健品研究的热点,目前通过蛋白酶解生产的活性肽主要来源于陆地的蛋白源,如牛乳酯蛋白、大豆蛋白、玉米醇溶蛋白等。而来自海洋蛋白源酶解的活性肽非常少,但这决不意味着海洋蛋白源的蛋白质氨基酸链中没有潜在的活性肽序列,而主要是由于没有进行很好的研究开发。海洋生物资源的优化利用和高值化是未来15年我国海洋高技术发展的重要研究内容之壹。

2.3酶工程技术应用于海洋蛋白酶解活性肽的研究

将陆地微生物发酵工程和酶工程技术应用于海洋蛋白资源的综合利用研究,以海洋生物蛋白资源为原料,通过生物酶解、提取、加工,可生产许多酶解陆地蛋白源和化学合成所无法生产的产品和材料,研制出系列天然、高效、新颖的生物活性肽。

首先,应大力加强用于海洋蛋白源酶解的专用蛋白酶制剂的开发。目前国内进行工业化生产的蛋白酶制剂大多是用于酶解陆地或淡水的蛋白源,由于陆地生态环境、淡水生态环境和海洋生态环境具有很大的差异,海洋生物为了适应所处的特殊的生态环境,其氨基酸的组成和序列肯定和源于陆地及淡水生物的蛋白源具有很大的差别。目前进行工业生产的蛋白酶制剂可能无法高效用于海洋蛋白源的酶解。因此,应从海洋生物体内、海水及海洋污泥中分离、纯化可高效酶解不同海洋蛋白源的高产蛋白酶的菌株,对其产酶动力学、酶学性质进行研究,且对其产酶特性进行优化。

其次,要加强酶工程技术研究。通过酶工程技术现已从海洋低值鱼虾中分离出多种具有抗高血压活性的活性肽。其氨基酸序列如下:C8肽(沙丁鱼)为Leu-Lys-Val-Gly-Val-Lys-Gln-Tyr;C11肽(沙丁鱼)为Try-Lys-SerPhe-Lys-Ile-Lys-Gly-Tyr-Pro-Val-Met,C8肽(金枪鱼)为Pro-Thr-His-Ile-Lys-Trp-Gly-Asp;C,肽(南极磷虾)为Leu-Lys-Tyr,但这项工作只是开始,仍有很多工作要做。

2.4利用海洋低值鱼类及水产品度弃蛋白源进行酶解活性肽的高值化开发

向海洋索取食物、功能蛋白和特殊活性物质,已成为世界各沿海国家海洋开发的壹项重要内容。如对低值鱼及水产加工废弃物进行水解、提取等深加工,制成水解鱼蛋白,用作食品添加剂,蛋白强化剂,或用作研制药物和功能食品的原料,已在世界各国展开。

对渔获物非食用部分的利用更能体现出科学技术如何提高产品的附加值。非食用部分包

括低值小杂鱼及水产品加工废弃物,它们壹般占渔获物的28%。如何开发这些量大质低的渔获物,壹直困扰着水产加工业。我国当下主要利用低值渔获物生产鱼粉,用于水产养殖和陆地畜禽养殖,但由于加工技术落后,不但产品得率和附加值低,而且严重污染近海水域。水产品加工废弃物许多被直接丢弃而未被利用,对环境造成严重污染。有的水产品加工废弃物蛋白质含量很高,采用生物技术方法将其部分转换成优质鱼浓缩蛋白和活性肽,将具有良好的开发前景。

3海洋生物活性肽的吸收

现代生物代谢研究发现:人类摄取的蛋白质经消化道多种酶水解后,不象以前认为的那样仅以氨基酸的形式吸收,更多的是以低肽的形式直接吸收。从营养角度评价,二肽、三肽等低肽被人体消化吸收的效率要比同壹组成的氨基酸高,因此可作为食品添加物。这些低肽的渗透压较氨基酸低,而且在人体小肠部位的通透性也比氨基酸高,因此可提高吸收率。此外,低肽的风味壹般要优于单个氨基酸,也不易产生过敏。其中某些低肽不仅能提供人体生长发育所需的营养物质,且同时具有重要的生理功能,如促进矿物质吸收肽、防治肝性脑病肽,易消化吸收肽、抗菌肽、吗啡片肽、类吗啡拮抗肽、血管紧张素转换酶抑制肽、抑制胆固醇作用肽、机体防御功能肽等。上述功能是原蛋白质或组成氨基酸所不具备的,且许多活性肽的组成氨基酸且不壹定是必需氨基酸,对其营养性影响不大。这就为更充分地利用蛋白质资源,特别是那些原本认为生物效价不高的蛋白质资源提供了新的机遇。

4海洋生物活性肚在养殖业中的作用

活性肽除在保健食品及新药开发中有广阔的应用前景外,对饲料中蛋白质进行酶解,使其内含壹定量的活性肽,对提高养殖效益也有重要作用。①可提高氨基酸的利用率。游离氨基酸的吸收存在相互竞争的现象,如精氨酸和赖氨酸在吸收时相互竞争载体,但以小肽的形式供给动物时,赖氨酸的吸收不再受精氨酸的影响。②可提高矿物质的利用率。活性肽可促

进动物对矿物元素的吸收利用。③能改善饲料的理化特性和营养价值。小肽能有效刺激和诱导小肠绒毛膜刷状缘酶的活性升高,且促进动物营养性康复。有试验表明:在壹定量的低蛋白质饲料中,补充适量的含小肽物质,能够达到饲喂高蛋白质日粮的生产水平。④可提高鱼苗的成活率,含12%~20%多种不同的小肽饲料,能增加多种蛋白酶和促进鱼苗小肠提早成熟。

5存在的问题和展望

开发利用海洋活性肽仍需加强以下方面研究:①作为食品添加剂的海洋生物活性肽,它在食品加工及贮藏过程中的变化动力学应加强研究。②海洋生物活性肽的研究,目前主要集中在少数几种海洋生物中,仍有很大壹部分海洋生物活性肽成分未被发现或开发出来。已研究的海洋生物活性肽中,大多为海洋环肽,虽然它们的作用都很明确,但因其多含D-型氨基酸、多种基因修饰、封闭的N末端等特殊结构,给研究开发带来壹定困难,不易利用蛋白质工程、基因工程方法大规模生产。③活性肽的分离及鉴定急需高效和灵敏的技术或分析平台。目前活性的分离困难,分析仪器要求也高,大多需使用2D-NMR,FAB-MS等方法。④要加强生物工程技术在活性肽方面的应用。目前已开发的海洋生物活性肽类、多采用全合成及固相合成等方法.如何利用蛋白质工程技术和基因工程技术生产海洋多肽物质是未来的壹个研究方向。

海洋生物碱研究进展

https://www.360docs.net/doc/8e10839158.html,
海洋生物碱研究进展1
那广水1 2,叶亮2,奚涛,姚子伟1

1.国家海洋环境监测中心,辽宁大连(116023) 2. 中国药科大学生命科学与技术学院,江苏南京(210009)
E-mail:gsna@https://www.360docs.net/doc/8e10839158.html,
摘 要:本文概述了2000年以来海洋生物碱在抗肿瘤、抗菌、抗病毒等方面的研究进展,着重 介绍了近几年国内外海洋生物尤其是海绵和微生物中新发现的海洋生物碱及其生物学功能。 关键词:海洋生物碱,抗肿瘤,抗菌,抗病毒 生物碱是一类生物体中一种含氮化合物,它不仅存在于植物中,而且也存在于动物、微生 物和海洋生物中,人们已经发现很多的有活性的生物碱且用于抗肿瘤、抗菌、抗病毒等方面。 在许多疾病的治疗中,生物碱类药物已经受到人们的普遍关注。近些年来,海洋药物研究日益 受到专家学者关注。海洋蕴藏着丰富的药用生物资源,海洋生物由于生活在高盐、高压、低 温、缺氧等极端环境中,长期进化过程中形成了一些结构独特而又有显著药理作用的次级代谢 产物,其在抗病毒、抗炎和抗肿瘤等方面作用显著。 海洋生物碱作为海洋生物的一种次级代谢产物,同样具有以上的生物学活性,它们有很多 可能成为抗肿瘤、抗病毒和抗菌的药物先导化合物,有良好的药用前景。
1. 抗肿瘤生物碱
抗肿瘤是海洋生物碱的一个主要研究方向,其主要来自海绵,其次是海鞘、海洋微生物 等。 Aoki S等人[1]研究一种海绵中的五环胍类生物碱 crambescidin 800对慢性骨髓瘤细胞K562的 影响,发现它在细胞周期S期发挥作用,0.15-1μmol?ml-1时增加了 K562细胞血红素的量,当治 疗24小时时有p21蛋白表达,(p21蛋白是p53蛋白诱导的WAF1基因表达产物,与肿瘤增殖细胞 核抗原结合,阻抑DNA多聚酶delta的功能,从而抑制DNA复制;p21蛋白也抑制细胞周期素/细 胞周期素依赖性激酶的底物磷酸化,阻止细胞周期从G1到S期,是一种促进细胞凋亡的蛋白), 在48小时表达量增加,而对p27蛋白表达水平无明显影响(p27蛋白是一种细胞周期蛋白依赖性 激酶抑制蛋白,在哺乳动物有丝分裂G1期转化到S期中起着重要调节作用,在恶性肿瘤中都存 在p27的降低)。 从Kuchinoerabu-jima岛附近捕获的海绵(Neopetrosia sp)中,Oku N等人提取出来一种新 的四氢异喹啉生物碱Renieramycin J,在86nmol?ml-1对3Y1细胞作用6小时发现细胞核萎缩或消 失,同时明显抑制伪足生长,当处理12小时时细胞界限模糊,细胞开始死亡,这种现象在用放 线菌素D(RNA合成抑制剂)和放线菌酮(蛋白质合成抑制剂)处理此细胞系时也观察到。另 外,Renieramycin J对宫颈癌细胞和P338癌细胞也有细胞毒作用[2]。 Warabi K等人从日本Nagashima岛采集的海绵(Dictyodendrilla verongiformis)中分离出5种 新的生物碱dictyodendrins A-E(图1),它们在50μg?ml-1时完全抑制端粒酶活性,这时首次从 海洋生物中提取的具有抑制端粒酶活性的天然产物,因为90%的癌症病人都表现为端粒酶活性
1
本课题得到国家极地科学战略研究基金(2006)的资助。 -1-

生物活性肽的研究及其进展汇总

生物活性肽的研究及其进展 摘要:生物活性肽作为一种来源广泛、种类繁多、功能性良好的生命因子,目前已成为全球范围内的研究热点。研究表明这些肽除具有常规的生物活性,如增加矿物质吸收、调节血压、抗菌、抗氧化、降胆固醇、免疫调节之外还对人类营养有调节作用,因而受到广泛关注。本文综述了生物活性肽的种类、生理功能、吸收、制备研究进展,以期为生物活性肽的进一步研究和应用提供参考。 关键词:生物活性肽,生理活性,吸收 Research and progress of biological active peptide Abstract:Bioactive peptides as one rich sources, wide variety, good functional life factors have been a global research hot spot. Studies have shown that these peptides have some conventional biological activities, such as increase mineral absorption, adjust blood pressure, antibacterial, antioxidant, decrease cholesterol, regulate immune. What’s more, they also have a regulating effect on human nutrition, so they have attracted widely attention. The kinds of bioactive peptides was reviewed in this paper, preparation research progress of physiological function, absorption and biological active peptide in order to provide reference for further research and application. Key words:Biological active peptide, Physiological activity, Absorb 1.功能肽的简介 肽(peptides)是分子结构介于氨基酸和蛋白质之间的一类化合物,是蛋白质的结构与功能片段,并使蛋白质具有数以千万计的生理功能。肽本身也具有很强的生物活性。是由蛋白质中20种天然氨基酸以不同的组合和排列的方式构成的,从二肽到复杂的线性或者环状的多肽的总成。一般说来,肽链上氨基酸数目在10个以内的叫寡肽,10~50个的叫多肽,50个以上的叫蛋白质。人们习惯上也把寡肽中的二、三肽称为小肽。由于构成肽的氨基酸种类、数目与排列顺序的不同,决定了肽纷繁复杂的结构与功能。 生物活性肽( biologically active peptide/ bioactive peptide/ biopeptide) 是指对生物机体的生命活动有益或具有生理作用的肽类化合物,又称功能肽(functional peptide)[1]。肽由氨基酸组成,人体存在20 种氨基酸,由不同的氨基酸的种类排列,加上数量排列形成,再加上还可能有的二级、三级结构,其种类是十分庞大的[2,3]。每一种活性肽都具有独特的组成结构,不同活性肽的组成结构决定了其功能。此外活性肽在生物体内的含量是很微量的,但却具有显著的生理活性。据研究,有些多肽在10 - 7mol/ L 的浓度时仍具有生理活性,就是说1 mL 的多肽用60 倍水稀释后,仍然具有生理功能。功能肽是源于蛋白质的多功能化合物,是多样化且来源充足的食品原料,具有多种人体代谢和生理调节功能,如易消化吸收、促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等[4] 现代营养学研究发现,人体摄入蛋白质经消化道中的酶作用后,大部分是以寡肽的形式

海洋碳循环研究进展简介

摘要:本文主要介绍了海洋碳循环及其在全球碳循环中的重要作用,概述了海洋碳循环的一般特征,并进一步介绍了南北极海区碳循环的一些概况。现阶段国内外关于海洋碳循环模式具有大量研究,据此,本文阐述了我国浅海贝藻养殖对海洋碳循环的贡献,最后对海洋碳循环进行了展望。 关键字:海洋、碳循环、贝藻养殖 引言 自工业革命以来,人类活动使得大气中CO2浓度一直在持续增加。可以预见在未来相当长的时间内,大气CO2浓度还会不断增加。IPCC在2001年发布了第三次评估报告。该报告指出,在过去的42万年中,大气CO2浓度从未超过目前的大气CO2浓度,在20世纪中大气CO2浓度的增加是前所未有的。估计到21世纪中叶,大气中CO2将比工业革命前增加1倍。大气CO2浓度的增加对全球变化的影响已引起了广泛的注意,该报告指出,工业革命以来的全球气温已增加了约0.6℃,这主要是由于大气中人为温室气体(如CO2、CH4、N2O、CFCs)浓度增加所致,其中CO2的作用居首位。初步预测,21世纪全球增暖将超过过去10 ka来自然的温度变化速率。为了准确评价和预报未来的气候变化,正确认识碳循环显得十分重要。 1、海洋碳循环简介 海洋在全球碳循环中起着极其重要的作用,海洋是地球上最大的碳库。海洋储存碳是大气的60倍,是陆地生物土壤层的20倍(IPCC, 2007);大约50%人为排放的碳被海洋和陆地吸收(Prentice etal., 2001)。 1.1海洋碳循环 碳循环是碳在大气、海洋及包括植物和土壤的陆地生态系统3个主要贮存库之间的流动。海洋碳循环是碳在海洋中吸收、输送及释放的过程,主要包括CO2的海-气通量交换过程、环流过程、生物过程和化学过程。其碳的储存形式有3

鱼类抗菌肽的研究进展

万方数据

万方数据

万方数据

鱼类抗菌肽的研究进展 作者:江丽娜, 赵瑞利, 雷连成, 王教玉, 韩文瑜 作者单位:江丽娜,赵瑞利,雷连成,韩文瑜(吉林大学畜牧兽医学院), 王教玉(吉林省水产技术推广总站) 刊名: 中国水产 英文刊名:CHINA FISHERIES 年,卷(期):2008(5) 本文读者也读过(8条) 1.张书剑.Zhang Shujian几种鱼类抗菌肽的研究进展[期刊论文]-饲料研究2007(12) 2.李华.杨桂文.温武军鱼类抗菌肽研究概况[期刊论文]-科技信息2010(2) 3.黄平.章怀云.HUANG Ping.ZHANG Huai-yun鱼类抗菌肽研究进展[期刊论文]-中南林业科技大学学报2009,29(2) 4.杨学明.江林源.蒋和生.YANG Xue-ming.JIANG Lin-yuan.JIANG He-sheng水生动物抗菌肽及其基因工程研究[期刊论文]-生物技术通讯2006,17(1) 5.王克坚.林志勇.杨明.任洪林.黄文树.周红玲.邓尚龙.陈君慧.蔡灵.蔡晶晶海水养殖鱼类抗菌肽hepcidin基因的研究进展[会议论文]-2005 6.王小玲.尹建文.Wang Xiaolin.Yin Jianwen鱼类的先天性抗菌和抗病毒机制[期刊论文]-现代渔业信息2006,21(7) 7.叶星.白俊杰抗菌肽的研究及其在水产上的应用前景[期刊论文]-大连水产学院学报2000,15(4) 8.单晓枫.郭伟生.张洪波.钱爱东鱼类体液中的几种抗菌因子研究进展[期刊论文]-河南农业科学2010(5) 本文链接:https://www.360docs.net/doc/8e10839158.html,/Periodical_zhongguosc200805040.aspx

各种生物活性肽

各种生物活性肽 乳蛋白肽: 乳蛋白肽又称乳肽,是为了应付婴幼儿中发生的牛奶变态反应的需要而开发的。因此主要的应用领域是婴幼儿食品,以及有关对平衡营养食品、运动食品和普通食品进行改良之用。日本森永乳社首先使用调整奶粉的低变态反应原肽,除了8种已上市的乳蛋白肽之外,市场还出售各种等级的肽原料。在1997年首次出售了抗变态反应用的育儿奶粉。新产品则将酪蛋白的抗原性降低到10-8以下,当分子量在1000道尔顿以下时,产品几乎全部由氨基酸和低聚肽(oligopeptide)构成,其作为营养肽、用于抗变态反应的点心和婴儿食品,受到好评。而自酪蛋白还可以制出具有显著的发泡性、乳化性的多肽。 新西兰制造的乳肽在美国已有销售,主要用于健康食品、运动食品和对抗变态反应的食品。日本市场有代表性的4种肽原料中,经肠营养和育儿奶粉用的有3种(平均分子量1100、500、390道尔顿)和酪蛋白为原料的医疗用流食/运动食品1种(平均分子量350道尔顿)。 蛋清肽: 作为蛋白质中营养效价最高、氨基酸最为平衡的蛋清,其酶解后可得到蛋清肽。因为含巯基多,所以略有异味。蛋清肽能将原来得100分的平衡氨基酸很好地保持下来,由于水解使得分子量变小,所以加热不会发生凝固,因此可添加到液态食品中。 在日本,蛋清肽已市售、平均分子量1100,其水溶液呈乳状,广泛用于营养辅助食品和点心;此多肽再经高度水解后,可得到平均分子量约300道尔顿的药品级多肽,其水溶液透明,与蛋壳钙配合在营养上具有协同效果,用于婴儿食品、以及老年人食用的“银色食品”。

大豆肽: 大豆肽除具有易消化、吸收的营养效果外,还可能具有低变应原性,抑制胆固醇、促进脂质代谢,促进肠道发酵的功能等。大豆肽的特性使其利用领域相当宽广,如住院患者经常应用的经肠营养、老人应用的易消化吸收食品,对抗变态反应的食品,运动食品和有恢复疲劳等作用的健康食品。 玉米肽: 日本开发了以玉米蛋白为原料制成的肽——“peptino”。玉米蛋白质与其他蛋白质的氨基酸组成相比,富含缬氨酸、亮氨酸、异亮氨酸等支链氨基酸和丙氨酸。对运动后疲劳恢复、改善肝脏病、防止醉酒、肠功能障碍有作用。目前韩国制药公司以醒酒饮料的形式上市,其对中性脂肪的抑制效果等功能在研究之中。 豌豆肽: 从豌豆蛋白水解而得,豌豆肽的PH值呈中性。豌豆肽没有苦味,且价格较低廉,与前述乳蛋白肽共同添加、其不仅营养合理,成本上也容易接受,有望应用在育儿调制奶粉方面。 氨基酸是人体必须的营养物质,但人体有8种氨基酸不能自身合成,需由外界摄取。豌豆多肽中这8种氨基酸的含量除蛋氨酸稍低外,其余的氨基酸比例接近于FAO/WHO推荐模式。 中国的豌豆蛋白资源广泛,价格便宜,但由于这些氨基酸基本上以聚合的形式存在于蛋白质中,严重影响人体对它们的吸收和利用。Mattews等课题组的研究成果告诉人们,蛋白质经消化道酶作用后主要以小分子肽的形式吸收,通过试验证明低肽的吸收率比氨基酸的吸收率大,比氨基酸更易更快被人体吸收、利用。基于这种理论,利用生物工程定向酶切技术开发出的豌豆多肽具有广泛的应用价值。

植物源生物活性肽的研究进展

植物源生物活性肽的研究进展 多肽是由天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,其中可调节生物体生理功能的多肽称为生物活性肽。与蛋白质相比,活性肽不仅有比蛋白质更好的消化吸收性能,还具有促进免疫、调节激素、抗菌、抗病毒、降血压和降血脂等生理机能。此外活性肽还有较好的酸、热稳定性,水溶性及粘度随浓度变化迟钝等优点,易于作为功能因子添加到各种食品中。我国农作物种类品种繁多,利用这些廉价的植物蛋白开发具有高附加值的生物活性肽产品,越来越受到重视。本文重点综述了降血压肽、抗氧化钛、降胆固醇肽这3类生物活性肽的研究进展,将其结构特征与生理功能的关系进行了归纳,同时归纳了活性肽的生理功能,并指出其发展应用前景。 1. 生物活性肽的生理功能 1.1 抗菌活性 抗菌活性肽通常由细菌、真菌产生,或从动植物体中分离。它们尽管在结构上千差万别,但几乎所有的抗菌肽都是阳离子型的,两亲结构是它们的共同特征[1]。国内外研究成果表明,抗菌肽对部分细菌、真菌、原虫、病毒及癌细胞等均具有强大的杀伤作用。临床试验也表明,抗菌肽能够增强机体抵抗病原微生物的能力,而且在体内还不容易产生耐药性。 [2]1.2 免疫活性 免疫活性肽能够刺激机体淋巴细胞的增殖,增强巨噬细胞的吞噬功能,提高机体抵御外界病原体感染的能力,降低机体发病率。从人乳和牛乳的酪蛋白中已检测到具有免疫刺激活性的肽片段,这些肽具有刺激巨噬细胞吞噬能力的作用。另外,乳蛋白、大豆蛋白和大米蛋白等通过适当酶解处理也可产生具有免疫活性的肽类物质。 1.3 抗高血压活性

血压是在血管紧张素转换酶(angiotensin-convertion enzyme,ACE)的作用下进行调节的,血管紧张素?在A C E的作用下可转化为有活性的血管紧张素?,使血管平滑肌收缩,引起血压升高。降血压肽是具有抑制ACE活性的肽类,来源广泛,ACE 抑制肽的主要来源是乳制品和鱼蛋白,沙丁鱼、金枪鱼、鲣鱼,,而且从植物蛋白(大豆、小麦、玉米,、肉类、鸡蛋以及其它水产品,小虾、螃 [3]蟹、海藻、牡蛎、海蜇,的酶解物中也分离得到了ACE 抑制肽。此外,海洋胶原蛋白肽也可抑制或促进脂肪内分泌激素的表达而发挥降血压、抗动脉粥样硬 [4]化等作用。 1.4 抗氧化活性 抗氧化活性肽是最近被广泛研究的一类天然活性肽,它们能够清除自由基,减缓或抑制氧化反应。其抗氧化机理包括:给抗氧化酶提供氢、缓冲生理pH值、螯合金属离子和捕捉自由基等。 [5]1.5 调节神经系统 肽类是神经系统的重要活性物质,对神经系统有调节作用的肽包括阿片肽和阿片拮抗肽、内源性阿片肽。外源性阿片肽可刺激胰岛素和生长抑制素的释放,调节肠道活动,提高摄食量,促进水分与电解质的吸收,具有镇静去痛、调节情绪和交感神经的作用。许多调节神经系统的活性肽可由牛奶、鱼、大豆和谷物蛋白质酶解得到。 [6]1.6 抑制血小板聚集和血管收缩 活性肽能有效促进血小板中前列腺环素(PG I2)的生成,对血小板聚集和血管收缩都有很强的抑制作用,并可对抗血栓A2(TX A2) 发生作用,有效地防止血栓素形成,对防止心肌梗塞和脑梗塞的发生有重要作用。 1.7 促进矿物质元素吸收

碳汇渔业

碳汇渔业 唐启升:全球气候变暖对人类生存、社会发展产生不良影响,这已引起国际社会的关注。为了缓解全球气候变暖、减少二氧化碳等温室气体的排放,发展低碳经济已成为世界各国的共识。 “碳汇”要扩增“碳源”要降低 根据政府间气候变化专业委员会(1PCC)的解释, “碳汇”是指从大气中移走二氧化碳和CH4等导致温室效应的气体、气溶胶或它们初期形式的任何过程、活动和机制。而“碳源”就是指向大气释放二氧化碳和CH4等导致温室效应的气体、气溶胶或它们初期形式的仟何过程、活动和机制。也就是说,世界各国努力的目标是要扩增“碳汇”,降低“碳源”。 生物碳汇扩增技术可行成本低效益高 发展低碳经济的核心是降低大气中二氧化碳等温室气 体的含量,主要途径有两条:一是减少温室气体排放,主要依靠工业节能降耗、降低生物源排放及人们日常生活中的节能降耗来实现;二是固定并储存大气中的温室气体,既可以通过工业手段,也可以通过生物固碳来实现。就目前的科技水平来看,通过工业手段封存温室气体,成本高、难度大;

而通过生物碳汇扩增,不仅技术可行、成本低,而且可以产生多种效益。因此,生物碳汇扩增在发展低碳经济中具有特殊的作用和巨大的潜力,尤其对我们发展中国家来说意义特别重要。 海洋生物是生物碳或绿色碳捕获的主要完成者 研究证明,海洋是地球上最大的碳库,整个海洋含有的碳总量达到39万亿吨,占全球碳总量的93%,约为大气的53倍。人类活动每年排放的二氧化碳以碳计为55亿吨,其中海洋吸收了人类排放二氧化碳总量的20%~35%,大约为20亿吨,而陆地仅吸收7亿吨。 根据联合国《蓝碳》报告,地球上超过一半(55%)的生物碳或绿色碳捕获是由海洋生物完成的,这些海洋生物包括浮游生物、细菌、海藻、盐沼植物和红树林。海洋植物的碳捕获能量极为强大和高效,虽然它们的总量只有陆生植物的0.05%,但它们的碳储量(循环量)却与陆生植物相当。海洋植物的生长区域还不到全球海底面积的0.5%,却有超过一半或高达70%的碳被海洋植物捕集并转化为海洋沉积物,形成植物的蓝色碳捕集和移出通道。土壤捕获和储存的碳可保存几十年或几百年,而在海洋中的生物碳可以储存上千年。 中国水产:唐院士,通过您的介绍,我们了解了“碳汇”的含义,那什么是“碳汇渔业”?

抗菌肽的研究进展

抗菌肽的研究进展 青霉素的发现使人们对由病原微生物感染而引发的各类疾病不再束手无策,并由此发展了大量的β-内酰胺类抗生素,对保护人类健康作出了巨大贡献。但随着上述“传统抗生素”的广泛使用,不断产生出诸多新问题。如β-内酰胺类抗生素的过敏反应以及长期使用导致抗药菌株的产生。于是人们开始寻找新一代抗菌剂。近期的研究发现,某些阳离子型多肽具有广谱的抗菌活性,同时具有“传统抗生素”无法比拟的优越性:不会诱导抗药菌株的产生,有希望成为新一代抗菌剂[1]。抗菌肽(antimicrobial peptides)是具有抗菌活性短肽的总称。1975年瑞典科学家G.Boman等人[2]等从惜古比天蚕(Hyatophoracecropia)蛹中诱导分离得到一种杀菌肽,并将其命名为cecropin。此后,许多抗菌肽相继被分离、纯化。一些抗菌肽的氨基酸一级结构和基因序列得到确定。80年代,有关抗菌肽的研究主要集中在大型的经济昆虫。90年代以来,在继续对大型经济昆虫进行研究的同时,又扩展到一些小型昆虫和其它无脊椎及脊椎动物,抗菌肽已成为免疫学和分子生物学研究的热点。研究的内容包括:抗菌肽的分离与纯化,氨基酸序列的分析,蛋白质构型与功能的关系,抗菌肽的作用机理[3,4],应用基因工程克隆与表达抗菌肽基因,改造合成抗菌肽基因以及动植物的转抗菌肽基因工程等,其中昆虫抗菌肽基因工程研究最受重视[5,6]。目前已发现抗菌肽或类似抗菌肽的小分子肽类广泛存在于生物界,包括细菌、动植物和人类。这种内源性的抗菌肽经诱导而合成,在机体抵抗病原的入侵方面起着重要的作用,更被认为是缺乏特异性免疫功能生物的重要防御成分。抗菌肽具有广谱杀菌作用,大多数对革兰氏阳性菌有较强的杀灭作用,有些则对革兰氏阴性菌和革兰氏阳性菌均起作用。对某些真菌、原生动物,尤其对耐药性细菌有杀灭作用,并能选择杀伤肿瘤细胞,抑制乙型肝炎病毒的复制。 1. 抗菌肽的分类迄今为止从不同生物体内诱导的抗菌肽已不下200种,仅从昆虫体内分离获得的就多达170余种。根据抗菌肽的结构,可将其分为5类:(1)单链无半胱氨酸(Cys)的抗菌肽,或由无规则卷曲连接的两段а-螺旋组成的肽。该类包括天蚕素Cecropins, Magainins等。Magainins最初是从非洲爪蟾的皮肤中发现的,它是爪蟾的皮肤在一定的环境压力下分泌出的抗感染和促进伤口愈合的成分,由两个紧密相连的肽链组成,每一个肽链有23个氨基酸,低浓度便可抑制许多细菌和真菌生长[7]。(2)富含某些氨基酸残基但不含Cys的抗菌肽。如富含脯氨酸(Pro)或甘氨酸(Gly)残基的抗菌肽。如从猪肠内分离的抗菌肽PR39中Pro含量占49%[6]。鞘翅肽Coleoptericin和半翅肽Hemiptericin的全序中富含Gly[8]。(3)含一个二硫键的抗菌肽,该二硫键的位置通常在肽链C端。如爪蟾皮肤细胞中产生的Brevinins[9]。(4)有两个或两个以上二硫键,具有β 折叠结构的抗菌肽。如绿蝇防御素(Phormindefensin),分子内有6个Cys形成3个分子内二硫键,肽链C末段是带有拟β 转角的反向平行的β片层[10]。实验证明,分子中的二硫键在其抗菌作用中至关重要。(5)由其他已知功能较大的多肽衍生而来的具有抗菌活力的肽。 2. 抗菌肽的作用及机理 2.1抗菌肽的抗菌作用及其机理抗菌肽分子可以在细菌细胞质膜上穿孔而形成离子孔道,造成细菌细胞膜结构破坏,引起胞内水溶性物质大量渗出,而最终导致细菌死亡。抗菌肽分子首先结合在质膜上,接着其分子中的疏水段和两亲性α-螺旋也插入到质膜中,最终通过膜内分子间的相互位移,抗菌肽分子聚集形成离子性通道,使细菌失去了膜势而死亡[10-14]。但是,Gazit[15]等得出

常见的一些生物活性肽

常见的一些生物活性肽 1 大豆肽 大豆多肽是指大豆蛋白经酶解或微生物技术处理而得到的水解产物,它以 3-6个氨基酸组成的小分子肽为主,还含有少量大分子肽、游离氨基酸、糖类和无机盐等成分。大豆多肽的分子质量以l 000 Da的为主,主要出现在300—700 Da 内。与大豆蛋白相比,大豆多肽具有消化吸收率高,能降低胆固醇、降血压和促进脂肪代谢的生理功能,以及无豆腥味、无蛋白变性、酸性不沉淀、加热不凝固、易溶于水和流动性好等良好的加工性能。大豆多肽还具有抑制蛋白质形成凝胶、调整蛋白质食品的硬度、改善口感和易消化吸收等特性,其氨基酸组成几乎与大豆蛋白完全一样。研究发现,大豆肽能够有效预防“负氮平衡”所引起的不良反应,增加肌红蛋白的合成,缓解机体的缺氧症状,达到抗疲劳的效果以及增强机体免疫功能。同时,大豆肽能够有效抑制血管紧张素转换酶(ACE)的活性,对于因ACE引起的人体血压升高具有一定的控制作用。 2 酪蛋白磷酸肽 酪蛋白磷酸肽:简称CPP,是以牛乳酪蛋白为原料,通过生物技术制得的具有生物活性的多肽,有α-酪蛋白磷酸肽β-酪蛋白磷酸肽,富含磷酸丝氨酸的天然多肽。CPP能在人和动物的小肠内与Ca+2、Fe+2等二价无机离子结合形成可溶性络合物,促进其吸收利用。 3 玉米肽 玉米肽是从天然食品玉米中提取的玉米蛋白,经过酶降解及特定小肽分离技术而获得的小分子多肽物质。 玉米肽作为玉米蛋白经过酶降解而获得的多种小肽的混合物,除具有肽类物质的优良特性——优于氨基酸或蛋白质的直接吸收、溶解性强(在大范围的pH 值下均能完全溶于水,无浑浊和沉淀物产生)、稳定性强(对热稳定,组分不改变,功能不丧失)、安全性高(天然食品蛋白,安全可靠,无毒副作用)等特性以外,还具有自己所独有的特殊功能。玉米肽所独有的特殊功能源于它特别的氨基酸分布,通过实验室的检测,发现玉米肽的氨基酸分布非常特别,它与大豆低聚肽中各种氨基酸分布均匀的特点不同,玉米肽中氨基酸的分布主要以丙氨酸、亮氨酸和谷氨酸3种氨基酸为主,这也就注定了玉米肽拥有以下与大豆低聚肽不一样的特殊功能。玉米肽具有抗疲劳、保肝、提高机体免疫力等功能;玉米肽独特的氨基酸构成,有利于促进酒精代谢,具有醒酒作用;玉米肽具有抑制血管紧张素转换酶的作用,从而降低血压;

海洋生物海兔的认识与研究进展

海洋生物海兔的认识与研究进展 XX 11生本3班******** 摘要:海兔(Aplysia) 又称海蛞蝓, 属软体动物门腹足纲( Gast ropoda) 后腮亚纲( Opisho -branchia ) 海兔科(Aplysiidae)动物, 广泛分布在热带及亚热带海域,随着对海兔的研究日益深入,人们发现海兔具有极大的药用与食用价值,现在海兔已经成为生物研究的一种模式生物,尤其是在神经节蛋白质组的研究上[1],除此之外,国内外对于海兔提取物的抗癌作用及其获取光合作用基因的机制研究也有报道。本文介绍了海兔的形态特征、生活习性等特征,并对海兔的药用与食用价值及其研究现状进行综述。 关键词:海兔,神经,肿瘤,光合作用 海兔(Aplysia) 又称海蛞蝓, 属软体动物门腹足纲( Gast ropoda) 后腮亚纲( Opisho -branch ia ) 海兔科(Aplysiidae)动物, 广泛分布在热带及亚热带海域。海兔种类有3,000多种,遍及全球海域,其中还包括热带和南极洲海域。海兔虽在中国沿海尤其东南沿海有分布,生活于热带海域,五彩斑斓的外貌具有很高的观赏性,但在中国乃至全世界都尚待开发。 1、形态特征 海兔个体较小,一般体长仅10厘米,体重130克左右。体呈卵圆形,运动时身体可变形。海兔头上有两对突出如兔耳的触角,前面一对稍短,专管触觉;后一对稍长,专管嗅觉。体表光滑,或有许多突起。其体外石灰质的外壳,退化成一层薄而透明、无螺旋的角质壳,埋在背部外套膜下,薄薄的壳皮一般呈白色,有珍珠光泽。其足相当宽,足叶两侧发达,足的后侧向背部延伸。海兔雌雄同体雌雄两个生殖孔间有卵精沟相连。 2、生活习性 2.1分布 海兔喜欢在海水清澈、水流畅通、海藻丛生的环境中生活,以底栖矽藻和沉积在海滩上的有机质、绿藻和底栖桡足类等为食广泛分布在热带及亚热带海域,它在我国福建、广东、山东等省的海域均有分布. 厦门最常见的海兔品种是蓝斑背肛海兔(N otarchus leachii cirrosusS ti mp son, NLCS)。[2] 2.2自我保护与防御

抗菌肽的研究进展

抗菌肽的研究进展 摘要:由于细菌对抗生素耐药性不断出现, 研发新型抗菌物质已迫在眉睫。而抗菌肽是广泛存在于自然界生物中的具有广谱抗菌、抗病毒、抑制杀伤肿瘤细胞等作用的多肽。本文介绍了抗菌肽的结构,抗菌肽的生物学活性,抗菌肽的作用机理和作用机制,以及抗菌肽的应用和前景。 关键词:耐药性,抗菌肽;作用机理;前景 抗菌肽,简称ABP,是由宿主产生的一类能够抵抗外界病原体感染的小分子多肽。广泛存在于各种生物体内。1980 年,瑞典科学家Boman 等从天蚕蛹的血淋巴中分离得到天蚕素( cecropin ) 抗菌肽,使人们对抗菌肽的作用机理和应用有了一个崭新的认识。目前世界上已知的抗菌肽共有1 700余种。由于热稳定性强,且对较高离子强度环境有较强的适应性,不仅有广谱抗细菌能力, 而且有的对真菌、病毒及癌细胞也有一定的抑杀作用,最重要的是可以杀伤动物体内的肿瘤细胞,却又极少破坏动物体内的正常细胞,因此,抗菌肽的开发和应用研究已成为国内外昆虫学、生理学、药理学研究热点,在动植物转基因工程及药物开发领域及农业、食品等领域具有广阔的应用前景。 1 .抗菌肽的结构 1 .1 一级结构 据报道,已分离并测定其氨基酸序列一级结构的抗菌肽达几十种,且一级结构都比较相似,具有以下典型的特征:由20~70多个氨基酸残基组成的肽链,其N 端富含赖氨酸和精氨酸等阳离子型氨基酸,C 端富含丙氨酸、缬氨酸、甘氨酸等非极性氨基酸,中间部分则富含脯氨酸,且在许多特定位置都有一些较保守的氨基酸残基,这些高度保守的氨基酸残基是一些抗菌肽分子具有抗菌活性所不可缺少的, 1. 2 二级结构 通过圆二色性分析、二维核磁共振谱法及脂质体模拟实验研究抗菌肽的二级结构特征,结果表明,抗菌肽在一定条件下形成a-螺旋和β-折叠结构。a-螺旋是一个近乎完美的水脂两亲结构,即圆柱形分子的纵轴一边为带正电-的亲水区,而对称面为疏水区。这种两亲性结构是抗菌肽杀菌的关键,改变a-螺 旋的螺旋度会影响抗菌肽的活性。抗菌肽有许多保守序列,在N端易形成a-螺旋,中间部分易形成β-折叠或铰链。a-螺旋肽主要包括天蚕素、爪蟾抗菌肽ma g a i n i n 、c a t h e l i n d i a 等,β-折叠肽主要包括哺乳动物防御素、植物防御素、昆虫防御素和富含脯氨酸的抗菌肽等。 2 抗菌肽的来源 2.1微生物抗菌肽

生物活性肽

生物活性肽 百科名片 生物活性肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。 目录[隐藏] 概述 特性 作用 食品中的应用 1.殊营养品 2.保健食品 3.乳品 4.糕点 5.糖类 6.其他 重要活性肽研究简介 1.乳肽 2.大豆肽 3.高F值寡肽 4.谷胱甘肽(GSH) 活性肽的分类 生产方法 原料选择原则 中国活性肽研究进展 [编辑本段] 概述

现代营养学研究发现:人类摄食蛋白质经消化道的酶作用后,大多是以低肽形式消化吸收的,以游离氨基酸形式吸收的比例很小。进一步的试验又揭示了肽比游离氨基酸消化更快、吸收更多,表明肽的生物效价和营养价值比游离氨基酸更高。这也正是活性肽的无穷魅力所在。 生物活性肽是蛋白质中25个天然氨基酸以不同组成和排列方式构成的从二肽到复杂的线性、环形结构的不同肽类的总称,是源于蛋白质的多功能化合物。活性肽具有多种人体代谢和生理调节功能,易消化吸收,有促进免疫、激素调节、抗菌、抗病毒、降血压、降血脂等作用,食用安全性极高,是当前国际食品界最热门的研究课题和极具发展前景的功能因子。 生物活性肽 20世纪末,科学家在破解基因的秘密的同时,也对存在于生物体内的另一类奇妙物质的研究发生极大的兴趣。这类物质就是生物活性肽,或称功能肽,由氨基酸组成,是一种小分子的蛋白质,比如胰岛素,就是一种多肽,再如在日本应用广泛的促进钙吸收的CCP,在欧美风靡一时的促进生长的HGH……。 [编辑本段] 特性 1、它有良好的吸收性,它的吸收效率比氨基酸和蛋白质都高。 2、它有独特的生理调节功能,胰岛素调节血糖就是一个例子。 3、肽的活性很高,往往很小的量就能起到很大的作用。 [编辑本段]

Roquefortine类生物碱的研究进展

第32卷第2期2013年4月 中国海洋药物 CHINESE JOURNAL OF MARINE DRUGS Vol.32 No.2 April,2013 Roquefortine类生物碱的研究进展△* 汤枝鹏,朱天骄,顾谦群,李德海* (海洋药物教育部重点实验室,中国海洋大学医药学院,山东青岛266003) 摘 要:Roquefortine是由真菌生产的一类结构复杂生物碱化合物,这类化合物来源于组氨酸和色氨酸,包含由吲哚吡咯二酮哌嗪骈合而成的四环母核,吲哚环的3位有异戊烯基取代,咪唑基通过单双键与四环母核相连。此类化合物具有抗革兰氏阳性细菌和抗肿瘤活性。本文主要从化合物的发现,生物活性,生物合成途径以及化学合成这几个方面对这类化合物的研究作全面的回顾。 关键词:Roquefortine;次级代谢产物;真菌 中图分类号:R931.6 文献标志码:A 文章编号:1002-3461(2013)02-076-09 真菌次级代谢产物是天然产物非常重要的来源之一,它们具有丰富的结构类型和良好的生物活性,如抗菌,免疫抑制,促进生长等,是药物先导化合物的重要来源;同时某些次级代谢产物会对人和动物的健康造成损害,被称为真菌毒素[1]。Roquefor-tine类生物碱都是从来源于各种环境下的真菌中分离得到的,roquefortine C在高浓度时具有神经毒性,是1种常见的真菌毒素。该类化合物的结构特征是包含由吲哚吡咯二酮哌嗪骈合而成的四环母核,吲哚环的3位有异戊烯基取代,咪唑基通过单键或双键与四环母核相连。其复杂的结构特征引起了化学家的广泛兴趣,对于化合物的化学合成和生物合成研究工作正在广泛开展。 1 Roquefortine类化合物的发现 Roquefortine C(1)是第一个被分离得到具有吲哚吡咯二酮哌嗪骈合而成的四环母核结构的roquefortine类化合物。1975年日本的Ohmomo等人在1株Penicillium roqueforti中分离得到3个生物碱类化合物,分别命名roquefortine A-C。其中只有roquefortine C的结构符合本文论述的结构类型。1976年法国的Scott等人在1株青霉中再次分到了化合物(1),并阐明了其化学结构,至此以后roquefortine C多次被不同的课题组重 复分离[2-5]。1978年Ohmono再次从上述真菌中分离得到了化合物(2)[6],它是化合物(1)的3位和12位双键被还原的产物,被认为是roqueforti-ne C生物合成的前体。1994年Musuk等从来源于木薯的1株Penicillium verrucosum var.cy-clopium中分离得到化合物(3),它是化合物(1)6位N的甲醛基取代物[7]。化合物(4)是Ko-zlovsky等于1996年分离得到的,它是化合物(1)14位N的乙基化衍生物[8]。2003年Kozlovsky等从来源于俄罗斯冻土的Penicillium aureovi-rens中分离到了化合物(5),它是化合物(2)16N的羧乙基衍生物[9]。化合物(6)是2005年由BenClark等人从澳大利亚土壤中的Gymnoascusreessii中分离得到,它是该类化合物中唯一从非青霉属的真菌中分离得到的天然产物[10],它是化合物(1)17位C上发生异戊烯基化的产物。2009年Du等从1株深海来源的青霉属真菌F23-2中分离得到了4个化合物(7~10)[11-12],其中16位N上来源于乙酸甲羟戊酸途径的侧链取代以及11a位的甲氧基取代都是首次报道,也是首次从深海来源样品中发现该类化合物。化合物(11)不是天然产物,而是化合物1在酸碱作用或紫外线照射的条件下发生双键异构化生成,其双键构型是Z式[13]。 *△基金项目:高等学校博士学科点专项科研基金(20100132120026);山东省优秀中青年科学家科研奖励基金计划(BS2010HZ027); 中国海洋大学“青年英才工程”科研支持经费资助  作者简介:汤枝鹏(1987-),男,硕士研究生,主要从事海洋微生物活性次级代谢产物研究。 *通讯作者:李德海,男,副教授Tel.:0086-532-82031619;fax:0086-532-82033054;E-mail:dehaili@ouc.edu.cn  收稿日期:2012-09-18 DOI:10.13400/https://www.360docs.net/doc/8e10839158.html,ki.cjmd.2013.02.013

海洋生物碳汇研究进展

海洋生物碳汇研究进展 【摘要】海洋是地球上最大的碳库。整个海洋中蓄积的碳总量达到39×1012 t,占全球碳总量的93%,约为大气的53倍。这些碳或重新进入生物地球化学循环,或被长期储存起来;而其中一部分被永久地储存在海底。根据联合国《蓝碳》报告,地球上超过一半(55%)的生物碳或是绿色碳捕获是由海洋生物完成的,这些海洋生物包括浮游生物、细菌、海藻、盐沼植物和红树林。 【关键词】碳循环过程;浮游植物;固碳;渔业捕捞与海水养殖碳汇;中国近海 碳汇是指从大气中清除温室气体、气溶胶或温室气体前体的任何过程、活动或机制[2]。碳汇其中一条重要的途径是通过生物碳的产生和传递过程实现的,称其为生物碳汇。生物体所产生和持有的碳称为生物碳( Biogenic carbon) ,其主体是颗粒有机碳( POC,Particulate organic carbon) 和溶解有机碳( DOC,Dissolvedorganic carbon) ,这两类碳的来源基本上都是通过初级生产过程实现的。一般认为生物碳是最终可以分解并重新变成CO2的,只不过时间尺度不同,有些过程很快,如光合作用中的光呼吸过程,通常发生在几个毫秒内,而有些生物则通过沉积变成煤和石油,重新燃烧变成CO2,这个过程则要经过几百万年。由于没有定义碳汇的具体时间尺度,因此广义的来说,生物有机碳形成就是生物碳汇。但是通常意义上,人们还是认为将生物碳移入并保留在碳库的一段对人类有意义的时间,才是真正的碳汇。文章对主要的碳源和碳汇以及海洋固碳机制研究进展进行了综述,并探讨了南海碳汇渔业发展的重点研究方向。 POC 一般保留在活的生物体或死亡的生物体和碎屑中,他们最终沉积在海底或地层中,这是狭义的碳汇过程。海洋底部是地球最主要的生物碳汇区,浮游植物光合作用产生POC,再通过各种食物网过程,最终死亡的生物体或有机碎屑会通过重力作用沉降,一般称为生物泵过程。这其中主要有几条途径: ①浮游植物死亡沉降,大细胞的、群体的和链状的浮游植物死亡后快速沉降至海底; ②浮游植物通过浮游动物的摄食后,变成浮游动物粪便颗粒,快速沉降至海底; ③浮游植物产生的DOC,通过物理、化学和生物作用形成似胶体的胞外 多糖( EPS,extracellular polysaccharide) 最终吸附聚集各种有机或无机颗粒物碎屑形成大的有机颗粒物———海雪沉降至海底; ④浮游植物通过层级的捕食关系———食物链的打包最终变为大的海洋生物体,最终死亡后沉降至海底。 随着2010年哥本哈根气候会议的召开,碳的减排又一次成为世界各国关注的热点。中国政府也提出到2020年中国单位国内生产总值二氧化碳排放比2005年下降40%~45%的目标,而要实现这一目标不外乎两种手段:一是减少工业CO2排放量,二是增加自然界对人为产生的CO2的吸收。海水中的碳约为大气中碳的50倍,陆生植物碳库和大气碳库容量基本相当。虽然海洋初级生产者的含碳量不到陆生植物的1/200,但它们的固碳量基本相当,即陆生植物的净初级生产力约63~10 t(C)/a,海洋初级生产力为(37N45)~10 t(C)/a。可 见,海洋碳库在碳的全球生物地球化学循环中起着重要作用。 国际地圈生物圈计划(IGBP)的核心计划之一“全球海洋通量联合研究”(JGOFS)~过十余年的研究,认为海洋每年大约可从大气吸收人类排放CO2的1/3,近20x10 t碳。事实上这一结论是对大洋碳通量研究的结果,没有考虑陆架边缘海对海洋碳循环的贡献。近海生态系统与深海大洋相比,仅占全球海洋面积的7%~8%,其海水中储藏的碳只有3.1×10,不

各种生物活性肽

各种生物活性肽 各种生物活性肽 乳蛋白肽: 乳蛋白肽又称乳肽,是为了应付婴幼儿中发生的牛奶变态反应的需要而开发的。因此主要的应用领域是婴幼儿食品,以及有关对平衡营养食品、运动食品和普通食品进行改良之用。日本森永乳社首先使用调整奶粉的低变态反应原肽,除了8种已上市的乳蛋白肽之外,市场还出售各种等级的肽原料。在1997年首次出售了抗变态反应用的育儿奶粉。新产品则将酪蛋白的抗原性降低到10-8以下,当分子量在1000道尔顿以下时,产品几乎全部由氨基酸和低聚肽(oligopeptide)构成,其作为营养肽、用于抗变态反应的点心和婴儿食品,受到好评。而自酪蛋白还可以制出具有显著的发泡性、乳化性的多肽。 新西兰制造的乳肽在美国已有销售,主要用于健康食品、运动食品和对抗变态反应的食品。日本市场有代表性的4种肽原料中,经肠营养和育儿奶粉用的有3种(平均分子量1100、500、390道尔顿)和酪蛋白为原料的医疗用流食/运动食品1种(平均分子量350道尔顿)。 蛋清肽: 作为蛋白质中营养效价最高、氨基酸最为平衡的蛋清,其酶解后可得到蛋清肽。因为含巯基多,所以略有异味。蛋清肽能将原来得100分的平衡氨基酸很好地保持下来,由于水解使得分子量变小,所以加热不会发生凝固,因此可添加到液态食品中。 在日本,蛋清肽已市售、平均分子量1100,其水溶液呈乳状,广泛用于营养辅助食品和点心;此多肽再经高度水解后,可得到平均分子量约300道尔顿的药品级多肽,其水溶液透明,与蛋壳钙配合在营养上具有协同效果,用于婴儿食品、以及老年人食用的“银色食品”。 大豆肽: 大豆肽除具有易消化、吸收的营养效果外,还可能具有低变应原性,抑制胆固醇、促进脂质代谢,促进肠道发酵的功能等。大豆肽的特性使其利用领域相当宽广,如住院患者经常应用的经肠营养、老人应用的易消化吸收食品,对抗变态反应的食品,运动食品和有恢复疲劳等作用的健康食品。 玉米肽: 日本开发了以玉米蛋白为原料制成的肽——“peptino”。玉米蛋白质与其他蛋白质的氨基酸组成相比,富含缬氨酸、亮氨酸、异亮氨酸等支链氨基酸和丙氨酸。对运动后疲劳恢复、改善肝脏病、防止醉酒、肠功能障碍有作用。目前韩国制药公司以醒酒饮料的形式上市,其对中性脂肪的抑制效果等功能在研究之中。

海洋真菌研究进展综述

海洋真菌研究进展综述 引言: 海洋是生命的起源地, 占地球表面积的71%, 它具有十分独特的生态环境, 尤其是深海,具有高温(低温)、高压、低光照、寡营养等特点。海洋环境的多样性和特殊性共同造就了海洋微生物种类的多样性和特殊性。海洋真菌作为海洋微生物的重要组成部分,在药物合成、石油降解、环境修复等方面具有重要作用。海洋真菌既具有真核生物典型的蛋白修饰性能,又具有微生物操作上简便、快速的优点,作为新的真核生物表达系统具有巨大的潜能和广阔的应用前景。 本文主要从海洋真菌的研究现状,海洋真菌在药物合成、石油降解、环境修复中的作用等方面分析其重要性,并详述目前已解决的问题和尚存的问题,预测今后的发展趋势,希望能便于他人了解该课题的研究,助于其尽快找到切入点。 正文: 一、海洋真菌研究现状 自1929年发现青霉素G 来.陆栖真菌已成为主要的医药产品 的来源。但是对海洋真菌研究相对很少。直到1991年,只对321种海洋真菌进行了相关研究。相比较,同期研究过的陆栖真菌已达69 000种。在这一领域最早期的研究报道是由一种木素色子囊菌Leptosphaeria oraemaris培养物中分到的一个小内脂Leptosphaerin,

该菌常见栖息在水淹的木头表面。为比较同一环境组种间的化学相似性.Stragnman 1987年比较了l21株木素色子囊菌的抗真菌活力,发现所有的27株菌除了产Obioninene和Oreamann外,都产倍半萜二元醇大镰刀孢菌素,另外其中4株苗还产生抑制性物质。 1991年Pooh 等从以前未进行过研究的Kirschstemothelia 中分离到一系列化学结构上类似的萘醌,二聚体Kirsehsteinin和两种新的氯化的二苯酯。二聚体Kirschsteinin的两个不对张单体之间通过亚乙基桥连结,这类化合物对金黄色葡萄球菌和枯草芽孢杆菌有抑制作用,并对几种肿瘤细胞系细胞有毒性。1991年,日本Sugano 报道从海洋动物中分离了一批能产生新化合物的真菌。这类化台物具有细胞毒性,并显示对神经生长因子的刺激作用。 除了从海洋真菌培养物中分离新的医药品和代谢产物之外,近几年来,对海洋真菌所产酶类的分离与克隆已有所报道,如Burtseva 报道从海洋丝状真菌Chaetomrum indicum液体培养物中分离到多种糖苷酶和葡聚糖酶。 鉴于海洋真菌重要性,中国科学院海洋研究所和山东大学微生物技术国家重点实验事近年来已开展海洋真菌的研究工作。对海洋真菌的分离、培养及其代谢产物的筛选等研究工作目前正在进行,已从深海海底沉积物样品中分离到若干株海洋真菌,目前正在对菌株的生长特性与低温水解酶酶学性质等进行研究,进一步分离具生物活性的次级代谢产物的工作正在进行中【1】。 二、海洋真菌在药物合成方面的作用

相关文档
最新文档