最短路径问题

合集下载

最短路径问题介绍

最短路径问题介绍

最短路径问题介绍全文共四篇示例,供读者参考第一篇示例:最短路径问题是指在一个带有边权的图中,寻找连接图中两个特定节点的最短路径的问题。

在实际生活中,最短路径问题广泛应用于交通运输、通信网络、物流配送等领域。

通过解决最短路径问题,可以使得资源的利用更加高效,节约时间和成本,提高运输效率,并且在紧急情况下可以迅速找到应急通道。

最短路径问题属于图论中的基础问题,通常通过图的表示方法可以简单地描述出这样一个问题。

图是由节点和边组成的集合,节点表示不同的位置或者对象,边表示节点之间的连接关系。

在最短路径问题中,每条边都有一个权重或者距离,表示从一个节点到另一个节点移动的代价。

最短路径即是在图中找到一条路径,使得该路径上的边权和最小。

在解决最短路径问题的过程中,存在着多种算法可以应用。

最著名的算法之一是Dijkstra算法,该算法由荷兰计算机科学家Edsger W. Dijkstra于1956年提出。

Dijkstra算法是一种贪心算法,用于解决单源最短路径问题,即从一个给定的起点到图中所有其他节点的最短路径。

该算法通过维护一个距离数组和一个集合来不断更新节点之间的最短距离,直到找到目标节点为止。

除了Dijkstra算法和Floyd-Warshall算法外,还有一些其他与最短路径问题相关的算法和技术。

例如A*算法是一种启发式搜索算法,结合了BFS和Dijkstra算法的特点,对图中的节点进行评估和排序,以加速搜索过程。

Bellman-Ford算法是一种解决含有负权边的最短路径问题的算法,通过多次迭代来找到最短路径。

一些基于图神经网络的深度学习方法也被应用于最短路径问题的解决中,可以获得更快速和精确的路径搜索结果。

在实际应用中,最短路径问题可以通过计算机程序来实现,利用各种算法和数据结构来求解。

利用图的邻接矩阵或者邻接表来表示图的连接关系,再结合Dijkstra或者Floyd-Warshall算法来计算最短路径。

最短路径问题

最短路径问题

A
B
4、如图所示,M、N是△ABC边AB与AC上 两点,在BC边上求作一点P,使△PMN的周 长最小。
A
M
B
P
M ’
N C
本节课你有什么收获?
①学习了利用轴对称解决最短路径问题 ②感悟和体会转化的思想
补偿提高
如图,一个旅游船从大桥AB 的P 处前往山 脚下的Q 处接游客,然后将游客送往河岸BC 上,再返 回P 处,请画出旅游船的最短路径.
A'
M
N
M′ a b
N′
B
∴AM+MN+BN=AA′+A′B, AM′+M′N′+BN′=AA′+A′N′+BN′.
在△A′N′B中,由线段公理知A′N′+BN′ >A′B,
∴AM′ +M′N′ +BN′ > AM+MN+BN.
总结归纳:
在解决最短路径问题时,我们 通常利用轴对称、平移等变换,把 较复杂的问题转化为容易解决的问 题,从而作出最短路径的选择。
新课引入
我们把研究关于“两点之间,线 段最短” “垂线段最短”等问题, 称它们为最短路径问题.最短路径问 题在现实生活中经常碰到,今天我们 就通过几个实际问题,具体体会如何 运用所学知识选择最短路径.
第十三章 轴对称
13.4课题学习 最短路径问题
问题1 相传,古希腊亚历山大城里有一位久负盛名 的学者,名叫海伦.有一天,一位将军专程拜访 海伦,求教一个百思不得其解的问题:
参考右图,利用“两点之间,线段最短”可以解决.
解:
A
A'
M
a
b
N
B
如图,沿垂直于河岸的方向平移A到A′,使AA′等 于河宽,连接A′B交河岸于点N,在点N处造桥MN,此 时路径AM+MN+BN最短.

最短路径问题 课件

最短路径问题 课件
课题学习 最短路径问题
知识点1:两点在直线异侧时的最短路径问题 【例1】 如图1-13-30-1,在直线l上找一点P,使得 PA+PB的和最小.
解:答图13-30-1,点P即为所求.
知识点2:两点在直线同侧时的最短路径问题 【例2】 如图1-13-30-3,已知直线l和l外两点A,B, 点A,B在l同侧,求作一点P,使点P在直线l上,并且 使PA+PB最短.
解:如答图13-30-6,作点A的对称点A′, 连接A′B,与直线l相交于点C,连接AC, 点C即为所求.
6. 如图1-13-30-9,正方形网格中每个小正方形边 长都是1.在直线l上找一点P,使PB+PC的值最小.
略.
7. 如图1-13-30-10,在平面直角坐标系中,点 A(4,4),B(2,-4).在y轴上求作一点P,使 PA+PB的值最小.(不写作法,保留作图痕迹)
略.
8. 如图1-13-30-11,∠XOY内有一点P,请在射线OX上 找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.
解:如答图13-30-7,作点P关于OX对称的点 P1,关于OY对称的点P2,连接P1P2,交OX, OY于点M,N,则M,N两点即为所求.
9. 如图1-13-30-12,在△ABC中,AB=AC,AD是BC边 上的高,P是AB边上的一点,请在高AD上找一点E, 使得△PEB的周长最短.
解:作图略, 作点A关于直线l的对称点A′, 连接A′B与直线l交于点P, 则P点即为所求.
4. 如图1-13-30-7,直线l旁有两点A,B,在直线上 找一点CA,B两点的距离相等.
解:如答图13-30-5,点C,点D即为所求.
5. 如图1-13-30-8,l为某河流的南岸线,一天傍晚 某牧童在A处放牛,欲将牛牵到河边饮水后再回到家 B处,牧童想以最短的路程回家.请你在找中画出牛 饮水C的位置.

最短路径问题及其变形

最短路径问题及其变形

最短路径问题及其变形
最短路径问题是指给定一个图和起点、终点,求出起点到终点的路径中具有最小权重和的路径的问题。

可以通过一些经典算法来解决,如Dijkstra算法、Bellman-Ford算法和Floyd-Warshall算法。

最短路径问题的变形可以有很多种,下面介绍几个常见的变形:
1. 单源最短路径问题:给定一个图和一个起点,求出起点到图中所有其他节点的最短路径。

这个问题可以通过Dijkstra算法
或Bellman-Ford算法求解。

2. 多源最短路径问题:给定一个图和多个起点,求出每个起点到图中所有其他节点的最短路径。

这个问题可以通过多次运行Dijkstra算法或Floyd-Warshall算法求解。

3. 含有负权边的最短路径问题:给定一个图,其中可能存在负权边,求出起点到终点的最短路径。

如果图中不存在负权回路,可以使用Bellman-Ford算法求解,如果存在负权回路,则无
法找到最短路径。

4. 最长路径问题:与最短路径问题相反,求出起点到终点的路径中具有最大权重和的路径。

可以通过将图中的权重取反来将最长路径问题转化为最短路径问题求解。

5. 限制路径中经过的节点或边数的最短路径问题:给定一个图和一个限制条件,如经过的节点数或经过的边数等,求出满足
限制条件的最短路径。

可以通过修改Dijkstra算法或Floyd-Warshall算法,增加限制条件来求解。

以上仅为最短路径问题的一些常见变形,实际问题可能还有其他的变形。

解决这些变形问题的关键是根据具体情况修改或选择合适的算法,以及定义适当的权重和限制条件。

最短路径问题

最短路径问题

最短路径问题【基础知识】最短路径问题是一个经典问题,旨在寻找图中两点之间的最短路径,具体有以下几种:1. 确定起点的最短路径问题——即已知起始点,求最短路径;2. 确定终点的最短路径问题;3. 确定起点终点的最短路径问题;4. 全局最短路径问题。

这些问题涉及知识有“两点之间线段最短”、“垂线段最短”、“三角形三边之和大于第三边”、“轴对称”、“平移旋转”等。

问题图形在直线l上求一点P,使得PA+PB值最小在直线l上求一点P,使得PA+PB值最小(将军饮马问题)在直线l1、l2上分别求点M、N,使得∆PMN的周长最小直线m//n,在m、n上分别求点M、N,使MN⊥m,且AM+MN+BN的值最小在直线l上求两点M、N(M在左),使MN=a,并且AM+MN+BN的值最小在直线l1、l2上分别求点M、N,使得四边形PQMN的周长最小在直线l1上求点A,在l2上求点B,使PA+PB最小点A、B分别为直线l1、l2上定点,在l1、l2上分别求点N、M,使AM+MN+NB在直线l上求一点P,使|PA−PB|的值最小在直线l上求一点P,使|PA−PB|的值最大在直线l上求一点P,使|PA−PB|的值最大若∆ABC中每一个内角都小于120°,在∆ABC内求一点P,使得PA+PB+PC的值最小)如图,在△ABC 中,AB =AC =10,tanA =2,BE ⊥AC 于点E ,D 是线段BE 上的一个动点,则CD+√55BD 的最小值是 .如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC =1,BD =2,点P 为弧AB 上一动点,求的最小值.。

最短路径问题

最短路径问题

A
O
N
3. 两定两动型最值
例:在∠MON的内部有点A和点B,在OM 上找一点C,在ON上找一点D,使得四边形 ABCD周长最短.
M
A
B
O
N
例:(造桥选址)将军每日需骑马从军营出发,去 河岸对侧的瞭望台观察敌情,已知河流的宽度为30 米,请问,在何地修浮桥,可使得将军每日的行程 最短?
A
C
D
B
4. 垂线段最短型
最短路径问题
1.两定一动型:两定点到一动 点的距离和最小
原理:两点之间线段最短。
例:在定直线l上找一个动点C,使动点C到两 个定点A与B的距离之和最小, 即CA+CB的和最小.
B A
l
2.两动一定型 例:在∠MON的内部有一点A,在OM上找 一点B,在ON上找一点C,使得△BAC周长 最短.
M
A
D
E
B
C
3.正方形ABCD的边长为8,M在DC上,且 DM=2,N是AC上的一动点,DN+MN的最小值 为————
课堂小结
通过本节课的学习,
你有哪些收获 ?作业CD NhomakorabeaA
B
典型例题
1.如图,在等边△ABC中,AB = 6,AD⊥BC, E是AC上的一点,M是AD上的一点,且AE = 2, 求EM+EC的最小值
A
A
E M
E
M
H
B
D
CB
D
C
2.正方形ABCD的面积为12, ABE是等边三角 形,点E在正方形ABCD内,在对角线AC上有一 点P,使PD+PE的和最小,则这个最小值是
例1:在∠MON的内部有一点A,在OM上找一点 B,在ON上找一点C,使得AB+BC最短.

最短路径问题 ppt课件

最短路径问题 ppt课件

12
图论及其应用 作业 用Dijkstra算法求出下图中从顶点a到其它所有 顶点的最短路径及及长度。
13
图论及其应用
有向图中求最短路径的Dijkstra算法
设Sj是带权有向图G中自顶点1到顶点j的最短有向路的长度 步骤1:置P={1},T={2,3,…,n}且S1=0,Sj=w1j, j=2,3,…,n 。 步骤2:在T中寻找一点k,使得Sk=min{Sj},置P=P{k}, T=T- {k}。若T=,终止;否则,转向步骤3。 步骤3:对T中每一点j,置Sj=min {Sj ,Sk+ wkj},然后转向步 骤2。 算法经过n-1 次循环结束。
6
1-6-8-B
6-8-B
13
10
5
图论及其应用
指定点到其它所有点的最短路径
解决这一问题最著名的方法是 Dijkstra算法,这个算法是由荷 兰计算机科学教授Edsger W.Dijkstra在1959年提出的。 他在1972年获得美国计算机协 会授予的图灵奖,这是计算机 科学中最具声望的奖项之一。
最终,起点上方的最短路线及权值即为起点到终点的最 短路线及长度。
3
图论及其应用
例 使用回溯法求下图中结点1到结点10的最短路径
2-6-9-10 600
1-4-6-9-10 650
4-6-9-10 500
6-9-10
300
9-10
100 5-8-10
400
8-10
150
3-5-8-10 600
7-8-10 275
定义2 已知矩阵A=(aij)m n ,B =(bij)mn,规定C=AB=(dij)mn,
其中dij=min(aij, bij)

最短路径的十二个基本问题

最短路径的十二个基本问题
原理
两点之间线段最短. PA+PB 最小值为 A B'.
原理
分别作点 P 关于两直 线的对称点 P'和 P'', 在直线 l1 、l2 上分别求 连 P'P'',与两直线交 点 M、N,使△PMN 的 点即为 M,N. 周长最小.
两点之间线段最短. PM+MN+PN 的最小值为 线段 P'P''的长.
【十二个基本问题】
【问题 1】
作法
图形
原理
连 AB,与 l 交点即为
P.
在直线 l 上求一点 P,
使 PA+PB 值最小.
【问题 2】“将军饮马”
作法
作 B 关于 l 的对称点
B'连 A B',与 l 交点
在直线 l 上求一点 P,
即为 P.
使 PA+PB 值最小.
【问题 3】
作法
图形 图形
两点之间线段最短. PA+PB 最小值为 AB.
原理
将点 A 向下平移 MN 的
长度单位得 A',连 A'
B,交 n 于点 N,过 N 作
直线 m ∥ n ,在 m 、n , NM⊥ m 于 M.
上分别求点 M、N,使
MN⊥ m ,且 AM+MN+BN
的值最小.
【问题 6】
作法
图形
将点 A 向右平移 a 个
长度单位得 A',作 A'
关于 l 的对称点 A'',连 在直线 l 上求两点 M、N
对称点 B',连 A'B' l2 上一定点,在 l2 上求 交l2 于 M,交 l1 于 N.
点 M,在 l1 上求点 N,
使 AM+MN+NB 的 值 最
小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
l
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
你能要自己的语言重新描述一下问题吗?
探究 将A,B 两地抽象为两个点,将河l 抽象为一条直线.
C
你能要自己的语言重新描述一下问题吗? C是l上一个动点, 当点C在l的什么位置时,AC+BC最小?
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小?
探究 相传,古希腊亚历山大里亚城里有一位久负盛名的学者, 名叫海伦.有一天,一位将军专程拜访海伦,求教一个百 思不得其解的问题: 从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地 .到河边什么地方饮马可使他所走的路线全程最短?
A
B
l
将军饮马问题
精通数学、物理学的海伦稍加思索,利用轴对称的 知识回答了这个问题.这个问题后来被称为“将军饮马问题” 你能将这个问题抽象为数学问题吗?
拓广探索
如图,牧马人从A地出发,先到草地边某一处牧马,再 到河边饮马,然后回到B处,请画出最短路径 .
一开始的时候我们就讨论过点A,B在直线异侧的情况, 你还记得是怎么做的吗? 连接两点,交点就是所求 同侧的情况也能直连接两点吗?不行
探究
如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
能不能把点在同侧的问题转化 为点在异侧的问题呢? 提示:将点B“移”到l 的另一侧 B′处,得满足直线l 上的任意一 点C,都保持CB 与CB′的长度相 等 你.想到怎么做了吗?
如图,A、B两地在一条河 的两岸,现要在河上建一座 桥MN,桥造在何处才能使 从A到B的路径AMNB最短 ?(假设河的两岸是平行的 直线,桥要与河垂直)
你能把这个问题抽象成一 个数学问题吗?
抽象
可以把河的两岸看成两条平行线a和b, N为直线b上的一个动点,MN 垂直于直线b,交直线a于点M, 当点N在直线b的什么位置时,AM+MN+NB最小?
复习巩固
如图,在△ABC 中,∠ABC =50°,∠ACB =80°,延长 CB至D,使DB =BA,延长BC 至E,使CE =CA,连接 AD,AE .求∠D,∠E,∠DAE 的度数 .
复习巩固 如图,AD =BC,AC=BD,求证:△EAB 是等腰三角形 .
复习巩固
综合应用
试确定如图所示的正多边形的对称轴的条数,一般地 ,一个正n边形有多少条对称轴?
如图,在直角三角形BCD中,若点M、N分别是线段BD、BC 上的两个动点,请在图上找到CM+MN最小时,M,N点的位 置提.示:试一试对称.
答案:作点C关于BD的对称点C ’ ,然后过C’作BC的垂线,交BD 于M,交BC于N.
总结
这节课我们学到了什么? 将军饮马问题
条件特点 简称为:两定一动
直线同侧的两个定点和直线上一个动点
分析
这又是求线段和最小的问题 ,你能想到什么呢?
能变成这种基 本类型就好了
AM,MN,NB这三条线段的长度都会变化吗? 只有AM和NB会变,MN是不变的. 所以当AM+NB最小时,AM+MN+NB最小.
思考
怎么把这个问题转化为基本类型呢?
将AM沿着垂直于河岸的方向 平移一个河宽的距离到A'N.
现在就变成基本类型了.
最短路径问题
制作人:睿科知识云
知识回顾 如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近 ?你的理由是什么?
选第②条 两点之间,线段最短
两点在一条直线异侧 已知:如图,A,B在直线L的两侧,在l上求一点P ,使得PA+PB最小.
这是为什么呢? 两点之间,线段最短
连接AB,线段AB与直线l的交点P ,就是所求.
提示2:分别作A点关于OM, ON的对称点.
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 答.案:分别作点A关于OM ,ON的对称点A′,A″;连 接A′,A″,分别交OM, ON于点B、点C,则点B、 点C即为所求.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M ,同时向 A,B 两个居民小区送电 . (1) 如果居民小区 A,B 在主干线 l 的两旁,如图(1)所示 ,那么分支点 M 在什么地方时总线路最短?在图上标注位置, 并说明理由.
例题
某供电部门准备在输电干线上连接一个分支线路,分支点为 M
将军饮马问题的变式
如图,牧区内有一家牧民,点A处有一个马厩,点B处是他的家 , 是草地的边沿, 是一条笔直的河流 . 每天,牧民要从马厩 牵出马来,先去草地上让马吃草,再到河边饮马,然后回到家B 处 . 请在图上画出牧民行走的最短路线 ( 保留作痕迹 ) .
将军饮马问题的变式 如图,已知∠AOB,P是∠AOB内部的一个定点,点E、F分别 是OA、OB上的动点, (1)要使得△PEF的周长最小,试在图上确定点E、F的位 置 ; (2)若OP=4,要使得△PEF的周长为4,则∠AOB=_____°.
AC ′+BC ′= AC ′+B ′C ′, ∵ AC ′+B ′C ′>AB ′, ∴ AC ′+BC ′> AC +BC, 即AC+BC最短.
归纳总结
将军饮马问题
条件特点 简称为:两定一动 直线同侧的两个定点和直线上一个动点 问题特点 求线段和最小 求解思路 利用轴对称,化折为直 求解原理 两点之间,线段最短
问题特点 求线段和最小
求解思路 利用轴对称,化折为直
求解原理 两点之间,线段最短
总结 条件特点
这节课我们还学到了什么? 造桥选址问题
平行间的垂线段的端点到两侧定点的距离之和
问题特点 求线段和最小
求解思路 利用平移,转移线段
求解原理 两点之间,线段最短
美术字与轴对称
利用轴对称设计图案
利用轴对称设计图案
归纳总结 条件特点
造桥选址问题
平行间的垂线段的端点到两侧定点的距离之和
问题特点 求线段和最小
求解思路 利用平移,转移线段
求解原理 两点之间,线段最短
将军饮马问题的变式
已知:如图A是锐角∠MON内部任意一点,在∠MON的两边 OM,ON上各取一点B,C,组成三角形,使三角形周长最小 . 提示1:利用轴对称,化折为直.
综合应用
如图,从图形Ι 到图形Ⅱ是进行了平移还是轴对称?如果 是轴对称,找出对称轴;如果是平移,是怎样平移?
综合应用
如图,AD是△ABC 的角平分线,DE,DF 分别是△ABD 和△ACD的高 . 求证:AD 垂直平分EF .
综合应用
如图,在等边三角形 ABC 的三边上,分别取点D,E,F ,使AD =BE =CF . 求证△DEF 是等边三角形 .
怎么确定取最小时的N点呢?
你能证明这个结论吗?
连接A’B,与直线b的交点就 是所求.
证明 证明:如图,在直线b上取一个不与N重合的点N’,作 M’N’⊥a于点M’,连接AM’,BN’,A’N’. 由平移的性质可知, AM’=A’N’,AM=A’N ∵A’N’+N’B>A’B ∴AM’+N’B>AM+NB ∴AM’+N’B>AM+NB ∴AM’+M’N’+N’B>AM+MN+NB
探究 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点 ,当点C 在l 的什么位置时,AC 与CB 的和最小?
作法:
作点B 关于直线l 的对称点B ′;
B’
你能证明此时 AC+BC最短吗?
连接AB ′,与直线l 相交于点C 则点.C 即为所求.
证明 证明此时AC+CB 最短
证明:如图,在直线l 上任 取一点C ′(与点C 不重合) ,连接AC ′,BC ′,B ′C ′. 由轴对称的性质知, BC =B ′C,BC ′=B ′C ′. ∴AC +BC= AC +B ′C = AB ′,
,同时向 A,B 两个居民小区送电 .
(2) 如果居民小区 A,B 在主干线 l 的同旁,如图(2) 所示
,那么分支点 M 在什么地方时总线路最短?在图上标注位置,
并说明理由 .
作A的对称
点可以吗

B’
练习
如图,P,Q是△ABC的边AB,AC上的两定点,在BC上求 作一点M,使△PMQ的周长最短.
提示:这本质上是“两定一动 ” 求线段和最小的将军饮马问题 .
练习 如图,一个旅游船从大桥AB的P 处前往山脚下的Q 处接游客,然 后将游客送往河岸BC上,再返回P 处,请画出旅游船的最短路径 . 提示1:先把问题抽象为数学问题.
提示2:这本质上是“两定一动” 求线段和最小的将军饮马问题.
造桥选址问题
拓广探索
在纸上画五个点,使任意三个点组成的三角形都 是等腰三角形 . 这五个点应该怎样画?
拓广探索
如图,△ABC 是等边三角形,BD 是中线,延长BC 至 E,使CE =CD . 求证DB =DE .
拓广探索
如图,△ABC 是等腰三角形,AC =BC,△BDC 和△ACE 分别为等边三角形,AE 与BD 相较于F,连接CF 并延长 ,交AB 于点G . 求证:G 为AB 的中点 .
答案:(2)30°.
角内一点出发的折线
如图,点A是∠MON 内的一点,在射线OM 上作点 P,使 PA与点P 到射线ON 的距离之和最小 .
提示:试一试对称.
答案:作点A关于OM 的对
称点A’,然后过A’作ON
的垂线,交OM 于P,交ON
于Q.
相关文档
最新文档