二次函数喷泉类问题(带解析及详细答案)

合集下载

2023年中考数学复习难点突破专题21 二次函数与实际问题:喷水问题(含答案)

2023年中考数学复习难点突破专题21 二次函数与实际问题:喷水问题(含答案)

专题21 二次函数与实际问题:喷水问题一、单选题1.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为( )A .0.5米B .2米C .米D .0.85米2.某公园有一个圆形喷水池,喷出的水流呈抛物线状,一条水流的高度()h m 与水流时间()t s 之间的解析式为2305h t t =-,那么水流从抛出至落到地面所需要的时间是( )A .8sB .6sC .4sD .2s3.如图,始终盛满水的圆柱体水桶水面离地面的高度为20cm ,如果在离水面竖直距离为h (单位:cm )的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s (单位:cm )与h的关系式为s =10cm ,则小孔离水面的距离是( )A .14cmB .15cmC .16cmD .18cm4.某广场有一个小型喷泉,水流从垂直于地面的水管QA喷出,0A长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到0的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A.1米B.32米C.2米D.138米5.如图,某幢建筑物从2.25米高的窗口A用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M离墙1米,离地面3米,则水流下落点B离墙的距离OB是( )A.2.5米B.3米C.3.5米D.4米6.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米7.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.10s8.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为2305h t t=-,那么水流从喷出至回落到地面所需要的时间是()A.6s B.4s C.3s D.2s9.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m二、解答题10.某幢建筑物从10米高的窗户A用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B离墙的距离11.某游乐园要建造一个直径为20m的圆形喷水池,计划在喷水池周边安装一圈喷水头,使喷出的水柱距池中心4m处达到最高,最大高度为6m.如图,以水平方向为x轴,喷水池中心为原点建立直角坐标系. (1) 若要在喷水池的中心设计一个装饰物,使各方向喷出的水柱在此汇合,则这个装饰物的高度为多少,请计算说明理由.(2)为了增加喷水池的观赏性,游乐园新增加了一批向上直线型喷射的喷水头,这些喷水头以水池为圆心,分别以1.5米,3米,4.5米,6米,7.5米为半径呈圆形放置,为了保证喷水时互不干扰,防止水花四溅,且所有直线喷水头射程高度均为一致,则直线型喷水头最高喷射高度为多少米?(假设所有喷水头高度忽略不计).【答案】(1)103;(2)1432412.如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA,顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y(m)与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭; (1)求抛物线的函数关系式,并确定喷水装置OA 的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?13.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上的水珠高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是:236(04)2y x x x =-+≤≤,请求出当水珠的高度达到最大时,水珠与喷头的水平距离是多少?最大高度是多少?14.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.15.如图是某公园一喷水池(示意图),在水池中央有一垂直于地面的喷水柱,喷水时,水流在各方向沿形状相同的抛物线落下.若水流喷出的高度y (m)与水平距离x (m)之间的函数关系式为y =-(x -1)2+2.25.(1)求喷出的水流离地面的最大高度;(2)求喷嘴离地面的高度;(3)若把喷水池改成圆形,则水池半径至少为多少时,才能使喷出的水流不落在水池外?16.绣山公园入口处的喷水池造型如下图,水池正中心垂直于水面处安装一个出水管OC,OC高1米,水从水管OC顶端C处向四周喷洒,水流向各个方向沿形状相同的抛物线落下,为庆祝国庆,公园将喷泉设计成水流在离OC为1米处达到距水面最大高度2米的造型,(1)求喷洒的半径,(2)若水流喷出的水形状与(1)相同,喷洒的半径为3米,求此时水流达到的最大高度,17.(1) 抛物线y=ax2+c经过点A (2,3),点B (-1,-3)两点,求该抛物线的解析式.(2) 如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3 m,水柱落地处离池中心3 m,水管应多长?18.如图,斜坡AB 长10米,按图中的直角坐标系可用5y =+表示,点A ,B 分别在x 轴和y 轴上.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛线可用213y x bx c =-++表示.(1)求抛物线的表达式及顶点坐标;(2)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树?19.某公园广场上新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA (如图)喷水能力最强,水流从A 处喷出,在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度()ym 与水平距离()x m 之间符合二次函数关系式2734y x x =-++()0x >.(1)求水流喷出的最大高度是多少米?此时最高处离喷水装置OA 的水平距离为多少米?(2)现若在音乐喷泉四周摆放花盆,不计其他因素,花盆需至少离喷水装置OA 多少米外,才不会被喷出的水流击中?20.用各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆体水桶水面离地面的高度为H (单位:m ),如果在离水面竖直距离为h (单校:cm )的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系为s2=4h(H—h).应用思考:现用高度为20cm的圆柱体望料水瓶做相关研究,水瓶直立地面,通过连注水保证它始终盛满水,在离水面竖直距高h cm处开一个小孔.(1)写出s2与h的关系式;并求出当h为何值时,射程s有最大值,最大射程是多少?(2)在侧面开两个小孔,这两个小孔离水面的竖直距离分别为a,b,要使两孔射出水的射程相同,求a,b之间的关系式;(3)如果想通过垫高塑料水瓶,使射出水的最大射程增加16cm,求整高的高度及小孔离水面的竖直距离.21.为庆祝新中国成立70周年,国庆期间,北京举办“普天同庆•共筑中国梦”的游园活动,为此,某公园在中央广场处建了一个人工喷泉,如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线.如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.22.把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度h(米)适用公式2=-h t t205 ()1经过多少秒后足球回到地面?()2经过多少秒时足球距离地面的高度为10米23. 如图1,已知水龙头喷水的初始速度v 0可以分解为横向初始速度v x 和纵向初始速度v y ,θ是水龙头的仰角,且v 02=v x 2+v y 2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A 在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA 为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v 0米/秒后的运动路径可以看作是抛物线,点M 是运动过程中的某一位置.忽略空气阻力,实验表明:M 与A 的高度之差d (米)与喷出时间t (秒)的关系为d=v y t-5t 2;M 与A 的水平距离为v x t 米.已知该水流的初始速度v 0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x 和纵向初始速度v y ;(2)用含t 的代数式表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围); (3)水流在山坡上的落点C 离喷射点A 的水平距离是多少米?若要使水流恰好喷射到坡脚B 处的小树,在相同仰角下,则需要把喷射点A 沿坡面AB 方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)24.如图,斜坡AB 长10米,按图中的直角坐标系可用5y =+表示,点A 、B 分别在x 轴和y 轴上,在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示. (1)求抛物线的函数关系式;(2)求水柱离坡岗AB 的最大高度.三、填空题25.某幢建筑物,从5米高的窗口A用水管向外喷水,喷的水流呈抛物线,抛物线所在平面与墙面垂直(如图所示),如果抛物线的最高点M离墙1米,离地面203米,则水流下落点B离墙距离OB是_____m.26.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D离池中心A处3m,则水管AB的长为_____m.27.如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端A点安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为3m处达到最高,高度为5m,水柱落地处离池中心距离为9m,则水管的长度OA是_____m.28.体育公园的圆形喷水池的中央竖直安装了一个柱形喷水装置OA,A处为喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下(如图1).如果曲线APB表示的是落点B离点O最远的一条水流(如图2),水流喷出的高度y(米)与水平距离x(米)之间的关系式是29y x4x(x0)4=-++>,那么圆形水池的半径至少为______米时,才能使喷出的水流不至于落在池外.29.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图,),于是好奇的小王同学进行了实地测量研究,当小王用一定的力按住顶部A下压如图,位置时,洗手液从喷口B流出,路线近似呈抛物线状,且a=118-.洗手液瓶子的截面图下部分是矩形CGHD.小王同学测得:洗手液瓶子的底面直径GH=12cm,喷嘴位置点B距台面的距离为16cm,且B、D、H三点共线,小王在距离台面15.5cm处接洗手液时,手心Q到直线DH的水平距离为3cm,若小王不去接,则洗手液落在台面的位置距DH的水平距离是________cm.30.如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA =1.25m ,A 处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O ,直径为线段CB .建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x 轴的距离为2.25m ,到y 轴的距离为1m ,则水落地后形成的圆的直径CB =_____m .31.某广场有一个半径8米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA 的顶端A 处汇合,水柱离中心O 点3米处达最高5米,如图所示建立平面直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8的他站立时必须在离水池中心O 点______米以内.32.如图,在喷水池的中心A 处竖直安装一根水管AB ,水管的顶端安有一个喷水头,使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C ,高度为3m ,水柱落地点D 离池中心A 处3m ,以水平方向为x 轴,建立平面直角坐标系,若选取点A 为坐标原点时的抛物线的表达式为()()2313034y x x =--+≤≤,则选取点D 为坐标原点时的抛物线表达式为______,其中自变量的取值范围是______,水管AB 的长为______m .专题21 二次函数与实际问题:喷水问题一、单选题1.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()A.0.5米B.米C.米D.0.85米2【答案】A【分析】根据题意建立直角坐标系,点(0,2.5)、(2,2.5)、(0.5,1)都在抛物线上,设抛物线解析式,列方程组,求解析式,根据解析式很容易就可求出抛物线的顶点坐标,纵坐标的绝对值即为绳子的最低点距地面的距离.【详解】以A为原点,AC所在直线为x轴,AB所在直线为y轴,建立如图所示的直角坐标系.设抛物线的函数关系式为:2y ax bx c =++.将(0,2.5)、(2,2.5)、(0.5,1)代入2y ax bx c =++得: 2.542 2.50.250.51c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得:242.5a b c =⎧⎪=-⎨⎪=⎩,,抛物线的表达式为:224 2.5y x x =-+;,2224 2.52(1)0.5y x x x =-+=-+,,抛物线的顶点坐标为(1,0.5),,绳子的最低点距地面的距离为0.5米.故选:A .【点睛】本题主要考查了二次函数的应用,本题关键在于正确选择原点建立直角坐标系,正确确定有关点的坐标,求出抛物线解析式.2.某公园有一个圆形喷水池,喷出的水流呈抛物线状,一条水流的高度()h m 与水流时间()t s 之间的解析式为2305h t t =-,那么水流从抛出至落到地面所需要的时间是( )A.8s B.6s C.4s D.2s【答案】B【分析】求出解析中h=0时t的值即可得.【详解】在h=30t−5t2中,令h=0可得30t−5t2=0,解得:t=0或t=6,所以水流从抛出至落到地面所需要的时间是6s,故选:B.【点睛】本题主要考查二次函数的应用,解题的关键是明确解析式中水流落到地面所对应的函数值为0.3.如图,始终盛满水的圆柱体水桶水面离地面的高度为20cm,如果在离水面竖直距离为h(单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s=10cm,则小孔离水面的距离是()A.14cm B.15cm C.16cm D.18cm【答案】B【分析】设垫高的高度为m,写出此时s2关于h的函数关系式,根据二次函数的性质可得答案.【详解】解:设垫高的高度为m,则s=变形得:s2=4h(20+m-h)=-4(h−202m+)2+(20+m)2,,当h=202m+cm时,s max=20+m=20+10,,m=10cm,此时h=202m+=15cm,,垫高的高度为10cm,小孔离水面的竖直距离为15cm,故选B.【点睛】本题考查了二次函数在实际问题中的应用,理清题中的数量关系并明确二次函数的性质是解题的关键.4.某广场有一个小型喷泉,水流从垂直于地面的水管QA喷出,0A长为1.5m.水流在各个方向上沿形状相同的抛物线路径落到地面上,某方向上抛物线路径的形状如图所示,落点B到0的距离为3m.建立平面直角坐标系,水流喷出的高度y(m)与水平距离x(m)之间近似满足函数关系y=ax2+x+c(a≠0),则水流喷出的最大高度为()A.1米B.32米C.2米D.138米【答案】C 【分析】由题意可得,抛物线经过()0,1.5和3,0,把上述两个点坐标代入二次函数表达式,可求出a 和c 的值,则抛物线解析式化为顶点式,即可求出结果;【详解】由题意可得,抛物线经过()0,1.5和3,0,把上述两个点坐标代入二次函数表达式得: 1.5930c a c ⎧=⎨++=⎩, 解得:1232a c ⎧=-⎪⎪⎨⎪=⎪⎩,,函数表达式()2213112222y x x x =-++=--+, ,0a <,故函数有最大值,,当1x =时,y 取最大值,此时2y =.故答案选C .【点睛】本题主要考查了二次函数的应用,准确计算是解题的关键.5.如图,某幢建筑物从2.25米高的窗口A 用水管向外喷水,喷的水流呈抛物线型(抛物线所在平面与墙面垂直),如果抛物线的最高点M 离墙1米,离地面3米,则水流下落点B 离墙的距离OB 是( )A.2.5米B.3米C.3.5米D.4米【答案】B【分析】由题意可以知道M(1,3),A(0,2.25),用待定系数法就可以求出抛物线的解析式,当y=0时就可以求出x的值,这样就可以求出OB的值.【详解】解:设抛物线的解析式为y=a(x-1)2+3,把A(0,2.25)代入,得2.25=a+3,a=-0.75.,抛物线的解析式为:y=-0.75(x-1)2+3.当y=0时,0=-0.75(x-1)2+3,解得:x1=-1(舍去),x2=3.OB=3米.故选:B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题,解答本题是求出抛物线的解析式.6.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A .4米B .3米C .2米D .1米【答案】A【解析】 ),y=-x 2+4x=2x-24-+(),,当x=2时,y 有最大值4,,最大高度为4m7.烟花厂某种礼炮的升空高度h (m )与飞行时间t (s )的关系式是h =﹣2t 2+20t +1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .10s 【答案】C【分析】将h 关于t 的函数关系式变形为顶点式,即可得出升到最高点的时间,从而得出结论.【详解】解:,h =﹣2t 2+20t +1=﹣2(t ﹣5)2+51,,当t =5时,礼炮升到最高点.故选:C .【点睛】 本题考查了二次函数的应用,解题的关键是将二次函数的关系式变形为顶点式.本题属于基础题,难度不大,解决该题型题目时,将函数的关系式进行变换找出顶点坐标即可.8.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为2=-,那么水流从喷出至回落到地面所需要的时间是()h t t305A.6s B.4s C.3s D.2s【答案】A【解析】由于水流从抛出至回落到地面时高度h为0,把h=0代入h=30t-5t2即可求出t,也就求出了水流从抛出至回落到地面所需要的时间.解:水流从抛出至回落到地面时高度h为0,把h=0代入h=30t−5t2得:5t2−30t=0,解得:t1=0(舍去),t2=6.故水流从抛出至回落到地面所需要的时间6s.故选A.9.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1m B.2.2m C.2.3m D.2.25m【答案】D【分析】设抛物线的解析式为y= a(x-1)2+3(0≤x≤3),将(3,0)代入求得a值,则x=0时得的y值即为水管的长.【详解】解:由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x-1)2+3(0≤x≤3),代入(3,0)得,0=a×(3-1)2+3,求得:a=34.将a值代入得到抛物线的解析式为:y=-34(x-1)2+3(0≤x≤3),令x=0,则y=94=2.25.则水管长为2.25m,故选:D.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.二、解答题10.某幢建筑物从10米高的窗户A用水管向外喷水,喷出的水流呈抛物线状(如图),若抛物线最高点M离墙1米,离地面403米.问:(1)求抛物线的解析式;(2)求水流落地点B 离墙的距离【答案】(1)210201033y x x =-++;(2)3米. 【分析】 (1)先建立平面直角坐标系(图见解析),从而可得点A 、M 的坐标,再根据点M 的坐标可得抛物线解析式的顶点式,然后将点A 的坐标代入即可得;(2)令0y =可得一个关于x 的一元二次方程,解方程即可得.【详解】(1)由题意,建立如图所示的平面直角坐标系, 则40(0,10),(1,)3A M , 设抛物线解析式的顶点式为240(1)3y a x =-+, 将点(0,10)A 代入得:40103a +=,解得103a =-, 则抛物线解析式的顶点式为21040(1)33y x =--+,即抛物线的解析式为210201033y x x =-++;(2)令0y =得:2102010033x x -++=, 即21040(1)033x --+=, 解得3x =或10x =-<(不符题意,舍去),则3OB =,故水流落地点B 离墙的距离3米.【点睛】本题考查了二次函数的应用,熟练掌握待定系数法是解题关键.11.某游乐园要建造一个直径为20m 的圆形喷水池,计划在喷水池周边安装一圈喷水头,使喷出的水柱距池中心4m 处达到最高,最大高度为6m.如图,以水平方向为x 轴,喷水池中心为原点建立直角坐标系.(1) 若要在喷水池的中心设计一个装饰物,使各方向喷出的水柱在此汇合,则这个装饰物的高度为多少,请计算说明理由.(2)为了增加喷水池的观赏性,游乐园新增加了一批向上直线型喷射的喷水头,这些喷水头以水池为圆心,分别以1.5米,3米,4.5米,6米,7.5米为半径呈圆形放置,为了保证喷水时互不干扰,防止水花四溅,且所有直线喷水头射程高度均为一致,则直线型喷水头最高喷射高度为多少米?(假设所有喷水头高度忽略不计).【答案】(1)103;(2)14324【分析】(1)直接利用顶点式求出二次函数解析式进而得出答案;(2)根据对称轴为x=4,可得当x=4.5时可达到最高喷射高度,代入即可求解.【详解】(1)由题意可得:当x>0时,抛物线解析式为:y=a(x−4)2+6,把(10,0)代入得0=a(10−4)2+6解得:a=−16,故抛物线解析式为:y=−16(x−4)2+6;令x=0,解得y=10 3故这个装饰物的高度为103m;(2),当x>0时,抛物线的对称轴为x=4由题意可得当x=4.5时可达到最高喷射高度,当x=4.5时,y=143 24答:直线型喷水头最高喷射高度为14324米. 【点睛】此题主要考查了二次函数的应用,正确得出抛物线解析式是解题关键.12.如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭; (1)求抛物线的函数关系式,并确定喷水装置OA 的高度;(2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要12⎛+ ⎝⎭米. 【分析】(1)根据点B 、C 的坐标,利用待定系数法即可得抛物线的解析式,再求出0x =时y 的值即可得OA 的高度;(2)将抛物线的解析式化成顶点式,求出y 的最大值即可得;(3)求出抛物线与x 轴的交点坐标即可得.【详解】(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩, 解得274b c =⎧⎪⎨=⎪⎩, 则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+, 则当1x =时,y 取得最大值,最大值为114, 故喷出的水流距水面的最大高度是114米; (3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+ ⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外.【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.13.广场上喷水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上的水珠高度y (米)关于水珠与喷头的水平距离x (米)的函数解析式是:236(04)2y x x x =-+≤≤,请求出当水珠的高度达到最大时,水珠与喷头的水平距离是多少?最大高度是多少?【答案】2米;6米.【分析】根据题目所给的函数解析式,用配方法求出当x 等于何值时函数有最大值以及最大值是多少.【详解】 解:由题意得,()()2223336=4=2+6222y x x x x x =-+----, 又因为04x ≤≤,所以当=2x 时,max =6y ,答:当水珠的高度达到最大时,水珠与喷头的水平距离是2米,最大高度是6米.【点睛】本题考查二次函数的实际应用,解题的关键是掌握求二次函数最值的方法.14.如图,在喷水池的中心A 处竖直安装一个水管AB .水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A 的水平距离为1m 处达到最高点C .高度为3m .水柱落地点D 离池中心A 处3m .建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB 的长.【答案】(1)y =﹣34(x ﹣1)2+3(0≤x ≤3);(2)2.25m【分析】(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系,设抛物线的解析式为y=a(x−1)2+3,将(3,0)代入求得a值;(2)由题意可得,x=0时得到的y值即为水管的长.【详解】解:(1)以池中心为原点,竖直安装的水管为y轴,与水管垂直的为x轴建立直角坐标系.由于在距池中心的水平距离为1m时达到最高,高度为3m,则设抛物线的解析式为:y=a(x﹣1)2+3,代入(3,0)求得:a=﹣34(x﹣1)2+3.将a值代入得到抛物线的解析式为:y=﹣34(x﹣1)2+3(0≤x≤3);(2)令x=0,则y=94=2.25.故水管AB的长为2.25m.【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,利用顶点式求出解析式是解题关键.。

部编数学九年级上册专题11二次函数的实际应用—喷水问题(解析版)含答案

部编数学九年级上册专题11二次函数的实际应用—喷水问题(解析版)含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题11 二次函数的实际应用—喷水问题考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·和平期末)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为( )A.9m4B.19m8C.39m16D.45m16【答案】A【完整解答】解:由题意可知点(1,3)是抛物线的顶点,∴设这段抛物线的解析式为y=a(x-1)2+3.∵该抛物线过点(3,0),∴0=a(3-1)2+3,解得:a=-34.∴y=-34(x-1)2+3.∵当x=0时,y=-34(0-1)2+3=-34+3=94,∴水管应长94 m.故答案为:A【分析】由题意可知点(1,3)是抛物线的顶点,可设顶点式为y=a(x-1)2+3,将(3,0)代入解析式中求出a值即得解析式,再求出x=0时的y值即可.2.(2分)(2021九上·长兴月考)学校卫生间的洗手盘台面上有一瓶洗手液(如图①).小丽经过测量发现:洗手液瓶子的截面图下部分是矩形CGHD,洗手液瓶子的底面直径GH=12cm,D,H与喷嘴位置点B三点共线.当小丽按住顶部A下压至如图②位置时,洗手液从喷口B流出(此时喷嘴位置点B距台面的距离为16cm),路线近似呈抛物线状,小丽在距离台面15cm处接洗手液时,手心Q到直线DH的水平距离为4cm,若小丽不去接,则洗手液落在台面的位置距DH的水平距离是16cm.根据小丽测量所得数据,可得洗手液喷出时的抛物线函数解析式的二次项系数是( )A.﹣118B.118C.﹣116D.116【答案】C【完整解答】解:根据题意:GH所在直线为x轴,GH的垂直平分线所在直线为y轴建立如图所示的平面直角坐标系,喷口B为抛物线顶点,共线的三点B、D、H所在直线为抛物线的对称轴,根据题意,OH=6,B(6,16),Q(10,15),设抛物线解析式为y=a(x﹣6)2+16,把Q(10,15)代入解析式得:15=a(10﹣6)2+16,解得:a=﹣116,故答案为:C.【分析】如图以GH 所在直线为x 轴,GH 的垂直平分线所在直线为y 轴建立如图所示的平面直角坐标系,喷口B 为抛物线顶点,共线的三点B 、D 、H 所在直线为抛物线的对称轴,然后写出顶点B 及Q 的坐标,利用顶点式求出抛物线解析式即可.3.(2分)(2021九上·青县月考)如图,水从山坡下的水管的小孔喷出,喷洒在山坡上,已知山坡AB :OB=1:2,若把小孔处设为原点,喷出的水柱的路线近似地用函数y=−12x 2+4x 来刻画,下列结论错误的是( ) A .山坡可以用正比例函数 12y x = 来刻画B .若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米C .水柱落到斜面时距O 点的距离为7米D .水柱距O 点水平距离超过4米呈下降趋势【答案】C【完整解答】解:A.∵山坡AB :OB=1:2,∴斜坡可以用正比例函数y=12 x 刻画,不符合题意;B.当y=1.875时,即− 12x 2+4x=1.875,解得:x 1=0.5,x 2=7.5,∴若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米,不符合题意;C.解方程组 212142y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩ 得, 1100x y =⎧⎨=⎩ , 22772x y =⎧⎪⎨=⎪⎩ ,∴当小球落在斜坡上时,它离O 点的水平距离是7m ,符合题意;D.∵y=− 12 x 2+4x=- 12(x-4)2+8,则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,不符合题意;故答案为:C .【分析】根据二次函数的图象与性质对每个选项一一判断即可。

2022-2023学年华东师大版数学九年级下册《二次函数》基础巩固 (含答案)

2022-2023学年华东师大版数学九年级下册《二次函数》基础巩固 (含答案)

26.1 二次函数—基础巩固—>>>精品解析<<<一、选择题1、某市中心广场有各种音乐喷泉,其中一个喷水管喷水的最大高度为3米,此时距喷水管的水平距离为米,在如图所示的坐标系中,这个喷泉的函数关系式是()A.y=﹣(x﹣)2+3B.y=﹣3(x+)2+3C.y=﹣12(x﹣)2+3D.y=﹣12(x+)2+3[思路分析]待定系数法求解可得.[答案详解]解:根据题意设函数解析式为y=a(x﹣)2+3,将点(0,0)代入,得:a+3=0,解得:a=﹣12,∴函数解析式为y=﹣12(x﹣)2+3,故选:C.[经验总结]本题主要考查待定系数法求函数解析式,熟练掌握待定系数法是解题的关键.2、某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为40米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米,围成的苗圃面积为y平方米,则y关于x的函数关系式为()A.y=x(40﹣x)B.y=x(18﹣x)C.y=x(40﹣2x)D.y=2x(40﹣2x)[思路分析]先用含x的代数式表示苗圃园与墙平行的一边长,再根据面积=长×宽列出y关于x的函数关系式.[答案详解]解:设这个苗圃园垂直于墙的一边长为x米,则苗圃园与墙平行的一边长为(40﹣2x)米.依题意可得:y=x(40﹣2x).故选:C.[经验总结]本题考查了由实际问题列二次函数关系式,解题的关键是明确题意,找出所求问题需要的条件.3、商店销售一种进价为50元/件的商品,售价为60元/件,每星期可卖出200件,若每件商品的售价上涨1元,则每星期就会少卖10件.每件商品的售价上涨x元(x为正整数),每星期销售的利润为y元,则y与x的函数关系式为()A.y=10(200﹣10x)B.y=200(10+x)C.y=10(200﹣10x)2D.y=(10+x)(200﹣10x)[思路分析]直接利用销量×每件利润=总利润,进而得出函数关系式.[答案详解]解:由题意可得,y与x的函数关系式为:y=(60﹣50+x)(200﹣10x)=(10+x)(200﹣10x).故选:D.[经验总结]此题主要考查了根据实际问题列二次函数关系式,正确表示出销量是解题关键.4、在边长为的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△OEF的面积为y,当1<x<2时,y与x之间的关系式为()A.y=﹣x2+x B.y=﹣x2+xC.y=﹣x2+3x﹣2D.y=x2﹣3x+2[思路分析]根据正方形的性质求出AC=BD=2,OB=OD=BD=1,当1<x<2时,P在OD上,由EF∥AC,可得△DEF∽△DAC,根据相似三角形对应边成比例求出EF =4﹣2x,再根据三角形的面积公式即可求出y与x之间的关系式.[答案详解]解:∵四边形ABCD是正方形,边长为,∴AC=BD=2,OB=OD=BD=1,设BP=x,△OEF的面积为y,当1<x<2时,P在OD上,∵EF∥AC,∴△DEF∽△DAC,∴EF:AC=DP:OD,即EF:2=(2﹣x):1,∴EF=4﹣2x,∴y=EF•OP=×(4﹣2x)(x﹣1)=﹣x2+3x﹣2,故选:C.[经验总结]本题考查了根据实际问题列二次函数关系式,相似三角形的判定与性质,三角形的面积,根据x的取值范围判断P在OD上,进而利用数形结合是解答本题的关键.5、在某种病毒的传播过程中,每轮传染平均1人会传染x个人,若最初2个人感染该病毒,经过两轮传染,共有y人感染,则y与x的函数关系式为()A.y=2(1+x)2B.y=(2+x)2C.y=2+2x2D.y=(1+2x)2[思路分析]设每轮传染中平均一个人传染x个人,根据经过两轮传染后共有y人患了这种传染病,即可得出y与x的函数关系式.[答案详解]解:根据题意可得,y与x的函数关系式为:y=2+2x+(2+2x)x=2(1+x)2.故选:A.[经验总结]此题主要考查了根据实际问题抽象出二次函数关系式,正确表示出传染人数是解题关键.6、某商品的进价为每件60元,现在的售价为每件80元,每星期可卖出200件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件.则每星期售出商品的利润y(单位:元)与每件涨价x(单位:元)之间的函数关系式是()A.y=200﹣10x B.y=(200﹣10x)(80﹣60﹣x)C.y=(200+10x)(80﹣60﹣x)D.y=(200﹣10x)(80﹣60+x)[思路分析]由每件涨价x元,可得出销售每件的利润为(80﹣60+x)元,每星期的销售量为(200﹣10x),再利用每星期售出商品的利润=销售每件的利润×每星期的销售量,即可得出结论.[答案详解]解:∵每涨价1元,每星期要少卖出10件,每件涨价x元,∴销售每件的利润为(80﹣60+x)元,每星期的销售量为(200﹣10x),∴每星期售出商品的利润y=(200﹣10x)(80﹣60+x).故选:D.[经验总结]本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y与x之间的函数关系式.7、今年由于受新型冠状病毒的影响,一次性医用口罩的销量剧增.某药店一月份销售量是5000枚,二、三两个月销售量连续增长.若月平均增长率为x,则该药店三月份销售口罩枚数y(枚)与x的函数关系式是()A.y=5000(1+x)B.y=5000(1+x)2C.y=5000(1+x2)D.y=5000(1+2x)[思路分析]设出二、三月份的平均增长率,则二月份的市场需求量是5000(1+x),三月份的产量是5000(1+x)2,据此列函数关系式即可.[答案详解]解:该药店三月份销售口罩枚数y(枚)与x的函数关系式是:y=5000(1+x)2.故选:B.[经验总结]本题考查了根据实际问题抽象出二次函数,解题的关键是正确列出二次函数关系式.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a×(1±x)(1±x)=a(1±x)2.增长用“+”,下降用“﹣”.8、共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是()A.y=x2+a B.y=a(1+x)2C.y=(1﹣x)2+a D.y=a(1﹣x)2[思路分析]主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设该公司第二、三两个月投放单车数量的月平均增长率为x,然后根据已知条件可得出方程.[答案详解]解:设该公司第二、三两个月投放单车数量的月平均增长率为x,依题意得第三个月投放单车a(1+x)2辆,则y=a(1+x)2.故选:B.[经验总结]此题主要考查了根据实际问题列二次函数关系式,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.二、填空题9、n个球队参加篮球比赛,每两队之间进行一场比赛,比赛的场次数m与球队数n(n≥2)之间的函数关系是.[思路分析]n个球队都要与除自己之外的(n﹣1)球队个打一场,因此要打n(n﹣1)场,然而有重复一半的场次,故比赛场次为n(n﹣1),得出关系式.[答案详解]解:m=n(n﹣1)=n2﹣n,故答案为:m=n2﹣n.[经验总结]考查函数关系式的求法,在具体的情景中,蕴含数量之间的关系,理解和发现数量之间的关系是正确解答的关键.10、在一个边长为2的正方形中挖去一个小正方形,使小正方形四周剩下部分的宽度均为x,若剩下阴影部分的面积为y,那么y关于x的函数解析式是.[思路分析]先表示出小正方形的边长,再根据剩下阴影部分部分的面积=大正方形的面积﹣小正方形的面积得出y与x的函数关系式即可.[答案详解]解:∵在一个边长为2的正方形中挖去一个小正方形,使小正方形四周剩下部分的宽度均为x,∴小正方形的边长为2﹣2x,根据题意得:y=22﹣(2﹣2x)2,整理得:y=﹣4x2+8x.故答案为:y=﹣4x2+8x.[经验总结]此题主要考查了根据实际问题列二次函数关系式,利用剩下部分的面积=大正方形的面积﹣小正方形的面积列式是解题关键.11、退休的李老师借助自家15米的院墙和总长度为30米的围栏,在院墙外设计一个矩形花圃种植花草.为方便进出,他在如图所示的位置安装了一个1米宽的门,如果设和墙相邻的一边长为x米,花圃面积为y平方米,则y与x之间的函数关系式为.[思路分析]若和墙相邻的一边长为x米,则平行于墙的一边长为(30+1﹣2x)米,利用矩形的面积计算公式,即可得出y与x之间的函数关系式,再结合院墙长15米及平行于墙的一边长非负,即可得出x的取值范围.[答案详解]解:若和墙相邻的一边长为x米,则平行于墙的一边长为(30+1﹣2x)米,依题意得:y=x(30+1﹣2x)=﹣2x2+31x.又∵,∴8≤x<15.5,∴y与x之间的函数关系式为y=﹣2x2+31x(8≤x<15.5).故答案为:y=﹣2x2+31x(8≤x<15.5).[经验总结]本题考查了根据实际问题列二次函数关系式,根据各数量之间的关系,找出y与x之间的函数关系式是解题的关键.12、据了解,某蔬菜种植基地2019年的蔬菜产量为100万吨,2021年的蔬菜产量为y万吨,如果2019年至2021年蔬菜产量的年平均增长率为x(x>0),那么y关于x的函数解析式为.[思路分析]2019到2021是两年时间,2019年蔬菜产量为100万吨,所以y=100(1+x)2.[答案详解]解:y=100(1+x)2.故答案为:y=100(1+x)2.[经验总结]本题考查二次函数的应用,解题关键是掌握求平均变化率的方法.13、为防治新冠病毒,某医药公司一月份的产值为1亿元,若每月平均增长率为x,第一季度的总产值为y(亿元),则y关于x的函数解析式为.[思路分析]把一月份、二月份、三月份的产值加起来就是第一季度的总产值,根据题意即可得出答案.[答案详解]解:y=1+1×(1+x)+1×(1+x)2=1+1+x+1+2x+x2=x2+3x+3.故答案为:y=x2+3x+3.[经验总结]本题考查了根据实际问题列二次函数关系式,把一月份、二月份、三月份的产值加起来是解题的关键.14、如图,是一个迷宫游戏盘的局部平面简化示意图,该矩形的长、宽分别为5cm,3cm,其中阴影部分为迷宫中的挡板,设挡板的宽度为xcm,小球滚动的区域(空白区域)面积为ycm2.则y关于x的函数关系式为:(化简为一般式).[思路分析]通过平移将空白区域转化为长为(5﹣x)cm,宽为(3﹣x)cm的长方形的面积即可.[答案详解]解:由题意得,y=(5﹣x)(3﹣x)=x2﹣8x+15,故答案为:y=x2﹣8x+15.[经验总结]本题考查函数关系式,掌握矩形面积、空白区域面积、阴影部分面积之间的关系是解决问题的前提,通过平移将空白区域转化为长为(5﹣x)cm,宽为(3﹣x)cm的长方形是解决问题的关键.15、矩形的周长为12cm,设其一边长为xcm,面积为ycm2,则y与x的函数关系式及自变量x的取值范围是.[思路分析]根据矩形的周长及其中一边长度得出另外一边长度为米,再由矩形的面积公式可得函数解析式,根据长、宽均为正数可得x的取值范围.[答案详解]解:根据题意知,y与x的函数关系式y=x•=x(6﹣x)=﹣x2+6x,由得0<x<6,所以y与x的函数关系式及自变量x的取值范围是y=﹣x2+6x(0<x<6),故答案为:y=﹣x2+6x(0<x<6).[经验总结]本题主要考查根据实际问题列二次函数关系式,根据实际问题确定二次函数关系式关键是读懂题意,建立二次函数的数学模型来解决问题.需要注意的是实例中的函数图象要根据自变量的取值范围来确定.16、某涵洞是抛物线形,截面如图所示,现测得水面宽AB=1.6m,涵洞顶点O到水面的距离为2.4m,在图中直角坐标系内,涵洞所在抛物线的函数表达式是.[思路分析]根据此抛物线经过原点,可设函数关系式为y=ax2.根据AB=1.6,涵洞顶点O到水面的距离为2.4m,那么A点坐标应该是(﹣0.8,﹣2.4),利用待定系数法即可求解.[答案详解]解:设函数关系式为y=ax2,A点坐标应该是(﹣0.8,﹣2.4),那么﹣2.4=0.8×0.8×a,即a=﹣,故答案为:y=﹣x2.[经验总结]本题主要考查了二次函数的实际应用,根据题中的信息得出函数经过的点的坐标是解题的关键.三、解答题17、已知y=(m﹣4)+2x2﹣3x﹣1是关于x的函数(1)当m为何值时,它是y关于x的一次函数;(2)当m为何值时,它是y关于x的二次函数.[思路分析](1)根据形如y=kx+b(k≠0)是一次函数,可得答案;(2)根据形如y=ax2+bx+c(a≠0)是二次函数,可得答案.[答案详解]解:(1)由y=(m﹣4)+2x2﹣3x﹣1是关于x的一次函数,得解得m=2,当m=2时,它是y关于x的一次函数(2)由y=(m﹣4)+2x2﹣3x﹣1是关于x的二次函数,得①m﹣4=0,解得m=4;②m2﹣m=1,解得m=;③解得m=﹣1,④m2﹣m=0,解得m=0或m=1,综上所述,当m=0或m=1或m=4或或﹣1时,它是y关于x的二次函数.[经验总结]本题考查了二次函数的定义,一次函数的一次项系数不等于零二次项系数等于零是解题关键,注意二次函数的二次项系数不等于零.18、若y=(m﹣1)x+3.(1)m取什么值时,此函数是二次函数?(2)m取什么值时,此函数是一次函数?[思路分析](1)形如y=ax2+bx+c(a≠0)的函数叫做二次函数,根据二次函数的定义即可判断;(2)形如y=kx+b(k≠0)的函数叫做二次函数,根据一次函数的定义即可判断.[答案详解]解:(1)当y=(m﹣1)x+3是二次函数时,有,解得m=﹣3,∴当m=﹣3时,此函数是二次函数;(2)当y=(m﹣1)x+3是一次函数时,有,解得m=﹣1+或m=﹣1﹣,∴当m=﹣1+或m=﹣1﹣时,此函数是一次函数.[经验总结]本题主要考查二次函数和一次函数的定义,关键是要牢记二次函数和一次函数的定义.19、若y=(a2+a)x是二次函数,求a的值.[思路分析]根据二次函数的定义列出方程求解则可.[答案详解]解:根据题意得:a2﹣a=2且a2+a≠0解得a=2.[经验总结]此题考查的是二次函数的定义,根据题意列出方程和不等式是解决此题关键.20、已知函数y=﹣(m+2)x m2﹣2(m为常数),求当m为何值时:(1)y是x的一次函数?(2)y是x的二次函数?并求出此时纵坐标为﹣8的点的坐标.[思路分析](1)根据形如y=kx(k≠0,k是常数)是一次函数,可得一次函数;(2)根据形如y=ax2(a是常数,且a≠0)是二次函数,可得答案,根据函数值,可得自变量的值,可得符合条件的点.[答案详解]解:(1)由y=﹣(m+2)x m2﹣2(m为常数),y是x的一次函数,得,解得m=,当m=时,y是x的一次函数;(2)y=﹣(m+2)x m2﹣2(m为常数),是二次函数,得,解得m=2,m=﹣2(不符合题意的要舍去),当m=2时,y是x的二次函数,当y=﹣8时,﹣8=﹣4x2,解得x=,故纵坐标为﹣8的点的坐标的坐标是(,﹣8).[经验总结]本题考查了二次函数的定义,利用了二次函数的定义,一次函数的定义,注意二次项的系数不能为零.21、已知函数y=(m2﹣m)x2+mx﹣2(m为常数),根据下列条件求m的值:(1)y是x的一次函数;(2)y是x的二次函数.[思路分析]根据一次函数和二次函数的定义可以解答.[答案详解]解:(1)y是x的一次函数,则可以知道,m2﹣m=0,解之得:m=1,或m=0,又因为m≠0,所以,m=1.(2)y是x的二次函数,只须m2﹣m≠0,∴m≠1和m≠0.[经验总结]本题考查了一次函数与二次函数的定义,熟记概念是解答本题的关键.22、当系数a,b,c满足什么条件时,函数y=ax2+bx+c是二次函数?是一次函数?是正比例函数?[思路分析]根据二次函数和一次函数、正比例函数定义进行解答即可.[答案详解]解:函数y=ax2+bx+c中a≠0,b和c为任意常数时是二次函数,a=0,b≠0,c为任意常数时是一次函数;a=0,b≠0,c=0时是正比例函数.[经验总结]此题主要考查了二次函数和一次函数、正比例函数,关键是掌握三种函数定义.23、函数是关于x的二次函数,求m的值.[思路分析]利用二次函数定义进行解答即可.[答案详解]解:由题意可知解得:m=2.[经验总结]此题主要考查了二次函数定义,关键是掌握二次函数定义,要抓住二次项系数不为0这个关键条件.24、已知函数y=m(m+2)x2+mx+m+1.(1)当m为何值时,此函数是一次函数?(2)当m为何值时,此函数是二次函数?[思路分析](1)直接利用一次函数的定义进而分析得出答案;(2)直接利用二次函数的定义进而分析得出答案.[答案详解]解:(1)∵函数y=m(m+2)x2+mx+m+1是一次函数,∴m(m+2)=0且m≠0,解得:m=﹣2;当m=﹣2时,此函数是一次函数;(2)∵函数y=m(m+2)x2+mx+m+1是二次函数,∴m(m+2)≠0,解得:m≠﹣2且m≠0,当m≠﹣2且m≠0时,此函数是二次函数.[经验总结]此题主要考查了一次函数以及二次函数的定义,正确把握一次函数以及二次函数的定义是解题的关键.第11页(共11页)。

二次函数的喷泉问题

二次函数的喷泉问题

实际问题
抽象 数学问题 运用 问题的解 转化 数学知识
返回解释 检验
6.如图所示,一单杠高2.2m,两立柱间的距
离为1.6m,将一根绳子的两端拴于立柱与铁 杠的结合处A、B,绳子自然下垂,虽抛物线 状,一个身高0.7m的小孩站在距立柱0.4m处, 其头部刚好触上绳子的D处,求绳子的最低 点O到地面的距离.
D x
喷泉与二次函数
如图所示,桃河公园要建造圆形喷水池.在水池中央垂直 于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m.由 柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相 同的抛物线落下,为使水流形状较为漂亮,要求设计成水 流在离OA距离为1m处达到距水面最大高度2.25m. (1)如果不计其它因素,那么水池的半径至少要多少m,才 能使喷出的水流不致落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为 3.5m,要使水流不落到池外,此时水流的最大高度应达到 多少m(精确到0.1m)?
当y=0时,可求得点C的坐标为(2.5,0);同理,点D的坐标为(-2.5,0).
根据对称性,如果不计其它因素,那么水池的半径至少要2.5m, 才能使题意得,A点坐标为(0,1.25),点C坐标为(3.5,0). 2 y ●B(1.57,3.72) 11 729
喷泉与二次函数
解:(1)如图,建立如图所示的坐标系,根据题意得,A点坐标为 y (0,1.25),顶点B坐标为(1,2.25). ●B(1,2.25)
y x 1 2.25
2

A (0,1.25)
x
数学化
● ●
D(-2.5,0)
O
C(2.5,0)
设抛物线为y=a(x-h)2+k,由待定系数法可求得抛物线表达式 为:y=-(x-1)2+2.25.

2023年中考数学重难点专题复习-喷水问题(实际问题与二次函数)(含简单答案)

2023年中考数学重难点专题复习-喷水问题(实际问题与二次函数)(含简单答案)

2023年中考数学重难点专题复习-喷水问题(实际问题与二次函数)一、解答题1.如图,小区中央公园要修建一个圆形的喷水池,在水池中央垂直于地面安装一个柱子OA,O恰好在水面的中心,OA=1.25米.由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计水流在离OA距离为1米处达到距水面的最大高度2.25米,如图建立坐标系.(1)求水流的抛物线路线在第一象限内对应的函数关系式(不要求写取值范围)(2)若不计其他因素,则水池的半径至少要多少米,才能使喷出的水流不至于落到池外?(3)若水流喷出的抛物线形状与(1)相同,水池半径为3.5米,要使水流不落到池外,此时水流距水面的最大高度就达到多少米才能使喷出的水流不至于落在池外?(4)在直线OB上有一点D(靠点B一侧),BD=0.5米,竖直向上摆放无盖的圆柱形桶,试图让水落入桶内,圆柱形桶的直径为0.5米,高为0.2米(圆柱形桶的厚度忽略不计)①如果竖直摆放5个圆柱形桶时,水能不能落入桶内?①直接写出当竖直摆放圆柱形桶多少个时,水可以落入桶内?2.如图1,已知水龙头喷水的初始速度v0可以分解为横向初始速度v x和纵向初始速度v y,θ是水龙头的仰角,且v02=v x2+v y2.图2是一个建在斜坡上的花圃场地的截面示意图,水龙头的喷射点A在山坡的坡顶上(喷射点离地面高度忽略不计),坡顶的铅直高度OA为15米,山坡的坡比为13.离开水龙头后的水(看成点)获得初始速度v0米/秒后的运动路径可以看作是抛物线,点M是运动过程中的某一位置.忽略空气阻力,实验表明:M与A的高度之差d(米)与喷出时间t(秒)的关系为d=v y t-5t2;M与A的水平距离为v x t米.已知该水流的初始速度v0为15米/秒,水龙头的仰角θ为53°.(1)求水流的横向初始速度v x和纵向初始速度v y;(2)用含t的代数式表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围);(3)水流在山坡上的落点C离喷射点A的水平距离是多少米?若要使水流恰好喷射到坡脚B处的小树,在相同仰角下,则需要把喷射点A沿坡面AB方向移动多少米?(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)3.小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为()2y a x h k=-+,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.(1)求抛物线的表达式.(2)爸爸站在水柱正下方,且距喷水头P水平距离3m,身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.4.某公园在人工湖里安装一个喷泉,在湖心处竖直安装一根水管,在水管的顶端安一个喷水头,水柱从喷水头喷出到落于湖面的路径形状可以看作是抛物线的一部分,若记水柱上某一位置与水管的水平距离为d米,与湖面的垂直高度为h米,下面的表中记录了d与h的五组数据:根据上述信息,解决以下问题:(1)在网格中建立适当的平面直角坐标系,并根据表中所给数据画出表示h与d函数关系的图象;(2)若水柱最高点距离湖面的高度为m米,则m=______;(3)现公园想通过喷泉设立新的游玩项目,准备通过只调节水管露出湖面的高度,使得游船能从水柱下方通过,如图所示,为避免游船被喷泉淋到,要求游船从水柱下方中间通过时,顶棚上任意一点到水柱的竖直距离均不小于0.5米.已知游船顶棚宽度为3米,顶棚到湖面的高度为1.5米,那么公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到多少米才能符合要求?请通过计算说明理由(结果保留一位小数).5.(1)先化简,再求值:22111x xx x----,其中x=2015.(2)如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O落在水平面上,对称轴是水平线OC,点A、B在抛物线造型上,且点A到水平面的距离AC=4米,点B到水平面的距离为2米,OC=8米.①请建立适当的直角坐标系,求抛物线的函数解析式;(需要画出你建立的直角坐标系)①为了安全美观,现需要在水平线OC上找一点P,用质地、规格已确定的圆形钢管制作两根支柱PA、PB对抛物线造型进行支撑加固,那么怎样才能找到两根支柱用料最省时的点P?请写出找法.(无需证明)(支柱与地面、造型对接方式的用料多少问题暂不考虑)6.某公园在人工湖里建造一道喷泉拱门,工人在垂直于湖面的立柱上安装喷头,从喷头喷出的水柱的形状可以看作是抛物线的一部分.安装后,通过测量获得如下数据,喷头高出湖面3米,在距立柱水平距离为d米的地点,水柱距离湖面高度为h米.请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出水柱最高点距离湖面的高度;(3)求h关于d的函数表达式;(4)公园希望游船能从喷泉拱门下穿过,已知游船的宽度约为2米,游船的平顶棚到湖面的高度约为1米,从安全的角度考虑,要求游船到立柱的水平距离不小于1米,顶棚到水柱的竖直距离也不小于1米,工人想只通过调整喷头距离湖面的高度(不考虑其他因素)就能满足上述要求,请通过计算说明应如何调整.7.如图①,灌溉车沿着平行于绿化带底部边线l 的方向行驶,为绿化带浇水.喷水口H 离地竖直高度为h (单位:m ).如图①,可以把灌溉车喷出水的上、下边缘抽象为平面直角坐标系中两条抛物线的部分图像,把绿化带横截面抽象为矩形DEFG ,其水平宽度3m DE =,竖直高度为EF 的长.下边缘抛物线是由上边缘抛物线向左平移得到的,上边缘抛物线最高点A 离喷水口的水平距离为2m ,高出喷水口0.5m ,灌溉车到l 的距离OD 为d (单位:m ).若当1.5m h =,0.5m EF =时,解答下列问题.(1)求上边缘抛物线的函数解析式,并求喷出水的最大射程OC . (2)下边缘抛物线与x 轴的正半轴交点B 的坐标为________.(3)要使灌溉车行驶时喷出的水能浇灌到整个绿化带,直接写出d 的取值范围.8.如图,斜坡AB 长10米,按图中的直角坐标系可用5y =+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围); (2)求水柱离坡面AB 的最大高度;(3)在斜坡上距离A 点2米的C 处有一颗3.5米高的树,水柱能否越过这棵树?9.游乐园新建的一种新型水上滑道如图,其中线段PA 表示距离水面(x 轴)高度为5m 的平台(点P 在y 轴上).滑道AB 可以看作反比例函数图象的一部分,滑道BCD 可以看作是二次函数图象的一部分,两滑道的连接点B 为二次函数BCD 的顶点,且点B 到水面的距离2BE m =,点B 到y 轴的距离是5m.当小明从上而下滑到点C 时,与水面的距离3m 2CG =,与点B 的水平距离2m CF =.(1)求反比例函数的关系式及其自变量的取值范围; (2)求整条滑道ABCD 的水平距离;(3)若小明站在平台上相距y 轴1m 的点M 处,用水枪朝正前方向下“扫射”,水枪出水口N 距离平台3m 2,喷出的水流成抛物线形,设这条抛物线的二次项系数为p ,若水流最终落在滑道BCD 上(包括B 、D 两点),直接写出p 的取值范围.10.某景观公园内人工湖里有一组喷泉,水柱从垂直于湖面的水枪喷出,水柱落于湖面的路径形状是抛物线.现测量出如下数据,在距水枪水平距离为d 米的地点,水柱距离湖面高度为h 米.请解决以下问题:(1)在下边网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)请结合表中所给数据或所画图象,估出喷泉的落水点距水枪的水平距离约为 米(精确到0.1); (3)公园增设了新的游玩项目,购置了宽度4米,顶棚到水面高度为4.2米的平顶游船,游船从喷泉正下方通过,别有一番趣味,请通过计算说明游船是否有被喷泉淋到的危险.11.某公园广场上新安装了一排音乐喷泉装置,其中位于中间的喷水装置OA (如图)喷水能力最强,水流从A 处喷出,在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度()y m 与水平距离()x m 之间符合二次函数关系式27 34y x x=-++()0x>.(1)求水流喷出的最大高度是多少米?此时最高处离喷水装置OA的水平距离为多少米?(2)现若在音乐喷泉四周摆放花盆,不计其他因素,花盆需至少离喷水装置OA多少米外,才不会被喷出的水流击中?12.如图,在一次学校组织的社会实践活动中,小龙看到农田上安装了很多灌溉喷枪,喷枪喷出的水流轨迹是抛物线,他发现这种喷枪射程是可调节的,且喷射的水流越高射程越远,于是他从该农田的技术部门得到了这种喷枪的一个数据表,水流的最高点与喷枪的水平距离记为x,水流的最高点到地面的距离记为y.y与x的几组对应值如下表:(1)该喷枪的出水口到地面的距离为________m;(2)在平面直角坐标系xOy中,描出表中各组数值所对应的点,并画出y与x的函数图像;(3)结合(2)中的图像,估算当水流的最高点与喷枪的水平距离为8m时,水流的最高点到地面的距离为________m(精确到1m).根据估算结果,计算此时水流的射程约为________m(精确到1m)13.如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线.如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.14.如图,在喷水池的中心A处竖直安装一个水管AB.水管的顶端安有一个喷水管、使喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C.高度为3m.水柱落地点D离池中心A处3m.建立适当的平面直角坐标系,解答下列问题.(1)求水柱所在抛物线的函数解析式;(2)求水管AB的长.15.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线,图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌底部的距离)是1米,当喷射出的水流距离喷灌架水平距离为20米时,达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.(1)求水流运行轨迹满足的函数关系式;(2)若将喷灌向后移动5米,通过计算说明是否可避开对这棵石榴树的喷灌?(3)设喷射水流与坡面OA之间的铅直高度为h,求h的表达式,并求出x为何值时,h有最大值,h最大值是多少?16.某游乐场的圆形喷水池中心O有一雕塑OA,从A点向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为x轴,点O为原点建立直角坐标系,点A在y轴上,x轴上的点C,D为水柱的落水点,水柱所在抛物线第一象限部分的函数表达式为()21566y x =--+.(1)求雕塑高OA .(2)求落水点C ,D 之间的距离.(3)若需要在OD 上的点E 处竖立雕塑EF ,10m OE =, 1.8m,EF EF OD =⊥.问:顶部F 是否会碰到水柱?请通过计算说明.参考答案:1.(1)y =﹣(x ﹣1)2+2.25;(2)半径至少为2.5m ;(3)水流最大高度应达729196m ;(4)①水不能落入桶内,①当竖直摆放圆柱形桶7,8,9,10时,水可以落入桶内. 2.(1)水流的横向初始速度v x 是9米/秒,纵向初始速度v y 是12米/秒;(2)y=-2581x +43x+15;(3)水流在山坡上的落点C 离喷射点A 的水平距离是27米,需要把喷射点A 沿坡面AB方向移动3.(1)()20.15 3.2y x =--+ (2)2或6m 4.(1)11 (2)1.5(3)公园应将水管露出湖面的高度(喷水头忽略不计)至少调节到1.6米才能符合要求5.(1)2014.(2)22. 6.(1)11; (2)4米 (3)h =-d 2+2d+3(4)水枪高度调节到5米以上7.(1)()21228y x =--+,喷出水的最大射程OC 为6m (2)()2,0(3)21d ≤≤8.(1)2153y x =-+;(2)254米;(3)水柱能越过树 9.(1)10y x=,25x ≤≤;(2)7m ;(3)91332128p -≤≤-. 10.(111 (2)6.7(3)游船有被喷泉淋到的危险11.(1)水流喷出的最大高度是4米,此时的水平距离为32米;(2)花盆需至少离喷水装置OA 3.5米外,才不会被喷出的水流击中.12.(1)1 (2)22 (3)3,1813.水流的落地点C 到水枪底部B 的距离为2.5m . 14.(1)y =﹣34(x ﹣1)2+3(0≤x ≤3);(2)2.25m 15.(1)21140y x x =-++ (2)可避开对这棵石榴树的喷灌(3)当x =18时,h 有最大值,最大值为9.1m 16.(1)11m 6;(2)22米;(3)不会。

22.3实际问题与二次函数(喷水问题)课后练习2021-2022学年人教版数学九年级上册(含答案)

22.3实际问题与二次函数(喷水问题)课后练习2021-2022学年人教版数学九年级上册(含答案)

实际问题与二次函数——喷水问题一、单选题1.广场上水池中的喷头微露水面,喷出的水线呈一条抛物线,水线上水珠的高度y (米)关于水珠和喷头的水平距离x (米)的函数解析式是()236042y x x x =-+≤≤,那么水珠的高度达到最大时,水珠与喷头的水平距离是( )A .1米B .2米C .5米D .6米2.某建筑物,从10m 高的窗口A ,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M 离墙1m ,离地面403m ,则水流落地点B 离墙的距离OB 是( )A .2mB .3mC .4mD .5m3.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m ,水流在离喷出口的水平距离1.25m 处达到最高,密集的水滴在水面上形成了一个半径为3m 的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m ,则应把出水口的高度调节为高出水面( )A .0.55米B .1130米C .1330米D .0.4米4.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA ,O 恰为水面中心,安置在柱子顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA 的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y (m )与水平距离x (m )之间的关系式是y=﹣x 2+2x+54,则下列结论: (1)柱子OA 的高度为54m ;(2)喷出的水流距柱子1m处达到最大高度;(3)喷出的水流距水平面的最大高度是2.5m;(4)水池的半径至少要2.5m才能使喷出的水流不至于落在池外.其中正确的有()A.1个B.2个C.3个D.4个5.某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是()A.4米B.3米C.2米D.1米6.某公园一喷水池喷水时水流的路线呈抛物线(如图).若喷水时水流的高度y(m)与水平距离x(m)之间的函数关系式是y=﹣x2+2x+1.25,则水池在喷水过程中水流的最大高度为()A.1.25米B.2.25米C.2.5米D.3米7.某公园有一个圆形喷水池,喷出的水流的高度h(单位:m)与水流运动时间t(单位:s)之间的关系式为2=-,那么水流从喷出至回落到地面所需要的时间是()h t t305A.6s B.4s C.3s D.2s8.如图1,一个移动喷灌架喷射出的水流可以近似地看成抛物线.图2是喷灌架为一坡地草坪喷水的平面示意图,喷水头的高度(喷水头距喷灌架底部的距离)是1米.当喷射出的水流距离喷水头20米时.达到最大高度11米,现将喷灌架置于坡度为1:10的坡地底部点O处,草坡上距离O的水平距离为30米处有一棵高度约为2.3米的石榴树AB,因为刚刚被喷洒了农药,近期不能被喷灌.下列说法正确的是()A.水流运行轨迹满足函数y=﹣140x2﹣x+1B.水流喷射的最远水平距离是40米C.喷射出的水流与坡面OA之间的最大铅直高度是9.1米D.若将喷灌架向后移动7米,可以避开对这棵石榴树的喷灌9.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千,拴绳子的地方距地面都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为()A.0.5米B C.米D.0.85米10.如图,始终盛满水的圆柱体水桶水面离地面的高度为20cm,如果在离水面竖直距离为h (单位:cm)的地方开大小合适的小孔,那么从小孔射出水的射程(水流落地点离小孔的水平距离)s(单位:cm)与h的关系式为s=大射程增加10cm,则小孔离水面的距离是()A.14cm B.15cm C.16cm D.18cm11.烟花厂某种礼炮的升空高度h(m)与飞行时间t(s)的关系式是h=﹣2t2+20t+1,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为( )A .3sB .4sC .5sD .10s12.如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管的长为( )A .2.1mB .2.2mC .2.3mD .2.25m二、填空题 13.各种盛水容器可以制作精致的家用流水景观(如图1).科学原理:如图2,始终盛满水的圆柱体水桶水面离地面的高度为20cm ,如果在离水面竖直距离为h (单位:cm )的地方开大小合适的小孔,那么从小孔射出水的射程s (单位:cm )与h 的关系式为24(20)s h h =-,则射程s 最大值是_______cm .(射程是指水流落地点离小孔的水平距离)14.某游乐园有一圆形喷水池(如图),中心立柱AM 上有一喷水头A ,其喷出的水柱距池中心3米处达到最高,最远落点到中心M 的距离为9米,距立柱4米处地面上有一射灯C ,现将喷水头A 向上移动1.5米至点B (其余条件均不变),若此时水柱最高处D 与A ,C 在同一直线上,则水柱最远落点到中心M 的距离增加了_____米.15.某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线224y x x =-+(单位:米)的一部分,则水喷出的最大高度是_____米;16.如图,在喷水池的中心A处竖直安装一个水管AB,水管的顶端B处有一个喷水孔,喷出的抛物线形水柱在与池中心A的水平距离为1m处达到最高点C,高度为3m,水柱落地点D 离池中心A处3m,则水管AB的长为_____m.17.某广场有一个半径8米的圆形喷水池,喷水池的周边有一圈喷水头(喷水头高度忽略不计),各方向喷出的水柱恰好在喷水池中心的装饰物OA的顶端A处汇合,水柱离中心O点3米处达最高5米,如图所示建立平面直角坐标系.王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8的他站立时必须在离水池中心O点______米以内.三、解答题18.在东京奥运会上,我国跳水选手全红蝉技压群雄,夺得女子10米跳水冠军。

二次函数喷泉类问题(带解析及详细答案)

二次函数喷泉类问题(带解析及详细答案)

1、(2011•定西)如图,抛物线C 1:y=x 2+2x-3的顶点为M ,与x 轴相交于A 、B 两点,与y 轴交于点D ;抛物线C 2与抛物线C 1关于y 轴对称,顶点为N ,与x 轴相交于E 、F 两点.(1)抛物线C 2的函数关系式是___________;(2)点A 、D 、N 是否在同一条直线上?说明你的理由;(3)点P 是C 1上的动点,点P′是C 2上的动点,若以OD 为一边、PP′为其对边的四边形ODP′P (或ODPP′)是平行四边形,试求所有满足条件的点P 的坐标;(4)在C 1上是否存在点Q ,使△AFQ 是以AF 为斜边且有一个角为30°的直角三角形?若存在,求出点Q 的坐标;若不存在,请说明理由.2、如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?3、公园要建造一个如图1的圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,OA=1.25米,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图2所示.为使水流形状较为漂亮,设计成水流在与OA水平距离为1米时,达到距水面最大高度2.25米(不计其他因素).(1)在如图2的直角坐标系中,求y轴两侧抛物线的解析式;(2)请你通过计算回答水池的半径至少要多少米,才能使喷出的水流不致落到池外?4、近日,湘湖音乐喷泉落成,吸引大量游客.某小区也计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,0A为1.25m,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到OA距离lm处达到距水面最大高度2.25m.(1)请求出其中一条抛物线的解析式;(2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?。

2022-23学年人教版九年级数学上学期压轴题汇编专题11 二次函数的实际应用—喷水问题(解析版)

2022-23学年人教版九年级数学上学期压轴题汇编专题11 二次函数的实际应用—喷水问题(解析版)

2022-2023学年人教版数学九年级上册压轴题专题精选汇编专题11 二次函数的实际应用—喷水问题考试时间:120分钟试卷满分:100分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021九上·和平期末)如图,要修建一个圆形喷水池,在池中心竖直安装一根水管,在水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.9m4B.19m8C.39m16D.45m16【答案】A【完整解答】解:由题意可知点(1,3)是抛物线的顶点,∴设这段抛物线的解析式为y=a(x-1)2+3.∵该抛物线过点(3,0),∴0=a(3-1)2+3,解得:a=-34.∴y=-34(x-1)2+3.∵当x=0时,y=-34(0-1)2+3=-34+3=94,∴水管应长94 m.故答案为:A【分析】由题意可知点(1,3)是抛物线的顶点,可设顶点式为y=a(x-1)2+3,将(3,0)代入解析式中求出a值即得解析式,再求出x=0时的y值即可.2.(2分)(2021九上·长兴月考)学校卫生间的洗手盘台面上有一瓶洗手液(如图①).小丽经过测量发现:洗手液瓶子的截面图下部分是矩形CGHD,洗手液瓶子的底面直径GH=12cm,D,H与喷嘴位置点B三点共线.当小丽按住顶部A下压至如图②位置时,洗手液从喷口B流出(此时喷嘴位置点B距台面的距离为16cm),路线近似呈抛物线状,小丽在距离台面15cm处接洗手液时,手心Q到直线DH的水平距离为4cm,若小丽不去接,则洗手液落在台面的位置距DH的水平距离是16cm.根据小丽测量所得数据,可得洗手液喷出时的抛物线函数解析式的二次项系数是()A.﹣118B.118C.﹣116D.116【答案】C【完整解答】解:根据题意:GH所在直线为x轴,GH的垂直平分线所在直线为y轴建立如图所示的平面直角坐标系,喷口B为抛物线顶点,共线的三点B、D、H所在直线为抛物线的对称轴,根据题意,OH=6,B(6,16),Q(10,15),设抛物线解析式为y=a(x﹣6)2+16,把Q(10,15)代入解析式得:15=a(10﹣6)2+16,解得:a=﹣116,故答案为:C.【分析】如图以GH所在直线为x轴,GH的垂直平分线所在直线为y轴建立如图所示的平面直角坐标系,喷口B为抛物线顶点,共线的三点B、D、H所在直线为抛物线的对称轴,然后写出顶点B及Q的坐标,利用顶点式求出抛物线解析式即可.3.(2分)(2021九上·青县月考)如图,水从山坡下的水管的小孔喷出,喷洒在山坡上,已知山坡AB:OB=1:2,若把小孔处设为原点,喷出的水柱的路线近似地用函数y=−12x2+4x来刻画,下列结论错误的是()A .山坡可以用正比例函数 12y x = 来刻画 B .若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米C .水柱落到斜面时距O 点的距离为7米D .水柱距O 点水平距离超过4米呈下降趋势【答案】C【完整解答】解:A.∵山坡AB :OB=1:2,∴斜坡可以用正比例函数y=12 x 刻画,不符合题意; B.当y=1.875时,即− 12x 2+4x=1.875, 解得:x 1=0.5,x 2=7.5,∴若水柱到水平地面的距离为1.875米,则此时距离原点水平距离为0.5米或7.5米,不符合题意;C.解方程组 212142y x y x x ⎧=⎪⎪⎨⎪=-+⎪⎩ 得, 1100x y =⎧⎨=⎩ , 22772x y =⎧⎪⎨=⎪⎩ , ∴当小球落在斜坡上时,它离O 点的水平距离是7m ,符合题意;D.∵y=− 12 x 2+4x=- 12(x-4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,不符合题意;故答案为:C .【分析】根据二次函数的图象与性质对每个选项一一判断即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(2011•定西)如图,抛物线C 1:y=x 2+2x-3的顶点为M ,与x 轴相交于A 、B 两点,与y 轴交于点D ;抛物线C 2与抛物线C 1关于y 轴对称,顶点为N ,与x 轴相交于E 、F 两点.
(1)抛物线C 2的函数关系式是___________;
(2)点A 、D 、N 是否在同一条直线上?说明你的理由;
(3)点P 是C 1上的动点,点P′是C 2上的动点,若以OD 为一边、PP′为其对边的四边形ODP′P (或ODPP′)是平行四
边形,试求所有满足条件的点P 的坐标;
(4)在C 1上是否存在点Q ,使△AFQ 是以AF 为斜边且有一个角为30°的直角三角形?若存在,求出点Q 的坐标;若
不存在,请说明理由.
2、如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m.
(1)若不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不能落到池外?
(2)若水流喷出的抛物线形状与(1)相同,水池的半径为3.5m,要使水流不落到池外,此时水流最大高度应达多少米?
3、公园要建造一个如图1的圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰在水面中心,OA=1.25米,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图2所示.为使水流形状较为漂亮,设计成水流在与OA水平距离为1米时,达到距水面最大高度2.25米(不计其他因素).
(1)在如图2的直角坐标系中,求y轴两侧抛物线的解析式;
(2)请你通过计算回答水池的半径至少要多少米,才能使喷出的水流不致落到池外?
4、近日,湘湖音乐喷泉落成,吸引大量游客.某小区也计划在中央花园内建造一个圆形的喷水池,在水池中央垂直于水面安装一个花形柱子OA,O恰好在水面中心,0A为1.25m,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA的任一平面上抛物线路径如图所示.为使水流形状较为漂亮,设计成水流在到OA距离lm处达到距水面最大高度2.25m.
(1)请求出其中一条抛物线的解析式;
(2)如果不计其他因素,那么水池的半径至少要为多少m 才能使喷出水流不致落到池上?。

相关文档
最新文档