雷达系统原理 ppt

合集下载

电子对抗原理--雷达系统结构和工作原理 ppt课件

电子对抗原理--雷达系统结构和工作原理  ppt课件

频率源分类



自激振荡源 晶体振荡器、腔体振荡器 介质振荡器、压控振荡器等 合成频率源
直接模拟式:对基准频率进行各种各样的 加减乘除 间接模拟式:利用模拟锁相环锁定VCO 来实现频率合成 直接数字式:使用数字技术完成频率和波 形的合成 间接数字式:由数字锁相环构成,包含数 字分频器和数字鉴相器

DBF系统的基本原理图
天线单元阵列 A/D变换器
接收模块 数字波束形成器
稀布阵雷达
VHF波段 发射1个圆阵(25个窄带全向发射天线,每个10KHz带宽,共250KHz) 接收1个圆阵,48个全向接收天线,带宽250KHz
RIAS* / SIAR** by Jaques Dorey (1986) – «Space Frequency »orthogonal coding
数字中频接收机原理框图
中频 信号 中频 滤波器
低通滤波、抽 取
cos(2f I nT )
A/D
I
低通滤波、抽 取
Q
sin( 2f I nT )
问题:上图有什么问题?
数字中频接收机原理框图
中频 信号 中频 滤波器
低通滤波、抽 取
cos(2f I nT )
A/D
I
低通滤波、抽 取
Q
sin(2f I nT )
大气吸收与频率的关系
大气天顶衰减与地面水汽密度的关系
斜路径大气衰减 f=23.75GHz
发射电磁波
脉冲
目标反射电磁波
雷达系统 结构与工作原理





雷达系统结构和基本工作原理 频率综合器 发射机 天线 接收机 信号处理机 雷达终端 监控设备

雷达系统原理PPT课件

雷达系统原理PPT课件
旁瓣旁瓣电平为主瓣电平与最大旁瓣电平之差脉冲波束宽度脉冲宽度是指在主瓣中辐射功率密度为最大辐射功率密度3db的一半的角也被称为半值宽度雷达无线电波特性雷达的无线电波略沿地表方向传播主要视线
雷达系统原理
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
关于 SART雷达应答器
• 根据 GMDSS(全球遇险与安全系统)要求,IMO/SOLAS 类型的 船必须配备 SART。当船遇险时,SART 可以自动发出信号,所以 其他船或飞机就可以确定 遇险船的位置。若本船配备了波段的雷 达,并且 8 英里内有船遇险,SART 可以 指引雷达回波到遇险船。 该信号包括了 12 扫频,并在 9.2 到 9.5GHz 的频段传输。 根据距 离的不同,SART 具有 2 种扫频时间,由慢(7.5μs)到快(0.4μs) 扫描或反 之亦然。当接收到该信号时,屏幕上出现一条总长为 0.64 海里被 12 个点平均的 线。最近的 SART 的光点指示遇险船 的位置。当本船接近 SART 1 海里以内时, 雷达上显示快速闪烁 的扫描信号,并有一根单薄的线连接 12 个光点。
弱反射目标
• 目标反射的回波强度不仅取决于与目标间的距离,目标的高度或 尺寸,还要取决 于目标的材料和特性。具有低发射或入射角的目 标,如 FRP(纤维增强复合材料) 船和木制船发射的都不好。所以, 必须注意 FRP 船,木船或沙,沙洲,泥礁等 物体都是弱反射目 标。 由于与海岸线的距离等,本船在雷达图像上看起来比实际的 海岸线要远,当船周 围有弱反射目标时,应更加谨慎。

《雷达原理与系统》课件

《雷达原理与系统》课件
气象观测
雷达在气象领域用于降水监测 、风场测量等方面,为气象预 报和灾害预警提供重要数据支
持。
CHAPTER 02
雷达系统组成
发射机
功能
产生射频信号,通过天线 辐射到空间。
组成
振荡器、放大器、调制器 等。
关键技术
高频率、大功率、低噪声 。
接收机
功能
01
接收空间反射回来的回波信号,并进行放大、混频、滤波等处
CHAPTER 04
雷达系统性能参数
雷达的主要性能参数
探测距离
雷达能够探测到的最远距离,通常由发射功 率、天线增益和接收机灵敏度决定。
速度分辨率
雷达区分不同速度目标的能力,通常由信号 处理算法决定。
分辨率
雷达区分两个相邻目标的能力,通常由发射 信号的波形和接收机处理决定。
角度分辨率
雷达区分不同方向目标的能力,通常由天线 设计和接收机处理决定。
距离分辨率
雷达的距离分辨率决定了雷达能够区 分相邻目标的能力,主要受发射信号 的带宽和脉冲宽度等因素影响。
多普勒效应与速度分辨率
多普勒效应
当发射信号与目标之间存在相对运动时,回波信号会产生多 普勒频移,通过测量多普勒频移可以推算出目标的运动速度 。
速度分辨率
雷达的速度分辨率决定了雷达能够区分相邻速度目标详细描述
相控阵雷达利用相位控制方法来改变雷达波束的方向,从而实现快速扫描和跟踪 目标。相比传统机械扫描雷达,相控阵雷达具有更高的扫描速度和抗干扰能力, 能够更好地适应现代战争中高速、高机动目标作战环境。
合成孔径雷达(SAR)
总结词
合成孔径雷达通过在飞行过程中对地面进行多次成像,将各个成像点的信息进 行合成处理,获得高分辨率的地面图像。

雷达系统PPT课件

雷达系统PPT课件
RCS:目标的单基地雷达截面积(m2); Gt和Gr:分别为目标方向雷达发射、接收天线增益; D0:雷达系统抗干扰因子; Rt:目标与雷达之间的距离(m); Lt:雷达发射综合损耗; Lr:雷达接收综合损耗; LAtm:电磁波在大气中的传输损耗; λ:雷达系统的工作波长(m)。
(1)脉冲雷达方程
设Pt为雷达系统的发射功率,Gt为雷达天线增益,Gr 为雷达天线增益,目标的等效反射截面为RCS, Pt为雷 达发射功率,Rt为目标与雷达之间的距离,Lt为雷达的发 射机馈线损耗,Lr为雷达的接收馈线损耗。
雷达系统接收功率Prs:
Prs
PtGtGr2 •RCS (4)3Rt4Lt Lr
目标的运动速度测定:当目标和雷达之间存在着相对位 置运动时,目标回波的频率就会发生改变,频率的改变 量称为多普勒频移,据此确定目标的相对径向速度。
14
雷 地面雷达:高塔、车、船、地基等为雷达平台
达 平
空载雷达:飞机、导弹、气球、飞艇等
台 天基雷达:卫星、飞船、空间站、航天飞机等
电磁波的特性:
15
1.4 雷达系统的基本方程
P jG jK jP tG t4 •R R C t4S•R 2 j •G G t(t )•L p o lL L tjL f
自卫式干扰 (Rt=Rj,Gt=Gt(θ)):
Kj
4PjGjR2j • Lt
PtGt •RCS LpolLjLf
PjGj KjPt4GtR •2 jRCS•LpolL LtjLf 21
以FPGA和宽带 ADC器件为核心构 成的宽带雷达信号
处理系统
以高速DSP器件为 核心构成的雷达
信号处理系统
11
(5) T/R组件
微波光子 收发组件

《雷达成像原理》课件

《雷达成像原理》课件

05
雷达成像技术发展与展望
雷达成像技术的发展历程
雷达成像技术的起源
20世纪40年代,雷达技术开始应用于军事 领域,随着技术的发展,人们开始探索雷达 在成像方面的应用。
雷达成像技术的初步发展
20世纪60年代,随着计算机技术和信号处理技术的 发展,雷达成像技术开始进入初步发展阶段,出现 了多种成像模式。
提取雷达图像中的边 缘信息,用于目标识
别和形状分析。
纹理分析
提取雷达图像中的纹 理特征,用于分类和 识别不同的物质或结
构。
04
雷达图像解译
雷达图像的解译方法
直接解译法
01
根据雷达图像的直接特征,如斑点、纹理、色彩等,对目标进
行识别和分类。
间接解译法
02
利用雷达图像的间接特征,如地形、地貌、阴影等,结合地理
03
雷达图像处理
雷达图像预处理
去噪
去除雷达图像中的噪声,提高图像质量。
标定
对雷达图像进行几何校正和辐射校正,以 消除误差。
配准
将多幅雷达图像进行对齐,确保后续处理 的一致性。
滤波
平滑雷达图像,减少随机噪声和斑点效应 。
雷达图像增强
01 对比度增强
提高雷达图像的对比度, 使其更易于观察和理解。
03 直方图均衡化
雷达成像技术的成熟
20世纪80年代以后,随着数字信号处理技 术的广泛应用,雷达成像技术逐渐成熟,分 辨率和成像质量得到显著提高。
雷达成像技术的未来展望
高分辨率成像技术
未来雷达成像技术将进一步提高分辨率,实现更精细的成像效果 ,为各种应用提供更准确的信息。
多模式成像技术
未来雷达成像技术将发展多种模式,包括透射、反射、合成孔径等 多种模式,以满足不同场景的需求。

雷达原理介绍ppt课件

雷达原理介绍ppt课件

的射频信号进行下变频以转化为视频信号(即中心频率等
于0)。正交解调接收机即可完成这样的下变频处理:
sm(t) = s(t) exp(-j2 f0t) 可见,正交解调处理将信号的中心频率降低了 f0 。
|s( f )|
s(t)
sm(t)
正交解 调前
exp(-j2 f0t)
0 |sm( f )|
f0
f
正交解
基本原理
发射系统 接收系统
目标
将雷达的接收信号与发射信号进行比较,就可 以获得目标的位置、速度、形状等信息,根据这些 信息,雷达进而可以完成对目标的检测、跟踪、识 别等任务。
基本原理
发射信号:
Tp
t
Tr
雷达发射周期性脉冲,记脉冲宽度为 Tp,重复周期为 Tr,雷达峰值功率(即脉冲期间的平均功率)为Pt,雷达 平均功率(即周期内的平均功率)为Pav,工作比(即脉冲 宽度与重复周期之比)为D。显然有:
SNR = Ps / Pn 显然SNR越高,目标回波就越显著,就越有利于信号分析。
发射功率
不考虑各种损耗,影响目标回波峰值功率Ps的因素有:
雷达发射峰值功率Pt、目标的雷达截面积(RCS) 、目
标与雷达的相对距离R。它们之间存在关系:
Ps= Pt /R4 是与雷达系统及环境有关的常数。若 过小或R过大,则
Tp
t
响应的 3dB宽度称为雷 达距离分辨率,它表征 了雷达将相邻目标区分 开的能力。若接收机没 有脉冲压缩,可用发射
与雷达相距r的目标回波相对于发射脉冲 脉宽Tp近似距离分辨率;
的延时 = 2r / c,c为电磁波的传播速度。 若有脉冲压缩,分辨率
那么,与雷达的相对距离差为r的两个

《雷达原理与系统》PPT课件

《雷达原理与系统》PPT课件

W
G 发射天线增益

Ar 接收天线有效面积(孔径)m2
工作波长 m
目标的雷达截面积 m2
R 雷达与目标之间的距离 m
Pr min 接收机灵敏度 W
未考虑因素:大气衰减与路径(多精径选,课件曲p率pt),目标特性与起伏
9
1.1 雷达的任务
举例:
某雷达发射脉冲功率为200KW,收发天线增益为30dB,波长0.1m,抗研究所 2014年2月
精选课件ppt
1
主要内容
1、绪论
2、雷达发射机
3、雷达接收机
4、雷达终端显示器与录取设备
5、雷达作用距离
6、目标距离的测量
7、目标角度的测量
8、目标速度的测量
精选课件ppt
2
主要内容
9、连续波雷达 10、脉冲多普勒雷达 11、相控阵雷达 12、数字阵列雷达 13、脉冲压缩雷达 14、双基地雷达 15、合成孔径雷达
收发信号载波频率的差(多卜勒频率)
举例:
fd
ttrt2Vr
2t
tr 2R0Vrt c
频率为10GHz的雷达,当目标径向速度为300m/s时,其多卜勒频率为
c f3 1 1 18 0 H m 0 0/s z0 .0m 3 ,fd2 0 3 .0m m 0 3 /s 0 2K 0Hz
精选课件ppt
8
灵敏度为-110dBm,不考虑大气损耗等,试求其对=1m2目标的最大作用
距离
1
Rm
ax
2
105 1032 0.12
4 3 1014
1
4
1
2 1023
4 3
4
100.786km
精选课件ppt

《现代雷达技术》课件

《现代雷达技术》课件
相控阵雷达阶段开始于20世纪80年代, 该阶段的雷达系统采用相控阵天线,可 以实现多目标跟踪和高速扫描。
模拟雷达阶段主要集中在20世纪50年代 ,该阶段的雷达系统采用模拟电路,功 能较为简单。
数字化雷达阶段开始于20世纪70年代, 该阶段的雷达系统开始采用数字信号处 理技术,提高了雷达的性能和精度。
接收机
接收机是雷达系统的另一重要 组成部分,负责接收和处理回
波信号。
接收机的性能指标包括灵敏度 、动态范围、抗干扰能力等, 直接影响雷达的检测精度和可
靠性。
常见的接收机类型包括超外差 式和直接变频式等,根据雷达 系统的需求选择合适的接收机 类型。
接收机的设计需考虑噪声抑制 、信号处理和稳定性等问题, 以确保接收机能够提供高质量 的回波信号。
《现代雷达技术》ppt课件
contents
目录
• 雷达技术概述 • 现代雷达技术发展历程 • 现代雷达系统组成与工作原理 • 现代雷达的主要技术特点 • 现代雷达技术的应用实例 • 现代雷达技术的挑战与未来发展
01
雷达技术概述
雷达的定义与原理
雷达定义
雷达波传播方式
雷达是一种利用无线电波探测目标的 电子设备。
信号处理与数据处理
数据处理负责对目标数据进行进一步的分析和 处理,包括目标检测、跟踪、识别和多目标处
理等。
随着信号处理和数据处理技术的发展,现代雷达系统 不断引入新的算法和技术,以提高雷达的性能和功能

信号处理是雷达系统的关键环节,负责对回波 信号进行滤波、放大、变频和检测等处理,提 取出目标信息。
标速度。
合成孔径雷达
利用高速运动平台,通过信号 处理技术形成大孔径天线,提
高分辨率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海岸线要远,当船周 围有弱反射目标时,应更加谨慎。
-
7
雷达盲区
• 由于雷达的无线电波就是视野,若雷达的天线周围存在电波无法 穿透的物体,如 本船接近雷达天线的烟囱主桅或,大船或大山等, 就会给雷达造成盲区。形成盲 区时,就有可能投射一个长的阴影 并全部或部分档住目标。 主桅或烟囱形成的盲区是在雷达安装时 就可以发现的,只有设置好天线位置,就 可以有效的较少盲区的 产生。由于在盲区内的目标有可能不可见,所以进入有盲 区区域 时,须格外谨慎。
-
11
旁瓣图像
• 从天线辐射出的微波波束在主瓣周围有向各个方向的旁瓣。由于 旁瓣的电平低于 主瓣,对于远距离目标的影响微乎其微,但对于 近距离,强反射的目标,就有可 能导致产生圆弧状的假回波图像。
-
12
跳跃的目标图像
• “跳跃”现象产生的远距离目标的假回波图像。 取决于天气条件, “跳跃”产生在大气的逆温层。在这种情况下,无线电波可以 达 到超出雷达量程的远距离目标。超过最大量程的目标,会在屏幕 上出现一个图 像,显示在比实际距离要近的距离上。这种现象是 长距离回波延时时间超时的结 果,回波被当成接下来的旋转的回 波显示。改变量程或目标的距离改变时,就可 以判断回波的真假。
• 1 设置量程在 6 或 12 海里 2 从菜单关闭 IR 功能
• 2 参考“干扰抑制(IR) ”
• 3 对于屏幕上出现大量回波信号的情况,使接收机稍微失谐可以 获得更好的效 果。
• 4 当本船接近发射中的雷达信标或雷达应答器时,回波会变的模 糊并形成弧形。 为了获得更好的信号,适当调整增益,海浪干扰 抑制和雨雪干扰抑制。 雷达增强器产生的回波比正常的要大。
-
4
脉冲(波束)宽度
• 脉冲宽度是指在主瓣中辐射功率密度为最大辐射功率密度(-3dB) 的一半的角(也 被称为“半值宽度”
-
5
雷达无线电波特性
• 雷达的无线电波略沿地表方向传播(主要视线)。这一特性的变 化取决于大气的 密度,其一般的计算公式如下所示,总之,雷达 的视线距离 D 比光学视距要长 约 6%。
-
16
携带 SART 船的实际位置
• 若本船位于 SART 位置的 1 海里以外, • 第一道显示的回波位置为距 SART0.64 海里 • 第 12 道回波为 SART 的实际位置。 • 若本船进入 SART 1 海里以内范围, • 显 示的扫描速度加快, • 该回波的长度为距 SART 实际位置 150 米。
-
13
雷达干扰
• 当附近有使用相同频段的雷达工作时,屏幕就会出现干扰杂波。 虽然干扰的出现不是固定不变的,但形状几乎都是旋转或径向的 显示。 该系列雷达带有 IR(干扰抑制)功能来减少此类干扰。
-
14
接收雷达信标,雷达应答器和雷达增强器
• X 波段的雷达要求具有接收雷达信标,雷达应答器和雷达增强器 的能力。使用雷 达系统接收该类信号,请按如下操作。
雷达系统原理
-
1
什么是雷达系统?
• 雷达是从天线发射称为微波的甚高频无线电波的导航设备。发射 的无线电波经过 目标(如其他船,浮标,小岛等)反射回来,并 通过相同的天线接受后转换为电 信号。再将这些电信号发送给显 示单元进行显示。雷达使在夜晚或大雾的情况下 发现视线以外的 目标成为可能,并可以使船避免一些潜在的危险。 由于天线发射 的同时在旋转,这样就使本船周边的情况便一目了然。 雷达发射 的微波信号被称为脉冲信号,发射和接收这些信号是交替进行的。 一次 360 度的旋转就有上千的脉冲信号被发射和接收。
-
10
双重目标图像
• 当本船附近有一个大的反射面并处于与本船接近垂直的距离时 (如,本船正从一 艘大船旁边经过,等),雷达电波在本船与其 他船之间反弹。因此,2 到 4 个图 像可能会等距离的出现在目标 的方向上。由于多重反射造成的假图像被称为“双 重目标” 。 出现这种情况时,离本船最近的回波图像为真正的目标。 可以注 意到,当本船与相关目标的距离和方位发生变化时,双重目标也 会消失。 因此,这种假回波图像很容易就能区分出来。
-
8
假回波图像
• 屏幕上有可能会出现实际不存在的假回波图像。 造成假回波的现 象按如下分类及处理:
• 虚假图像 • 双重目标图像 • 旁瓣图像
-
9
虚假图像
• 附近的大型物体的回波图像有可能会出现在两个不同的位置。一 个是实际的图 像,另一个则可能是被主桅或烟囱等反射的回波造 成假回波图像。那在屏幕上, 一个回波图像就出现在正确的距离 及方位,而另一个图像则出现在烟囱或主桅等 的方向上。桥梁和 码头等也有可能造成假回波图像。
-
2
• 典型的雷达天线有抛物面反射天线和阵列天线,天线的性能直接 影响雷达的性能表现。 影响目标回波接收质量的因素有旁瓣电平 和天线波束宽度。天线波束宽度越窄,雷达分辨力 越强;旁瓣电 平越低,产生的假回波图像越• 主瓣为由天线发出的最强波束, • 其他较弱的波束被称为旁瓣。 • 旁瓣电平为主瓣电 平与最大旁瓣电平之差
-
6
弱反射目标
• 目标反射的回波强度不仅取决于与目标间的距离,目标的高度或 尺寸,还要取决 于目标的材料和特性。具有低发射或入射角的目 标,如 FRP(纤维增强复合材料) 船和木制船发射的都不好。所以, 必须注意 FRP 船,木船或沙,沙洲,泥礁等 物体都是弱反射目 标。 由于与海岸线的距离等,本船在雷达图像上看起来比实际的
-
15
关于 SART雷达应答器
• 根据 GMDSS(全球遇险与安全系统)要求,IMO/SOLAS 类型的 船必须配备 SART。当船遇险时,SART 可以自动发出信号,所以 其他船或飞机就可以确定 遇险船的位置。若本船配备了波段的雷 达,并且 8 英里内有船遇险,SART 可以 指引雷达回波到遇险船。 该信号包括了 12 扫频,并在 9.2 到 9.5GHz 的频段传输。 根据距 离的不同,SART 具有 2 种扫频时间,由慢(7.5μs)到快(0.4μs) 扫描或反 之亦然。当接收到该信号时,屏幕上出现一条总长为 0.64 海里被 12 个点平均的 线。最近的 SART 的光点指示遇险船 的位置。当本船接近 SART 1 海里以内时, 雷达上显示快速闪烁 的扫描信号,并有一根单薄的线连接 12 个光点。
相关文档
最新文档