2018秋七年级数学上册 第一章 有理数 1.2 有理数 1.2.3 相反数练习课件 (新版)新人教版

合集下载

七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值说课稿新版沪科版

七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值说课稿新版沪科版

七年级数学上册第1章有理数1.2数轴相反数和绝对值1.2.3绝对值说课稿新版沪科版05171116绝对值说课稿课程标准分析本节课要求学生借助数轴,初步理解绝对值的概念,能求一个数的绝对值,并能够利用绝对值的非负性进行相关计算.通过应用绝对值养成解决实际问题的能力;通过渗透数形结合的思想方法,注意培养学生的概括能力.最终帮助学生体会绝对值的意义和作用,感受数学在生活中的价值.教材分析1.地位与作用:绝对值是有理数的重要概念之一,在学习绝对值之前,学生已经学习了负数、数轴和相反数,学生在小学学习了非负有理数,了解了非负有理数的概念、性质及运算,为学习绝对值奠定了基础.绝对值与初等数学的许多知识和方法相联系,有着广泛和重要的应用:①有理数的大小比较,有了绝对值的概念后,有理数之间的大小比较就方便多了,特别是两个负数的比较,只比较绝对值即可,不必在数轴上表示负数后再比较.②求数轴上的两点间的距离,数a在数轴上表示的点到原点的距离为|a|,在数轴上表示a和b两点间的距离为|a-b|.③有理数的运算,一个有理数实质包含两部分:一是符号,二是绝对值;有理数的运算在确定了结果的正负号后,剩下的问题就是绝对值的运算了.④应用绝对值的非负性,一个有理数的绝对值是一个非负数,这一性质有着重要的作用.如已知|a-3|+|b+2|=0,求a-b的值,就是这一性质的直接应用.从前面四点的分析中,我们不难看出,绝对值在整个数与代数部分有着重要的地位,应用非常的广泛,是后继学习的重要基础,有着承上启下的作用.2.重点与难点:本节的重点是让学生直观理解绝对值的含义;本节的难点是正确理解绝对值的代数意义及其应用.教法分析通过引例,自然导出绝对值的几何定义,再通过尝试、归纳,进而得出常用的代数定义,要引导学生参与这一过程,并对|a|≥0这一性质有初步的直观认识.教学中要让学生了解一个有理数应由符号和绝对值两部分组成,为有理数的运算作准备,结合绝对值的学习,可以引导学生重新认识相反数的意义:绝对值相等符号相反的两个数互为相反数;零的相反数是零.绝对值是有理数教学的难点,对它的认识和掌握要有一个过程,本节课的教学要求是让学生能熟练求出一个数的绝对值,不要拓展太多,不宜向学生提出过高要求.对于|a|的化简,可以让学有余力的学生考虑这一问题,本节课主要采用自主探究,讲练结合的方法进行教学. 学法分析数轴的作用对本节的影响很大,在理解绝对值的概念时应结合数轴,理解“距离”的含义;另外在求一个数的绝对值时用了分类讨论的方法,这种方法在解答有关绝对值的问题中非常重要,应加强理解应用.1。

人教版数学七年级上册有理数相反数绝对值

人教版数学七年级上册有理数相反数绝对值

分析 (1)检查结果的绝对值越小, 与规定直径的 偏差越小, 所以检查结果 的绝对值小的零件较好. (2)只要求出每件样品所对应的误差的绝对值, 再根据绝对值的结果范围 可确定正品、次品和废品.
解 (1)第四件样品的大小最符合要求. (2)因为|0.1|=0.1<0.18, |-0.15|=0.15<0.18, |0.05|=0.05<0.18, 所以第 一、二、四件样品是正品; 因为|0.2|=0.2, 0.18<0.2<0.22, 所以第三 件样品是次品; 因为|0.25|=0.25>0.22, 所以第五件样品是废品.
例题3 求下列各数的绝对值:
锦囊妙计 求一个数的绝对值的方法
求一个数的绝对值时, 必须按照“先判后 去”的原则, 即先判 断这个数是正数、0或负数, 再去绝对值符号, 一个数的绝对值 为非负数.
题型四 与绝对值有关的计算
例题4 计算或化简: (1)-|-4|; (2)|-18|-|-6|.
分析
例题5 (1)如果|a-3|=0, 求|a+2019|的值; (2)如果a=-4, 且|a|=|b|, 求|b+4|的值. (提示:互为相反数的两数 相加, 和为0)
解 (1)因为|a-3|=0, 所以a-3=0, 即a=3. 所以 |a+2019|=|3+2019|=|2022|=2022. (2)因为a=-4, 所以|b|=|a|=|-4|=4. 所以b=4或b=-4. 当b=4时, |b+4|=|4+4|=8; 当b=-4时, |b+4|=|-4+4|=0. 所以|b+4|的值是8或0.
锦囊妙计
正数的相反数是负数, 负数的相反数是正 数, 0的相反数是0.
题型七 绝对值的非负性

2018-2019学年度 人教版七年级上册第一章《有理数》(1.2.3相反数)教案

2018-2019学年度 人教版七年级上册第一章《有理数》(1.2.3相反数)教案

1.2.3相反数[学习目标]识记相反数的定义,理解相反数在数轴上的特征。

运用相反数的特征求一个数a 的相反数。

[学习重点与难点] 重、难点: 理解相反数的意义 [学案设计] (一)、忆一忆数轴的三要素是什么?在下面画出一条数轴:2、在上面的数轴上描出表示5、—2、—5、+2 这四个数的点。

3、观察上图并填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。

(二)、学一学1、自学课本第10、11的内容并填空: 相反数的概念:只有( )不同的两个数,我们称它们互为相反数,零的相反数是( )。

概念的理解:互为相反数的两个数分别在原点的( ),且到原点的( )相等。

一般地,数a 的相反数是a -,a -不一定是负数。

在一个数的前面添上“—”号,就表示这个数的相反数,如:-3是3的相反数,-a 是a 的相反数,因此,当a 是负数时,-a 是一个( )数 ( 填正或负 )-(-3)是(-3)的相反数,所以-(-3)=3,相反数是指两个数之间的特殊的关系。

如:“-3是一个相反数”这句话是不对的。

2、例1 : 求下列各数的相反数: (1)-5 (2)21 (3)0 (4)3a(5)-2b (6) a-b (7) a+2 3、例2 判断:(1)-2是相反数 ( ) (2)-3和+3都是相反数 ( ) (3)-3是3的相反数 ( ) (4)-3与+3互为相反数 ( )(5)+3是-3的相反数 ( ) (6)一个数的相反数不可能是它本身 ( ) 4、 问题:-(+5)和-(-5)分别表示什么意思?你能化简它们吗? 5、例3 化简下列各数中的符号:(1))312(-- (2)-(+5) (3)[])7(--- (4)[]{})3(+-+-(三)、练一练1.只有__________的两个数,叫做互为相反数.0的相反数是_______. 2.+5的相反数是______;______的相反数是-2.3;531-与______互为相反数. 3.若x 的相反数是-3,则______=x ;若x -的相反数是-5.7,则______=x . 4.化简下列各数的符号:()____6=+-,()____3.1=--,()[]____3=-+-. 5.下列说法中正确的是………………………………………………………………〖 〗 A .-1是相反数B .313-与+3互为相反数C .25-与52-互为相反数D .41-的相反数为41(四)、自主检测1.若3.2+=a ,则_________=-a ;若31-=a ,则_________=-a ;若1=-a ,则_____=a ;若2-=-a ,则_____=a ;如果a a =-,那么_____=a . 2.数轴上离开原点4.5个单位长度的点所表示的数是______,它们是互为______. 3.下列说法正确的是…………………………………………………………………〖 〗 A .-5是相反数B .32-与23互为相反数C .-4是4的相反数D .21-是2的相反数4.下列说法中错误的是………………………………………………………………〖 〗 A .在一个数前面添加一个“-”号,就变成原数的相反数B .511-与2.2互为相反数 C .31的相反数是-0.3 D .如果两个数互为相反数,则它们的相反数也互为相反数6.下列说法中正确的是………………………………………………………………〖 〗 A .符号相反的两个数是相反数B .任何一个负数都小于它的相反数C .任何一个负数都大于它的相反数D .0没有相反数7.下列各对数中,互为相反数的有…………………………………………………〖 〗(-1)与+(-1),+(+1)与-1,-(-2)与+(-2), +[-(+1)]与-[+(-1)],-(+2)与-(-2),⎪⎭⎫ ⎝⎛--31与⎪⎭⎫⎝⎛++31.A .6对B .5对C .4对D .3对8. 数轴上与原点的距离是6的点有___________个,这些点表示的数是___________;与原点的距离是9的点有___________个,这些点表示的数是___________。

2018年七年级数学上册第一章有理数1.2有理数1.2.3相反数课时练新版新人教版

2018年七年级数学上册第一章有理数1.2有理数1.2.3相反数课时练新版新人教版

1.2 有理数(3)相反数1.3-的相反数是( )A .13B .13-C .3D .3-2.下列说法中,正确的个数是( )① 一个负数的相反数大于这个负数; ②互为倒数的两个数符号相反;③一个正数的相反数小于这个正数; ④互为相反数的两个数的和为0.A .1个B .2个C .3个D .4个3.下列各组数中,互为相反数的一组是( )A .12-和0.2B .23和32C . 1.75-和314D .2和(2)--4.若a ,b 互为相反数,则下列四个等式中一定成立的是( )A .a +b =0B .a +b =1C .0a b +=D .0a b +=5.数轴上表示互为相反数m 与m -的点到原点的距离( )A .表示数m 的点离原点较远B .表示数m -的点距原点较远C .一样远D .无法比较6.-(-100)的相反数是__________.7.在数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是12.8,则这两点所表示的数分别是________,________.8.已知点A 在数轴上距原点3个单位长度,且位于原点左侧,若将点A 向右移动4个单位长度,再向左移动1个单位长度,此时点A 所表示的数是______;若点B 所表示的数是点A 开始时所表示的数的相反数,作同样的移动以后,点B 表示的数是______.9.已知a -2 与-6互为相反数,求2a -1的值.10.小李在做题时,画了一个数轴,在数轴上原有一点A , 其表示的数是-3,由于粗心,把数轴的原点标错了位置,使点A正好落在-3的相反数的位置.想一想,要把数轴画正确,原点要向哪个方向移动几个单位长度?参考答案1.C.2.C.3.C.4.A.5.C.6.-100.7.6.4,-6.4.8.0,6.9.解:因为a-2 与6互为相反数,所以a-2=6,解得a=8.所以2a-1=16-1=15.10.解:原点要向左边移动3个单位长度.。

《有理数》PPT课件下载(第三课时相反数)

《有理数》PPT课件下载(第三课时相反数)
第一章 有理数
1.2 有理数(1.2.3 相反数)
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text
3、特别注意,0的相反数是0.
课堂测试
1、分别写出下列各数的相反数:
7, -10, 0, +12,
- 7, + 10, 0, 12,-
9
10
9
+
10
思考
设a表示一个数,-a一定是负数吗?
解:
1)若a为正数,则-a为负数;
例:a=2,-a=-2
2)若a为0,则-a为0,即0的相反数就是其本身。
3)若a为负数,则-a为正数;
人教版 数学(初中) (七年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear,
Concise And Concise Do Not Need Too Much Text
前言
学习目标
1.能说出绝对值的意义。


而0.3< ,所以-(−. )<


课堂测试
练习:判断对错
(1)|-1.4|>0 ( √ )
(2)|-0.3|=|0.3| ( √ )
(3)有理数的绝对值一定是正数.( ×)
(4)绝对值最小的数是0。( √)
(5)如果数a的绝对值等于a,那么a一定为正数。( ×)

七年级上册数学1.2.3相反数(课件)

七年级上册数学1.2.3相反数(课件)
+5 和–5 , - 1.5 与 +1.5
1 1 6 6 5 和5 和 2 2 7 7 例如:8的相反数是-8,7的相反数是-7。
5的相反数是 前面添上“-”号。 .
由此可知,求一个数的相反数就是在这个数的
• 一般地,a的相反数是 -a的相反数是
-a
.
.
a
a和-a互为相反数.如:10和-10互为相反数
- ( - 4 ) = 4 - ( + 5.5 ) = - 5.5
2. 在一个数的前面添上“+”号,即表示这个数本 身. 例如:
+(-4) =-4 + ( + 5.5 ) = 5.5
典型例题
4 __________ 例题1 (1) 4 是____的相反数, ._
(2)
1 是 ____的相反数, 5
( x y)
例5. 填空: (1)若-(a-5)是负数,则a-5 0.
(2) 0.
若是负数,则x+y
今日作业
例6. 已知a、b在数轴上的位置如 图所示。 在数轴上作出它们的相反数; 用“<”按从小到大的顺序将这 四个数连接起来。
今日作业
课堂练习 1.-1.6是____的相反数,___的相反数是0.3. 2.下列几对数中互为相反数的一对为( ). (8)和 (8)B. (8)与 (8) C. (8) A. 与 (8) 3.5的相反数是____; a 的相反数是___; a b的相 反数是____. 4.若 a 13,则 a _________ ; 若 a 6 ,则 a _________ . 5.若 a 是负数,则 a 是___数;若 a是负数,则 a 是______数.

1.2.1有理数的概念+1.2.2数轴+1.2.3相反数(课件)人教版(2024)七年级上册


分数集合
-8-
任务五:课堂小结,形成体系
回顾数的产生和发展历程,引入负数后我们对数的认识已扩大到有理数范围。
相反意义的量
正数和负数 0
有理数
1.你对有理数有哪些认识?你会对有理数分类吗?
2.0是有理数吗?0有什么特殊之处?
3.你还有什么疑问吗?
-9-
布置作业: 1.教材P16 习题1.2,第1题 2.阅读教材P18 -P19: “图说数学史——慢慢长路识负数”, 写写你的感想。
-29-
任务五:尝试练习,巩固内化 解答:教材P12练习1、2、3、4
-30-
任务六:课堂小结,形成体系
1.反思与交流: (1)只有符号不同的两个数互为相反数。你是如何理解“只有”两个字的? (2)说说你对相反数的其它认识? (3)你还有疑问吗?
2.知识结构
相反意义的量
正数和负数 0
有理数
数 与 点 的 对 应
-17-
任务三:认识数轴,体验数轴的作用。 2.请画一条数轴。
提醒:规定了原点、正方向和单位长度的直线叫数轴。
数轴三要素: 原点、
正方向、 单位长度。
-18-
任务三:认识数轴,体验数轴的作用。
3.(教材P10例2)画出数轴,并在数轴上表示下列各数:
3 , -4 , 4 ,0.5 , 5 ,-1 2
-27-
任务四:求有理数的相反数 1.解答:(教材P12例3) (1)分别写出 -7 和 4 的相反数;
3 (2)a的相反数是2.4,写出a的值。
2.解答:写出下列各数的相反数
-7的相反数是7, 不能写出-7=7
归纳: (1)a和-a只有符号不同, a和-a互为相反数。其中,a表示任意一个有理数,可以 是正有理数、负有理数,也可以是0.

人教版数学七年级上册第一章1.2.3相反数课件


拓展提升
5
2.当+5前面有2021个正号时,化简的结果为_________;
-5
当+5前面有2021个负号时,化简的结果为_________;
当+5前面有2022个负号时,化简的结果为_________。
5
多重复号的化简只需要考虑负号的个数,而不必考虑
正号的个数,当负号个数为偶数时,最后符号为正,
绝对值等于它的相反数的数是0或负数;
绝对值最小的数是0 .
下节课
课堂小结
定义
相反数
求法
在原数前面加负号
多重符号的化简
拓展提升
1.若-[-(-x)]=8,则x的相反数是
8
.
解析:因为-[-(-x)]=8,
所以x=-8,
所以x的相反数是8.
当“-”号的个数是偶数时,化简的结果为正数;
当“-”号的个数是奇数时,化简的结果为负数.
-5
-a
-1
0
1
a
5
相反数的几何意义
在数轴上位于原点两侧且到原点的距离相等的两个点
所表示的数互为相反数.
注意:(1)数轴上表示互为相反数的两个点
到原点的距离相等;
(2)数轴上与原点的距离是a(a为正数)的点
有两个,分别在原点的左右两侧,它们表
示的数互为相反数.
设a是一个正数,数轴上与原点的距离等于a(a为正数)
1)上述各对数之间有什么特点?
2)请写出一组具有上述特点的数。
3)你能得出相反数的概念吗?
4)表示各对数的点在数轴上有什么位置关系?
新知:只有符号不同的两个数互为相反数. 特别地,
0的相反数是0.
除了符号不同之外,其他部分完

1.2.3 相反数 课件 (共38张PPT)七年级数学上册 (人教版2024)

4
4
2
2
-(+2 )=-2 ,-[-(-5.5)]=-5.5,
5
5
-{-[+(-2.8)]}=-2.8.
3 2
其相反数依次为-1.5、5 、2 、5.5、2.8,数轴表示略.
4 5
பைடு நூலகம்
分层练习-巩固
18.(1)已知 a=-2019,求-(-a),+(-a);
(2)已知-[-(-a)]=2019,求-a 的相反数.
由内向外依
次去括号
(3)+(+3)=3;
(4)-(-12)=12;
(5)+[-(-1.1)]=+(+1.1)=1.1;
(6)-[+(-7)]=-(-7)=7.
新课本练习
1.判断下列说法是否正确:
(1)-6是相反数;
(2)+6是相反数;
(3)6是-6的相反数;
(4)-6与+6互为相反数.
(5)正数和负数互为相反数
;当+5 前面有 2020 个负号时,

【思路分析】对于多重符号的化简,当一个数前面只有“+”号时,化简
结果为正;当一个数前面有偶数个“-”号时,化简结果为正;当一个数
前面有奇数个“-”号时,化简结果为负.
【规范解答】(1)-(-5)=5,-(+5)=-5,-[-(+5)]=-(-5)=5,-{-
[-(+5)]}=-[-(-5)]=-(+5)=-5;
7
想一想
设a表示一
个数,“-a”
一定是负数
吗?
-(+1.1)表示什么?-(-7)呢?
-(-9.8)呢?它们的结果应是多少?
新知探究
3.多重符号的化简

人教版七年级数学上册 第一章:有理数_1.2.3:相反数 学案(含答案)

初中七年级数学上册第一章:有理数——1.2.3:相反数(解析)一:知识点讲解知识点一:相反数相反数:✧ 代数定义:像2和﹣2,5和﹣5这样,只有符号不同的两个数叫做互为相反数,把其中一个数叫做另一个数的相反数。

✧ 几何定义:相反数所对应的点在数轴上分别位于原点的左、右两侧,到原点的距离相等。

表示方法:数a 的相反数是﹣a ,这里的数a 是任意有理数,即a 可以是正数、负数或0。

性质:✧ 任何一个数都有相反数,而且只有一个;✧ 正数的相反数是负数,即当有理数a >0时,﹣a <0; ✧ 负数的相反数是正数,即当有理数a <0时,﹣a >0;✧ 0的相反数是0,即当a =0时,﹣a =0,因此,﹣a 表示的数不一定是负数。

特征:✧ 若a 与b 互为相反数,则a +b =0(或a =﹣b ); ✧ 若a +b =0(或a =﹣b ),则a 与b 互为相反数。

互为相反数的两个数一定是成对出现的,不能单独存在,单独的一个数不能说是相反数。

互为相反数的两个数只是符号不同。

求一个具体的数字的相反数时,只需改变这个数字前面的符号,其他部分不变,即可得到该数的相反数。

求一个式子(如:x -y )的相反数时,只需将这个式子括起来,在括号前面加上“﹣”号。

例1:填空1)985-的相反数为 985 ;2) 2m 是 ﹣2m 的相反数; 3)3-π的相反数是 ()3--π 。

知识点二:多重符号的化简多重符号的化简:✧ 当最前面的符号是“﹢”号时,直接省略这个“﹢”号;✧ 当最前面的符号是“﹣”号时,去掉这个“﹣”号,并写出括号内的数的相反数; ✧ 当这个数还能继续化简时,重复使用上述方法。

例如:﹢(﹣2)=﹣2;﹢(﹢2)=2;﹣(﹢2)=﹣2;﹣(﹣2)=2 例2:化简下列各数:①⎪⎭⎫ ⎝⎛--312;②()5+-;③()25.0--;解:312解:5-解:25.0④()[]1+--; ⑤()a -- 解:1解:a二:知识点复习知识点一:相反数1. 2017的相反数是( A )A. ﹣2017B. 2017C.20171D.20171-2. 下面的数中,与﹣6的和为0的数是( A )A. 6B. ﹣6C.61 D.61- 3. 如图所示,如果数轴上A 、B 两点表示的数互为相反数,那么点B 表示的数为( D )A. 2B. ﹣2C. 3D. ﹣34. 下列说法正确的是( D )A.81和﹣0.125不互为相反数 B. ﹣m 不可能等于0 C. 正数和负数互为相反数 D. 任何一个数都有相反数5. 如果a 与﹣3互为相反数,那么a 等于( A )A. 3B. ﹣3C.31 D.31- 6. 若数轴上表示互为相反数的两点之间的距离是4,则这两点表示的数是 2或﹣2 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档